
Tackling the Poor Assumptions of Naive Bayes Text Classifiers

Jason D. M. Rennie jrennie@mit.edu

Lawrence Shih kai@mit.edu

Jaime Teevan teevan@mit.edu

David R. Karger karger@mit.edu

Artificial Intelligence Laboratory; Massachusetts Institute of Technology; Cambridge, MA 02139

Abstract

Naive Bayes is often used as a baseline in
text classification because it is fast and easy
to implement. Its severe assumptions make
such efficiency possible but also adversely af-
fect the quality of its results. In this paper we
propose simple, heuristic solutions to some of
the problems with Naive Bayes classifiers, ad-
dressing both systemic issues as well as prob-
lems that arise because text is not actually
generated according to a multinomial model.
We find that our simple corrections result in a
fast algorithm that is competitive with state-
of-the-art text classification algorithms such
as the Support Vector Machine.

1. Introduction

Naive Bayes has been denigrated as “the punching bag
of classifiers” (Lewis, 1998), and has earned the dubi-
ous distinction of placing last or near last in numer-
ous head-to-head classification papers (Yang & Liu,
1999; Joachims, 1998; Zhang & Oles, 2001). Still, it
is frequently used for text classification because it is
fast and easy to implement. Less erroneous algorithms
tend to be slower and more complex. In this paper,
we investigate the reasons behind Naive Bayes’ poor
performance. For each problem, we propose a sim-
ple heuristic solution. For example, we look at Naive
Bayes as a linear classifier and find ways to improve
the learned decision boundary weights. We also better
match the distribution of text with the distribution
assumed by Naive Bayes. In doing so, we fix many of
the classifier’s problems without making it slower or
significantly more difficult to implement.

In this paper, we first review the multinomial Naive
Bayes model for classification and discuss several sys-
temic problems with it. One systemic problem is that
when one class has more training examples than an-
other, Naive Bayes selects poor weights for the decision
boundary. This is due to an under-studied bias effect
that shrinks weights for classes with few training ex-

amples. To balance the amount of training examples
used per estimate, we introduce a “complement class”
formulation of Naive Bayes.

Another systemic problem with Naive Bayes is that
features are assumed to be independent. As a re-
sult, even when words are dependent, each word con-
tributes evidence individually. Thus the magnitude of
the weights for classes with strong word dependencies
is larger than for classes with weak word dependencies.
To keep classes with more dependencies from dominat-
ing, we normalize the classification weights.

In addition to systemic problems, multinomial Naive
Bayes does not model text well. We present a simple
transform that enables Naive Bayes to instead emulate
a power law distribution that matches real term fre-
quency distributions more closely. We also discuss two
other pre-processing steps, common for information
retrieval but not for Naive Bayes classification, that
incorporate real world knowledge of text documents.
They significantly boost classification accuracy.

Our Naive Bayes modifications, summarized in Ta-
ble 4, produces a classifier that no longer has a genera-
tive interpretation. Thus, common model-based tech-
niques to uncover latent classes and incorporate unla-
beled data, such as EM, are not applicable. However,
we find the improved classification accuracy worth-
while. Our new classifier approaches the state-of-the-
art accuracy of the Support Vector Machine (SVM)
on several text corpora while being faster and easier
to implement than the SVM and most modern-day
classifiers.

2. Multinomial Naive Bayes

The Naive Bayes classifier is well studied. An early
description can be found in Duda and Hart (1973).
Some of the reasons the classifier is so common is that
it is fast, easy to implement and relatively effective.
Domingos and Pazzani (1996) discuss its feature in-
dependence assumption and explain why Naive Bayes
performs well for classification even with such a gross

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

over-simplification. McCallum and Nigam (1998) posit
a multinomial Naive Bayes model for text classifica-
tion and show improved performance compared to the
multi-variate Bernoulli model due to the incorporation
of frequency information. It is this multinomial ver-
sion, which we call “multinomial Naive Bayes” (MNB),
that we discuss, analyze and improve on in this paper.

