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Clustering is a division of data into groups of similar objects. Representing the 
data by fewer clusters necessarily loses certain fine details, but achieves 
simplification. It models data by its clusters. Data modeling puts clustering in a 
historical perspective rooted in mathematics, statistics, and numerical analysis.
From a machine learning perspective clusters correspond to hidden patterns, the
search for clusters is unsupervised learning, and the resulting system represents a 
data concept. From a practical perspective clustering plays an outstanding role in 
data mining applications such as scientific data exploration, information retrieval
and text mining, spatial database applications, Web analysis, CRM, marketing, 
medical diagnostics, computational biology, and many others.

Clustering is the subject of active research in several fields such as statistics,
pattern recognition, and machine learning. This survey focuses on clustering in 
data mining. Data mining adds to clustering the complications of very large 
datasets with very many attributes of different types. This imposes unique 
computational requirements on relevant clustering algorithms. A variety of 
algorithms have recently emerged that meet these requirements and were 
successfully applied to real-life data mining problems. They are subject of the 
survey.
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1. Introduction

The goal of this survey is to provide a comprehensive review of different clustering 
techniques in data mining. Clustering is a division of data into groups of similar objects. 
Each group, called cluster, consists of objects that are similar between themselves and 
dissimilar to objects of other groups. Representing data by fewer clusters necessarily
loses certain fine details (akin to lossy data compression), but achieves simplification. It 
represents many data objects by few clusters, and hence, it models data by its clusters. 
Data modeling puts clustering in a historical perspective rooted in mathematics, statistics,
and numerical analysis. From a machine learning perspective clusters correspond to 
hidden patterns, the search for clusters is unsupervised learning, and the resulting system
represents a data concept. Therefore, clustering is unsupervised learning of a hidden data 
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concept. Data mining deals with large databases that impose on clustering analysis 
additional severe computational requirements. These challenges led to the emergence of 
powerful broadly applicable data mining clustering methods surveyed below. 

1.1. Notations 

To fix the context and to clarify prolific terminology, we consider a dataset X consisting
of data points (or synonymously, objects, instances, cases, patterns, tuples, transactions)

 in attribute space A, where i , and each component  is a

numerical or nominal categorical attribute (or synonymously, feature, variable,
dimension, component, field). For a discussion of attributes data types see [Han & 
Kamber 2001]. Such point-by-attribute data format conceptually corresponds to a 
matrix and is used by the majority of algorithms reviewed below. However, data of other 
formats, such as variable length sequences and heterogeneous data, is becoming more and 
more popular. The simplest attribute space subset is a direct Cartesian product of sub-
ranges  called a segment (also cube, cell, region). A 

unit is an elementary segment whose sub-ranges consist of a single category value, or of a
small numerical bin. Describing the numbers of data points per every unit represents an
extreme case of clustering, a histogram, where no actual clustering takes place. This is a 
very expensive representation, and not a very revealing one. User driven segmentation is
another commonly used practice in data exploration that utilizes expert knowledge 
regarding the importance of certain sub-domains. We distinguish clustering from
segmentation to emphasize the importance of the automatic learning process.
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The ultimate goal of clustering is to assign points to a finite system of k subsets, clusters. 
Usually subsets do not intersect (this assumption is sometimes violated), and their union 
is equal to a full dataset with possible exception of outliers
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1.2. Clustering Bibliography at Glance 

General references regarding clustering include [Hartigan 1975; Spath 1980; Jain & 
Dubes 1988; Kaufman &  Rousseeuw 1990; Dubes 1993; Everitt 1993; Mirkin 1996; Jain
et al. 1999; Fasulo 1999; Kolatch 2001; Han et al. 2001; Ghosh 2002]. A very good 
introduction to contemporary data mining clustering techniques can be found in the 
textbook [Han & Kamber 2001]. 