2.1. Modeling and Classification

Multinomial Naive Bayes models the distribution of
words in a document as a multinomial. A document is
treated as a sequence of words and it is assumed that
each word position is generated independently of every
other. For classification, we assume that there are a
fixed number of classes, c ∈ {1, 2, . . . , m}, each with
a fixed set of multinomial parameters. The parameter
vector for a class c is ~θc = {θc1, θc2, . . . , θcn}, where
n is the size of the vocabulary,

∑

i θci = 1 and θci is
the probability that word i occurs in that class. The
likelihood of a document is a product of the parameters
of the words that appear in the document,

p(d|~θc) =
(
∑

i fi)!
∏

i fi!

∏

i

(θci)
fi , (1)

where fi is the frequency count of word i in docu-
ment d. By assigning a prior distribution over the set
of classes, p(~θc), we can arrive at the minimum-error
classification rule (Duda & Hart, 1973) which selects
the class with the largest posterior probability,

l(d) = argmaxc

[

log p(~θc) +
∑

i

fi log θci

]

, (2)

= argmaxc

[

bc +
∑

i

fiwci

]

, (3)

where bc is the threshold term and wci is the class c

weight for word i. These values are natural parame-
ters for the decision boundary. This is especially easy
to see for binary classification, where the boundary is
defined by setting the differences between the positive
and negative class parameters equal to zero,

(b+ − b−) +
∑

i

fi (w+i − w−i) = 0.

The form of this equation is identical to the decision
boundary learned by the (linear) Support Vector Ma-
chine, logistic regression, linear least squares and the
perceptron. Naive Bayes’ relatively poor performance
results from how it chooses the bc and wci.

2.2. Parameter Estimation

For the problem of classification, the number of classes
and labeled training data for each class is given, but

the parameters for each class are not. Parameters must
be estimated from the training data. We do this by
selecting a Dirichlet prior and taking the expectation
of the parameter with respect to the posterior. For
details, we refer the reader to Section 2 of Heckerman
(1995). This gives us a simple form for the estimate of
the multinomial parameter, which involves the number
of times word i appears in the documents in class c

(Nci), divided by the total number of word occurrences
in class c (Nc). For word i, a prior adds in αi imagined
occurrences so that the estimate is a smoothed version
of the maximum likelihood estimate,

θ̂ci =
Nci + αi

Nc + α
, (4)

where α denotes the sum of the αi. While αi can be set
differently for each word, we follow common practice
by setting αi = 1 for all words.

Substituting the true parameters in Equation 2 with
our estimates, we get the MNB classifier,

lMNB(d) = argmaxc

[

log p̂(θc) +
∑

i

fi log
Nci + αi

Nc + α

]

,

where p̂(θc) is the class prior estimate. The prior class
probabilities, p(θc), could be estimated like the word
estimates. However, the class probabilities tend to be
overpowered by the combination of word probabilities,
so we use a uniform prior estimate for simplicity. The
weights for the decision boundary defined by the MNB
classifier are the log parameter estimates,

ŵci = log θ̂ci. (5)

3. Correcting Systemic Errors

Naive Bayes has many systemic errors. Systemic er-
rors are byproducts of the algorithm that cause an
inappropriate favoring of one class over the other. In
this section, we discuss two under-studied systemic er-
rors that cause Naive Bayes to perform poorly. We
highlight how they cause misclassifications and pro-
pose solutions to mitigate or eliminate them.

3.1. Skewed Data Bias

In this section, we show that skewed data—more train-
ing examples for one class than another—can cause the
decision boundary weights to be biased. This causes
the classifier to unwittingly prefer one class over the
other. We show the reason for the bias and propose
to alleviate the problem by learning the weights for a
class using all training data not in that class.

Table 1. Shown is a simple classification example with two
classes. Each class has a binomial distribution with prob-
ability of heads θ = 0.25 and θ = 0.2, respectively. We
are given one training sample for Class 1 and two train-
ing samples for Class 2, and want to label a heads (H)
occurrence. We find the maximum likelihood parameter
settings (θ̂1 and θ̂2) for all possible sets of training data
and use these estimates to label the test example with the
class that predicts the higher rate of occurrence for heads.
Even though Class 1 has the higher rate of heads, the test
example is classified as Class 2 more often.

Class 1 Class 2 p(data) θ̂1 θ̂2 Label
θ = 0.25 θ = 0.2 for H

T TT 0.48 0 0 none

T {HT,TH} 0.24 0 1
2 Class 2

T HH 0.03 0 1 Class 2
H TT 0.16 1 0 Class 1
H {HT,TH} 0.08 1 1

2 Class 1
H HH 0.01 1 1 none

p(θ̂1 > θ̂2) = 0.24

p(θ̂2 > θ̂1) = 0.27

Table 1 gives a simple example of the bias. In the ex-
ample, Class 1 has a higher rate of heads than Class 2.
However, our classifier labels a heads occurrence as
Class 2 more often than Class 1. This is not because
Class 2 is more likely by default. Indeed, the classi-
fier also labels a tails example as Class 1 more often,
despite Class 1’s lower rate of tails. Instead, the ef-
fect, which we call “skewed data bias,” directly results
from imbalanced training data. If we were to use the
same number of training examples for each class, we
would get the expected result—a heads example would
be more often labeled by the class with the higher rate
of heads.

Let us consider the more complex example of how the
weights for the decision boundary in text classifica-
tion, shown in Equation 5, are learned. Since log is
a concave function, the expected value of the weight
estimate is less than the log of the expected value of
the parameter estimate, E[ŵci] < log E[θ̂ci]. When
training data is not skewed, this difference will be ap-
proximately the same between classes. But, when the
training data is skewed, the weights will be lower for
the class with less training data. Hence, classification
will be erroneously biased toward one class over the
other, as is the case with our example in Table 1.

To deal with skewed training data, we introduce a
“complement class” version of Naive Bayes, called
Complement Naive Bayes (CNB). In estimating
weights for regular MNB (Equation 4) we use train-

ing data from a single class, c. In contrast, CNB esti-
mates parameters using data from all classes except c.
We think CNB’s estimates will be more effective be-
cause each uses a more even amount of training data
per class, which will lessen the bias in the weight es-
timates. We find we get more stable weight estimates
and improved classification accuracy. These improve-
ments might be due to more data per estimate, but
overall we are using the same amount of data, just in
a way that is less susceptible to the skewed data bias.

CNB’s estimate is

θ̂c̃i =
Nc̃i + αi

Nc̃ + α
, (6)

where Nc̃i is the number of times word i occurred in
documents in classes other than c and Nc̃ is the total
number of word occurrences in classes other than c,
and αi and α are smoothing parameters, as in Equa-
tion 4. As before, the weight estimate is ŵc̃i = log θ̂c̃i

and the classification rule is

lCNB(d) = argmaxc

[

log p(~θc) −
∑

i

fi log
Nc̃i + αi

Nc̃ + α

]

.

The negative sign represents the fact that we want
to assign to class c documents that poorly match the
complement parameter estimates.

Figure 1 shows how different amounts of training data
affect (a) the regular weight estimates and (b) the
complement weight estimates. The regular weight es-
timates shift up and change their ordering between
10 examples of training data and 1000 examples. In
particular, the word that has the smallest weight for
10 through 100 examples moves up to the 11th largest
weight (out of 18) when estimated with 1000 examples.
The complement weights show the effects of smooth-
ing, but do not show such a severe upward bias and
retain their relative ordering. The complement esti-
mates mitigate the problem of the skewed data bias.