There is a close relationship between clustering techniques and many other disciplines.
Clustering has always been used in statistics [Arabie & Hubert 1996] and science 
[Massart & Kaufman 1983]. The classic introduction into pattern recognition framework
is given in [Duda & Hart 1973]. Typical applications include speech and character

recognition. Machine learning clustering algorithms were applied to image segmentation 

and computer vision [Jain & Flynn 1996]. For statistical approaches to pattern 
recognition see [Dempster et al. 1977] and [Fukunaga 1990]. Clustering can be viewed as 
a density estimation problem. This is the subject of traditional multivariate statistical
estimation [Scott 1992]. Clustering is also widely used for data compression in image
processing, which is also known as vector quantization [Gersho & Gray 1992]. Data 
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fitting in numerical analysis provides still another venue in data modeling [Daniel & 
Wood 1980]. 

This survey’s emphasis is on clustering in data mining. Such clustering is characterized 
by large datasets with many attributes of different types. Though we do not even try to 
review particular applications, many important ideas are related to the specific fields.
Clustering in data mining was brought to life by intense developments in information
retrieval and text mining [Cutting et al. 1992; Steinbach et al. 2000; Dhillon et al. 2001],
spatial database applications, for example, GIS or astronomical data, [Xu et al. 1998; 
Sander et al. 1998; Ester et al. 2000], sequence and heterogeneous data analysis [Cadez et 
al. 2001], Web applications [Cooley et al. 1999; Heer & Chi 2001; Foss et al. 2001], 
DNA analysis in computational biology [Ben-Dor & Yakhini 1999], and many others.
They resulted in a large amount of application-specific developments that are beyond our 
scope, but also in some general techniques. These techniques and classic clustering 
algorithms that relate to them surveyed below. 

1.3. Classification of Clustering Algorithms 

Categorization of clustering algorithms is neither straightforward, nor canonical. In 
reality, groups below overlap. For reader’s convenience we provide a classification 
closely followed by this survey. Corresponding terms are explained below.

Clustering Algorithms 

Hierarchical Methods 
Agglomerative Algorithms
Divisive Algorithms

Partitioning Methods 
Relocation Algorithms
Probabilistic Clustering 
K-medoids Methods 
K-means Methods 
Density-Based Algorithms

Density-Based Connectivity Clustering 
Density Functions Clustering 

Grid-Based Methods 
Methods Based on Co-Occurrence of Categorical Data 
Constraint-Based Clustering 
Clustering Algorithms Used in Machine Learning

Gradient Descent and Artificial Neural Networks
Evolutionary Methods 

Scalable Clustering Algorithms
Algorithms For High Dimensional Data 

Subspace Clustering 
Projection Techniques
Co-Clustering Techniques 
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1.4. Plan of Further Presentation 

Traditionally clustering techniques are broadly divided in hierarchical and partitioning.
Hierarchical clustering is further subdivided into agglomerative and divisive. The basics
of hierarchical clustering include Lance-Williams formula, idea of conceptual clustering,
now classic algorithms SLINK, COBWEB, as well as newer algorithms CURE and
CHAMELEON. We survey them in the section Hierarchical Clustering.

While hierarchical algorithms build clusters gradually (as crystals are grown), 
partitioning algorithms learn clusters directly. In doing so, they either try to discover
clusters by iteratively relocating points between subsets, or try to identify clusters as
areas highly populated with data. Algorithms of the first kind are surveyed in the section 
Partitioning Relocation Methods. They are further categorized into probabilistic

clustering (EM framework, algorithms SNOB, AUTOCLASS, MCLUST), k-medoids

methods (algorithms PAM, CLARA, CLARANS, and its extension), and k-means

methods (different schemes, initialization, optimization, harmonic means, extensions).
Such methods concentrate on how well points fit into their clusters and tend to build 
clusters of proper convex shapes.