CNB is related to the one-versus-all-but-one (com-
monly misnamed “one-versus-all”) technique that is
frequently used in multi-label classification, where
each example may have more than one label. Berger
(1999) and Zhang and Oles (2001) have found that
one-vs-all-but-one MNB works better than regular
MNB. The classification rule is

lOVA(d) = argmaxc

[

log p(~θc) +

(

∑

i

fi log
Nci + αi

Nc + α

−
∑

i

fi log
Nc̃i + αi

Nc̃ + α

)]

. (7)

This is a combination of the regular and complement
classification rules. We attribute the improvement

(a)

-7

-6.5

-6

-5.5

-5

-4.5

-4

10 100 1000

C
la

ss
ifi

ca
tio

n
W

ei
gh

t

Training Examples per Class

(b)

-14

-13

-12

-11

-10

-9

-8

-7

-6

10 100 1000

C
la

ss
ifi

ca
tio

n
W

ei
gh

t

Training Examples per Class

Figure 1. Average classification weights for 18 highly dis-
criminative features from 20 Newsgroups. The amount of
training data is varied along the x-axis. Plot (a) shows
weights for MNB, and Plot (b) shows the weights for CNB.
CNB is more stable across a varying amount of training
data.

with one-vs-all-but-one to the use of the complement
weights. We find that CNB performs better than one-
vs-all-but-one and regular MNB since it eliminates the
biased regular MNB weights.

3.2. Weight Magnitude Errors

In the last section, we discussed how uneven train-
ing sizes could cause Naive Bayes to bias its weight
vectors. In this section, we discuss how the indepen-
dence assumption can erroneously cause Naive Bayes
to produce different magnitude classification weights.
When the magnitude of Naive Bayes’ weight vector
~wc is larger in one class than the others, the larger-
magnitude class may be preferred. For Naive Bayes,
differences in weight magnitudes are not a deliberate
attempt to create greater influence for one class. In-
stead, the weight differences are partially an artifact
of applying the independence assumption to depen-
dent data. Naive Bayes gives more influence to classes
that most violate the independence assumption. The

following example illustrates this effect.

Consider the problem of distinguishing between docu-
ments that discuss Boston and ones that discuss San
Francisco. Let’s assume that “Boston” appears in
Boston documents about as often as “San Francisco”
appears in San Francisco documents (as one might
expect). Let’s also assume that it’s rare to see the
words “San” and “Francisco” apart. Then, each time
a test document has an occurrence of “San Francisco,”
Multinomial Naive Bayes will double count—it will
add in the weight for “San” and the weight for “Fran-
cisco.” Since “San Francisco” and “Boston” occur
equally in their respective classes, a single occurrence
of “San Francisco” will contribute twice the weight as
an occurrence of “Boston.” Hence, the summed con-
tributions of the classification weights may be larger
for one class than another—this will cause MNB to
prefer one class incorrectly. For example, if a doc-
ument has five occurrences of “Boston” and three of
“San Francisco,” MNB will label the document as “San
Francisco” rather than “Boston.”

In practice, it is often the case that weights tend to
lean toward one class or the other. For the problem of
identifying “barley” documents in the Reuters-21578
corpus, it is advantageous to choose a threshold term,
b = b+ − b−, that is much more negative than one
chosen by counting documents. In testing different
smoothing values, we found that αi = 10−4 gave the
most extreme example of this. With a threshold term
of b = −94.6, the classifier achieved as low an error rate
as any other smoothing value. However, the thresh-
old term calculated via the prior estimate by count-

ing training documents was log p(~θ+)

p(~θ−)
= −5.43. This

threshold yielded a somewhat higher rate of error. It
is likely Naive Bayes’ independence assumption lead
to a strong preference for the “barley” documents.

We correct for the fact that some classes have greater
dependencies by normalizing the weight vectors. In-
stead of assigning ŵci = log θ̂ci, we assign

ŵci =
log θ̂ci

∑

k | log θ̂ck|
. (8)

We call this, combined with CNB, Weight-normalized
Complement Naive Bayes (WCNB). Experiments in-
dicate that WCNB is effective. Alternately, one
could address this problem by optimizing the threshold
terms, bc. Webb and Pazzani give a method for doing
this by calculating per-class weights based on identi-
fied violations of the Naive Bayes classifier (Webb &
Pazzani, 1998).

Since we are manipulating the weight vector directly,

Table 2. Experiments comparing multinomial Naive Bayes
(MNB) with Weight-normalized Complement Naive Bayes
(WCNB) over several data sets. Industry Sector and 20
News are reported in terms of accuracy; Reuters in terms
of precision-recall breakeven. WCNB outperforms MNB.