Partitioning algorithms of the second type are surveyed in the section Density-Based

Partitioning. They try to discover dense connected components of data, which are 
flexible in terms of their shape. Density-based connectivity is used in the algorithms
DBSCAN, OPTICS, DBCLASD, while the algorithm DENCLUE exploits space density
functions. These algorithms are less sensitive to outliers and can discover clusters of
irregular shapes. They usually work with low-dimensional data of numerical attributes, 
known as spatial data. Spatial objects could include not only points, but also extended 
objects (algorithm GDBSCAN). 

Some algorithms work with data indirectly by constructing summaries of data over the 
attribute space subsets. They perform space segmentation and then aggregate appropriate
segments. We discuss them in the section Grid-Based Methods. They frequently use 
hierarchical agglomeration as one phase of processing. Algorithms BANG, STING,
WaveCluster, and an idea of fractal dimension are discussed in this section. Grid-based
methods are fast and handle outliers well. Grid-based methodology is also used as an 
intermadiate step in many other algorithms (for example, CLIQUE, MAFIA).

Categorical data is intimately connected with transactional databases. The concept of a
similarity alone is not sufficient for clustering such data. The idea of categorical data co-
occurrence comes to rescue. The algorithms ROCK, SNN, and CACTUS are surveyed in 
the section Co-Occurrence of Categorical Data. The situation gets even more aggravated
with the growth of the number of items involved. To help with this problem an effort is 
shifted from data clustering to pre-clustering of items or categorical attribute values.
Development based on hyper-graph partitioning and the algorithm STIRR exemplify this
approach.

Many other clustering techniques are developed, primarily in machine learning, that 
either have theoretical significance, are used traditionally outside the data mining
community, or do not fit in previously outlined categories. The boundary is blurred. In 
the section Other Clustering Techniques we discuss relationship to supervised learning,
gradient descent and ANN (LKMA, SOM), evolutionary methods (simulated annealing,
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genetic algorithms (GA)), and the algorithm AMOEBA. We start, however, with the 
emerging field of constraint-based clustering that is influenced by requirements of real-
world data mining applications.

Data Mining primarily works with large databases. Clustering large datasets presents
scalability problems reviewed in the section Scalability and VLDB Extensions. Here we 
talk about algorithms like DIGNET, about BIRCH and other data squashing techniques, 
and about Hoffding or Chernoff bounds.

Another trait of real-life data is its high dimensionality. Corresponding developments are 
surveyed in the section Clustering High Dimensional Data. The trouble comes from a
decrease in metric separation when the dimension grows. One approach to dimensionality

reduction uses attributes transformations (DFT, PCA, wavelets). Another way to address 
the problem is through subspace clustering (algorithms CLIQUE, MAFIA, ENCLUS,
OPTIGRID, PROCLUS, ORCLUS). Still another approach clusters attributes in groups and 
uses their derived proxies to cluster objects. This double clustering is known as co-

clustering.

Issues that are common to different clustering methods are overviewed in the section 
General Algorithmic Issues. We talk about assessment of results, determination of 
appropriate number of clusters to build, data preprocessing (attribute selection, data 
scaling, special data indices), proximity measures, and handling outliers.

1.5. Important Issues 

What are the properties of clustering algorithms we are concerned with in data mining?
These properties include:

Type of attributes algorithm can handle
Scalability to large datasets
Ability to work with high dimensional data 
Ability to find clusters of irregular shape
Handling outliers
Time complexity (when there is no confusion, we use the term complexity)
Data order dependency 
Labeling or assignment (hard or strict vs. soft of fuzzy) 
Reliance on a priori knowledge and user defined parameters
Interpretability of results

While we try to keep these issues in mind, realistically, we mention only few with every 
algorithm we discuss. The above list is in no way exhaustive. For example, we also 
discuss such properties as ability to work in pre-defined memory buffer, ability to restart
and ability to provide an intermediate solution. 

2. Hierarchical Clustering 

Hierarchical clustering builds a cluster hierarchy or, in other words, a tree of clusters,
also known as a dendrogram. Every cluster node contains child clusters; sibling clusters
partition the points covered by their common parent. Such an approach allows exploring
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data on different levels of granularity. Hierarchical clustering methods are categorized 
into agglomerative (bottom-up) and divisive (top-down) [Jain & Dubes 1988; Kaufman
& Rousseeuw 1990]. An agglomerative clustering starts with one-point (singleton) 
clusters and recursively merges two or more most appropriate clusters. A divisive

clustering starts with one cluster of all data points and recursively splits the most 
appropriate cluster. The process continues until a stopping criterion (frequently, the
requested number k of clusters) is achieved. Advantages of hierarchical clustering
include:

Embedded flexibility regarding the level of granularity
Ease of handling of any forms of similarity or distance
Consequently, applicability to any attribute types 

Disadvantages of hierarchical clustering are related to: 
Vagueness of termination criteria 
The fact that most hierarchical algorithms do not revisit once constructed 
(intermediate) clusters with the purpose of their improvement

The classic approaches to hierarchical clustering are presented in the sub-section Linkage

Metrics. Hierarchical clustering based on linkage metrics results in clusters of proper 
(convex) shapes. Active contemporary efforts to build cluster systems that incorporate 
our intuitive concept of clusters as connected components of arbitrary shape, including 
the algorithms CURE and CHAMELEON, are surveyed in the sub-section Hierarchical

Clusters of Arbitrary Shapes. Divisive techniques based on binary taxonomies are 
presented in the sub-section Binary Divisive Partitioning. The sub-section Other

Developments contains information related to incremental learning, model-based
clustering, and cluster refinement.

In hierarchical clustering our regular point-by-attribute data representation is sometimes
of secondary importance. Instead, hierarchical clustering frequently deals with the 

matrix of distances (dissimilarities) or similarities between training points. It is
sometimes called connectivity matrix. Linkage metrics are constructed (see below) from
elements of this matrix. The requirement of keeping such a large matrix in memory is 
unrealistic. To relax this limitation different devices are used to introduce into the 
connectivity matrix some sparsity. This can be done by omitting entries smaller than a 
certain threshold, by using only a certain subset of data representatives, or by keeping 
with each point only a certain number of its nearest neighbors. For example, nearest
neighbor chains have decisive impact on memory consumption [Olson 1995]. A sparse 
matrix can be further used to represent intuitive concepts of closeness and connectivity.
Notice that the way we process original (dis)similarity matrix and construct a linkage
metric reflects our a priori ideas about the data model.

NN ×

With the (sparsified) connectivity matrix we can associate the connectivity graph
 whose vertices X are data points, and edges E and their weights are pairs of 

points and the corresponding positive matrix entries. This establishes a connection 
between hierarchical clustering and graph partitioning. 

),( EXG =

One of the most striking developments in hierarchical clustering is the algorithm BIRCH. 
Since scalability is the major achievement of this blend strategy, this algorithm is 
discussed in the section Scalable VLDB Extensions. However, data squashing used by 
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BIRCH to achieve scalability, has independent importance. Hierarchical clustering of 
large datasets can be very sub-optimal, even if data fits in memory. Compressing data 
may improve performance of hierarchical algorithms.

2.1. Linkage Metrics 

Hierarchical clustering initializes a cluster system as a set of singleton clusters 
(agglomerative case) or a single cluster of all points (divisive case) and proceeds 
iteratively with merging or splitting of the most appropriate cluster(s) until the stopping
criterion is achieved. The appropriateness of a cluster(s) for merging/splitting depends on 
the (dis)similarity of cluster(s) elements. This reflects a general presumption that clusters
consist of similar points. An important example of dissimilarity between two points is the 
distance between them. Other proximity measures are discussed in the section General

Algorithm Issues.