MNB WCNB
Industry Sector 0.582 0.889
20 Newsgroups 0.848 0.857
Reuters (micro) 0.739 0.782
Reuters (macro) 0.270 0.548

we can no longer make use of the model-based as-
pects of Naive Bayes. Thus, common model-based
techniques to incorporate unlabeled data and uncover
latent classes, such as EM, are not applicable. This is
a trade-off for improved classification performance.

3.3. Bias Correction Experiments

We ran classification experiments to validate the tech-
niques suggested here. Table 2 gives classification
performance on three text data sets, reporting ac-
curacy for 20 Newsgroups and Industry Sector and
precision-recall breakeven for Reuters. See the Ap-
pendix for a description of the data sets and experi-
mental setup. We compared Weight-normalized Com-
plement Naive Bayes (WCNB) with standard multi-
nomial Naive Bayes (MNB), and found that WCNB
resulted in marked improvement on all data sets. The
improvement was greatest for data sets where training
data quantity varied between classes (Reuters and In-
dustry Sector). The greatly improved Reuters macro
P-R breakeven score suggests that much of the im-
provement can be attributed to better performance
on classes with few training examples. WCNB also
shows an improvement (small, but significant) on 20
Newsgroups even though the distribution of training
examples is even across classes.

In comparing, we note that our baseline, MNB, is sim-
ilar to the MNB results found by others. Our 20
Newsgroups result closely matches that reported by
McCallum and Nigam (1998) (85% vs. our 84.8%).
The difference in Ghani (2000)’s Industry Sector re-
sult (64.5% vs. our 58.2%) is likely due to his use
of feature selection. Zhang and Oles (2001)’s result
on Industry Sector (84.8%) is significantly higher be-
cause they optimize the smoothing parameter. When
we optimized the smoothing parameter for MNB via
cross-validation, in experiments not reported here, our
MNB results were similar. Smoothing parameter op-
timization also further improved WCNB. Our micro
and macro scores on Reuters are reasonably similar

to Yang and Liu (1999) (79.6% vs. our 73.9%, 38.9%
vs. our 27.0%), with the differences likely due to their
use of feature selection, a different scoring metric (F1),
and a different pre-processing system (SMART).

4. Modeling Text Better

So far we have discussed systemic issues that arise
when using any Naive Bayes classifier. MNB uses a
multinomial to model text, which is not very accurate.
In this section we look at three transforms to better
align the model and the data. One transform affects
frequencies—term frequency distributions have a much
heavier tail than the multinomial model expects. We
also transform based on document frequency, to keep
common terms from dominating in classification, and
based on length, to keep long documents from domi-
nating during training. By transforming the data to
be better suited for use with a multinomial model, we
find significant improvement in performance over using
MNB without the transforms.

4.1. Transforming Term Frequency

In order to understand if MNB would do a good job
classifying text, we looked at empirical term distri-
butions of text. We found that term distributions had
heavier tails than predicted by the multinomial model,
instead appearing like a power-law distribution. Using
a simple transform, we can make these power-law-like
term distributions look more multinomial.

To measure how well the multinomial model fits the
term distribution of text, we compared the empirical
distribution to the maximum likelihood multinomial.
For visualization purposes, we took a set of words with
approximately the same occurrence rate and created a
histogram of their term frequencies in a set of docu-
ments with similar length. These term frequency rates
and those predicted by the best fit multinomial model
are plotted in Figure 2 on a log scale. The figure shows
the empirical term distribution is very different from
what a multinomial model would predict. The empiri-
cal distribution has a much heavier tail, meaning mul-
tiple occurrences of a term is much more likely than
expected for the best fit multinomial. For example,
the multinomial model predicts the chance of seeing
an average word occur nine times in a document is
p(fi = 9) = 10−21.28, so low that such an event in un-
expected even in a collection of all news stories ever
written. In reality the chance is p(fi = 9) = 10−4.34,
very rare for a single document, but not unexpected
in a collection of 10,000 documents.

This behavior, also called “burstiness”, has been ob-

(a)
0 1 2 3 4 5 6 7 8 9

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Term Frequency

P
ro

ba
bi

lit
y

Data
Power law
Multinomial

(b)
0 1 2 3 4 5 6 7 8 9

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Term Frequency

P
ro

ba
bi

lit
y

Data
Power law

Figure 2. Shown is an example term frequency probability
distribution, compared with several best fit analytic dis-
tributions. The data has a much heavier tail than the
multinomial model predicts. A power law distribution
(p(fi) ∝ (d + fi)

log θ) matches more closely, particularly
when an optimal d is chosen (Figure b), but also when
d = 1 (Figure a).

served by Church and Gale (1995) and Katz (1996).
While they developed sophisticated models to deal
with term burstiness, we found that even a simple
heavy tailed distribution, the power law distribution,
could better model text and motivate a simple trans-
form to the features of our MNB model. Figure 2(b)
shows an example empirical distribution, alongside a
power law distribution, p(fi) ∝ (d + fi)

log θ, where d

has been chosen to closely match the text distribution.
The probability is also proportional to θlog(d+fi). Be-
cause this is similar to the multinomial model, where
the probability is proportional to θfi , we can use the
multinomial model to generate probabilities propor-
tional to a class of power law distributions via a sim-
ple transform, f ′

i = log(d + fi). One such transform,
f ′

i = log(1 + fi), has the advantages of being an iden-
tity transform for zero and one counts, while pushing
down larger counts as we would like. The transform
allows us to more realistically handle text while not
giving up the advantages of MNB. Although setting
d = 1 does not match the data as well as an optimized

0 1 2 3 4 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Term Frequency

P
ro

ba
bi

lit
y

Doc Length 0−80
Doc Length 80−160
Doc Length 160−240

Figure 3. Plotted are average term frequencies for words
in three classes of Reuters-21578 documents—short doc-
uments, medium length documents and long documents.
Terms in longer documents have heavier tails.

d, it does produce a distribution that is much closer
to the empirical distribution than the best fit multino-
mial, as shown by the “Power law” line in Figure 2(a).

4.2. Transforming by Document Frequency

Another useful transform discounts terms that occur
in many documents. Common words are unlikely to
be related to the class of a document, but random
variations can create apparent fictitious correlations.
This adds noise to the parameter estimates and hence
the classification weights. Since common words ap-
pear often, they can hold sway over a classification de-
cision even if their weight differences between classes
is small. For this reason, it is advantageous to down-
weight these words.

A heuristic transform in the Information Retrieval
(IR) community, known as “inverse document fre-
quency”, is to discount terms by their document fre-
quency (Jones, 1972). A common way to do this is

f ′

i = fi log

∑

j 1
∑

j δij

,

where δij is 1 if word i occurs in document j, 0 other-
wise, and the sum is over all document indices (Salton
& Buckley, 1988). Rare words are given increased term
frequencies; common words are given less weight. We
found it to improve performance.

4.3. Transforming Based on Length

Documents have strong word inter-dependencies. Af-
ter a word first appears in a document, it is more likely
to appear again. Since MNB assumes occurrence in-
dependence, long documents can negatively effect pa-
rameter estimates. We normalize word counts to avoid

Table 3. Experiments comparing multinomial Naive Bayes
(MNB) to Transformed Weignt-normalized Complement
Naive Bayes (TWCNB) and the Support Vector Machine
(SVM) over several data sets. TWCNB’s performance is
substantially better than MNB, and approaches the SVM’s
performance. Industry Sector and 20 News are reported
in terms of accuracy; Reuters results are precision-recall
breakeven.

MNB TWCNB SVM
Industry Sector 0.582 0.923 0.934
20 Newsgroups 0.848 0.861 0.862
Reuters (micro) 0.739 0.844 0.887
Reuters (macro) 0.270 0.647 0.694

this problem. Figure 3 shows empirical term frequency
distributions for documents of different lengths. It is
not surprising that longer documents have larger prob-
abilities for larger term frequencies, but the jump for
larger term frequencies is disproportionally large. Doc-
uments in the 80-160 group are, on average, twice as
long as those in the 0-80 group, yet the chance of a
word occurring five times in the 80-160 group is larger
than a word occurring twice in the 0-80 group. This
would not be the case if text were multinomial.