To merge or split subsets of points rather than individual points, the distance between
individual points has to be generalized to the distance between subsets. Such derived 
proximity measure is called a linkage metric. The type of the linkage metric used 
significantly affects hierarchical algorithms, since it reflects the particular concept of
closeness and connectivity. Major inter-cluster linkage metrics [Murtagh 1985, Olson 
1995] include single link, average link, and complete link. The underlying dissimilarity
measure (usually, distance) is computed for every pair of points with one point in the first 
set and another point in the second set. A specific operation such as minimum (single 
link), average (average link), or maximum (complete link) is applied to pair-wise
dissimilarity measures:

.},|),({),( 2121 CyCxyxdoperationCCd ∈∈=

Early examples include the algorithm SLINK [Sibson 1973], which implements single 
link, Voorhees’ method [Voorhees 1986], which implements average link, and the 
algorithm CLINK [Defays 1977], which implements complete link. Of these SLINK is 
referenced the most. It is related to the problem of finding the Euclidean minimal

spanning tree [Yao 1982] and has O complexity. The methods using inter-cluster

distances defined in terms of pairs with points in two respective clusters (subsets) are
called graph methods. They do not use any cluster representation other than a set of 
points. This name naturally relates to the connectivity graph G  introduced

above, since every data partition corresponds to a graph partition. Such methods can be 
appended by so-called geometric methods in which a cluster is represented by its central 
point. It results in centroid, median, and minimum variance linkage metrics. Under the 
assumption of numerical attributes, the center point is defined as a centroid or an average 
of two cluster centroids subject to agglomeration.
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All of the above linkage metrics can be derived as instances of the Lance-Williams
updating formula [Lance & Williams 1967] 
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Here a,b,c are coefficients corresponding to a particular linkage. This formula expresses a 
linkage metric between the union of the two clusters and the third cluster in terms of 
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underlying components. The Lance-Williams formula has an utmost importance since it 
makes manipulation with dis(similarity) computationally feasible. Survey of linkage 
metrics can be found in [Murtagh 1983; Day & Edelsbrunner 1984]. When the base 
measure is distance, these methods capture inter-cluster closeness. However, a similarity-
based view that results in intra-cluster connectivity considerations is also possible. This is 
how original average link agglomeration (Group-Average Method) [Jain & Dubes 1988] 
was introduced.

Linkage metrics-based hierarchical clustering suffers from time complexity. Under 
reasonable assumptions, such as reducibility condition (graph methods satisfy this

condition), linkage metrics methods have complexity [Olson 1995]. Despite the 

unfavorable time complexity, these algorithms are widely used. An example is algorithm
AGNES (AGlomerative NESting) [Kaufman & Rousseeuw 1990] used in S-Plus. 
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When the connectivity  matrix is sparsified, graph methods directly dealing with
the connectivity graph G can be used. In particular, hierarchical divisive MST (Minimum
Spanning Tree) algorithm is based on graph partitioning [Jain & Dubes 1988]. 
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2.2. Hierarchical Clusters of Arbitrary Shapes 

Linkage metrics based on Euclidean distance for hierarchical clustering of spatial data
naturally predispose to clusters of proper convex shapes. Meanwhile, visual scanning of 
spatial images frequently attests clusters with curvy appearance.

Guha et al. [1998] introduced the hierarchical agglomerative clustering algorithm CURE 
(Clustering Using REpresentatives). This algorithm has a number of novel features of 
general significance. It takes special care with outliers and with label assignment stage. It 
also uses two devices to achieve scalability. The first one is data sampling (section 
Scalability and VLDB Extensions). The second device is data partitioning in p partitions,
so that fine granularity clusters are constructed in partitions first. A major feature of
CURE is that it represents a cluster by a fixed number c of points scattered around it. The
distance between two clusters used in the agglomerative process is equal to the minimum
of distances between two scattered representatives. Therefore, CURE takes a middle-
ground approach between the graph (all-points) methods and the geometric (one centroid) 
methods. Single and average link closeness is replaced by representatives’ aggregate 
closeness. Selecting representatives scattered around a cluster makes it possible to cover 
non-spherical shapes. As before, agglomeration continues until requested number k of 
clusters is achieved. CURE employs one additional device: originally selected scattered
points are shrunk to the geometric centroid of the cluster by user-specified factor α.
Shrinkage suppresses the affect of the outliers since outliers happen to be located further 
from the cluster centroid than the other scattered representatives. CURE is capable of 
finding clusters of different shapes and sizes, and it is insensitive to outliers. Since CURE
uses sampling, estimation of its complexity is not straightforward. For low-dimensional
data authors provide a complexity estimate of  defined in terms of sample size.