To deal with this, we again use a common IR transform
that is not seen with Naive Bayes. We discount the
influence of long documents by transforming the term
frequencies according to

f ′

i =
fi

√
∑

k(fk)2
.

yielding a length 1 term frequency vector for each doc-
ument. This transform is common within the IR com-
munity because the probability of generating a docu-
ment within a model is compared across documents; in
such a case one does not want short documents dom-
inating merely because they have fewer words. For
classification, however, because comparisons are made
across classes, and not across documents, the benefit
of such normalization is more subtle, especially as the
multinomial model accounts for length very naturally
(Lewis, 1998). The transform keeps any single docu-
ment from dominating the parameter estimates.

4.4. Experiments

We have described a set of transforms for term frequen-
cies. Each of these tries to resolve a different prob-
lem with the modeling assumptions of Naive Bayes.
The set of modifications and the procedure for ap-
plying them is shown in Table 4. When we apply
those modifications, we find a significant improve-
ment in text classification performance over MNB. Ta-

Table 4. Our new Naive Bayes procedure. Assignments are
over all possible index values. Steps 1 through 3 distinguish
TWCNB from WCNB.

• Let ~d = (~d1, . . . , ~dn) be a set of documents; dij is
the count of word i in document j.

• Let ~y = (y1, . . . , yn) be the labels.

• TWCNB(~d, ~y)

1. dij = log(dij + 1) (TF transform § 4.1)

2. dij = dij log
∑

k
1

∑

k
δik

(IDF transform § 4.2)

3. dij =
dij√

∑

k
(dkj)2

(length norm. § 4.3)

4. θ̂ci =

∑

j:yj 6=c
dij+αi

∑

j:yj 6=c

∑

k
dkj+α

(complement § 3.1)

5. wci = log θ̂ci

6. wci = wci
∑

i
wci

(weight normalization § 3.2)

7. Let t = (t1, . . . , tn) be a test document; let ti
be the count of word i.

8. Label the document according to

l(t) = arg min
c

∑

i

tiwci

ble 3 shows classification accuracy for Industry Sector
and 20 Newsgroups and precision-recall breakeven for
Reuters. In tests, we found the length normalization
transform to be the most useful, followed by the log
transform. The document frequency transform seemed
to be of less import. We show results on the Support
Vector Machine (SVM) for comparison. We used the
transforms described in Section 4 for the SVM since
they improved classification performance.

We discussed similarities in our multinomial Naive
Bayes results in Section 3.3. Our Support Vector Ma-
chine results are similar to others. Our Industry Sec-
tor result matches that reported by Zhang and Oles
(2001) (93.6% vs. our 93.4%). The difference in God-
bole et al. (2002)’s result (89.7% vs. our 86.2%) on
20 Newsgroups is due to their use of a different multi-
class schema. Our micro and macro scores on Reuters
differ from Yang and Liu (1999) (86.0% vs. our 88.7%,
52.5% vs. our 69.4%), likely due to their use of fea-
ture selection, a different scoring metric (F1), and a
different pre-processing system (SMART). The larger
difference in macro results is due to the sensitivity of
macro calculations, which heavily weighs small classes.

5. Conclusion

We have described several techniques, shown in Ta-
ble 4, that correct deficiencies in the application of the

Naive Bayes classifier to text data. A series of trans-
forms from the information retrieval community, Steps
1-3 in Table 4, improves the performance of Naive
Bayes text classification. For example, the transform
described in Step 1 converts text, which can be closely
modeled by a power law, to look more multinomial.
Training with the complement class, Step 4, solves
the problem of uneven training data. Normalizing
the classification weights, Step 6, improves upon the
Naive Bayes handling of word occurrence dependen-
cies. These modifications better align Naive Bayes
with the realities of bag-of-words textual data and,
as we have shown empirically, significantly improve its
performance on a number of data sets. The modified
Naive Bayes is a fast, easy-to-implement, near state-
of-the-art text classification algorithm.

Acknowledgements We are grateful to Yu-Han
Chang and Tommi Jaakkola for their input. We
also thank the anonymous reviewers for valuable com-
ments. This work was supported by the MIT Oxygen
Partnership, the National Science Foundation (ITR)
and Graduate Research Fellowships from the NSF.

References

Berger, A. (1999). Error-correcting output coding for text
classification. Proceedings of IJCAI ’99.

Church, K., & Gale, W. (1995). Poisson mixtures. Natural
Language Engineering, 1, 163–190.

Domingos, P., & Pazzani, M. (1996). Beyond inde-
pendence: conditions for the optimality of the simple
Bayesian classifier. Proceedings of ICML ’96.

Duda, R. O., & Hart, P. E. (1973). Pattern classification
and scene analysis. Wiley and Sons, Inc.

Ghani, R. (2000). Using error-correcting codes for text
classification. Proceedings of ICML ’00.

Godbole, S., Sarawagi, S., & Chakrabarti, S. (2002). Scal-
ing multi-class Support Vector Machines using inter-
class confusion. Proceedings of SIGKDD.

Heckerman, D. (1995). A tutorial on learning with
Bayesian networks (Technical Report MSR-TR-95-06).
Microsoft Research.

Joachims, T. (1998). Text categorization with support
vector machines: Learning with many relevant features.
Proceedings of ECML ’98.

Jones, K. S. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 28, 11–21.

Katz, S. (1996). Distribution of content words and phrases
in text and language modelling. Natural Language En-
gineering, 2, 15–60.

Lewis, D. D. (1998). Naive (Bayes) at forty: The indepen-
dence assumption in information retrieval. Proceedings
of ECML ’98.

McCallum, A., & Nigam, K. (1998). A comparison of event
models for naive Bayes text classification. Proceedings
of AAAI ’98.

Salton, G., & Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Information Pro-
cessing and Management, 24, 513–523.

Webb, G. I., & Pazzani, M. J. (1998). Adjusted probability
naive Bayesian induction. Proceedings of AI ’01.

Yang, Y., & Liu, X. (1999). A re-examination of text cat-
egorization methods. Proceedings of SIGIR ’99.

Zhang, T., & Oles, F. J. (2001). Text categorization based
on regularized linear classification methods. Information
Retrieval, 4, 5–31.

Appendix

For our experiments, we use three well–known data
sets: 20 Newsgroups, Industry Sector and Reuters-
21578. Industry Sector and 20 News are single-label
data sets: each document is assigned a single class.
Reuters is a multi-label data set: each document may
have many labels. Since Reuters is multi-label, it is
handled differently than described in the paper. For
MNB, we use the standard one-vs-all-but-one (usu-
ally misnamed “one-vs-all”) on each binary problem.
For CNB, we use all-vs-all-but-one, thus making the
amount of data per estimate more even.

Industry Sector and Reuters-21578 have widely vary-
ing numbers of documents per class, but no single
class dominates. The distribution of documents per
class for 20 Newsgroups is even at about 1000 exam-
ples per class. For 20 Newsgroups, we ran 10 ran-
dom splits with 80% training data and 20% testing
data per class. There are 9649 Industry Sector doc-
uments and 105 classes; the largest category has 102
documents, the smallest has 27. For Industry Sec-
tor, we ran 10 random splits with 50% training data
and 50% testing data per class. For Reuters-21578 we
use the “ModApte” split and use only topics with at
least one training document and one testing document.
This gives 7770 training documents and 90 classes; the
largest category has 2840 training documents.

For the SVM experiments, we used SvmFu1 and set
C = 10. We use one-vs-all to produce multi-class la-
bels for the SVM. We use the linear kernel since it
performs as well as non-linear kernels in text classifi-
cation (Yang & Liu, 1999).

1SvmFu is available from http://fpn.mit.edu/SvmFu.