More exact bounds depend on input parameters: shrink factor α, number of representative 
points c, number of partitions, and sample size. Figure 1 illustrates agglomeration in
Cure. Three clusters, each with three representatives, are shown before and after the
merge and shrinkage. Two closest representatives are connected by arrow.

)( 2
sampleNO
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While the algorithm CURE works with numerical attributes (particularly low dimensional
spatial data), the algorithm ROCK developed by the same researchers [Guha et al. 1999] 
targets hierarchical agglomerative clustering for categorical attributes. It is surveyed in 
the section Co-Occurrence of Categorical Data.

The hierarchical agglomerative algorithm CHAMELEON [Karypis et al. 1999a] utilizes
dynamic modeling in cluster aggregation. It uses the connectivity graph G corresponding 
to the K-nearest neighbor model sparsification of the connectivity matrix: the edges of K
most similar points to any given point are preserved, the rest are pruned. CHAMELEON has 
two stages. In the first stage small tight clusters are built to ignite the second stage. This
involves a graph partitioning [Karypis & Kumar 1999]. In the second stage agglomerative
process is performed. It utilizes measures of relative inter-connectivity  and 

relative closeness ; both are locally normalized by quantities related to 

clusters . In this sense the modeling is dynamic. Normalization involves certain 

non-obvious graph operations [Karypis & Kumar 1999]. CHAMELEON strongly relies on 
graph partitioning implemented in the library HMETIS (see the section Co-Occurrence of 

Categorical Data). Agglomerative process depends on user provided thresholds. A 
decision to merge is made based on the combination
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of local relative measures. The algorithm does not depend on assumptions about the data 
model. This algorithm is proven to find clusters of different shapes, densities, and sizes in 

2D (two-dimensional) space. It has a complexity of ,

where m is number of sub-clusters built during first initialization phase. Figure 2
(analogous to the one in [Karypis & Kumar 1999]) presents a choice of four clusters (a)-
(d) for a merge. While Cure would merge clusters (a) and (b), CHAMELEON makes 
intuitively better choice of merging (c) and (d).

))log()log(( 2 mmNNNmO ++

  Figure 1: Agglomeration in Cure. Figure 2: CHAMELEON merges (c) and (d).

Before After

(a) (b) (c) (d)

2.3. Binary Divisive Partitioning 

In linguistics, information retrieval, and document clustering applications binary
taxonomies are very useful. Linear algebra methods, based on singular value 

decomposition (SVD) are used for this purpose in collaborative filtering and information
retrieval [Berry & Browne 1999]. SVD application to hierarchical divisive clustering of 
document collections resulted in the PDDP (Principal Direction Divisive Partitioning)
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algorithm [Boley 1998]. In our notations, object x is a document, l
th attribute corresponds 

to a word (index term), and matrix entry is a measure (as TF-IDF) of l-term frequency

in a document x. PDDP constructs SVD decomposition of the matrix
ilx
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This algorithm bisects data in Euclidean space by a hyperplane that passes through data 
centroid orthogonally to eigenvector with the largest singular value. The k-way splitting 
is also possible if the k largest singular values are considered. Bisecting is a good way to 
categorize documents and it results in a binary tree. When k-means (2-means) is used for 
bisecting, the dividing hyperplane is orthogonal to a line connecting two centroids. The 
comparative study of both approaches [Savaresi & Boley 2001] can be used for further 
references. Hierarchical divisive bisecting k-means was proven [Steinbach et al. 2000] to 
be preferable for document clustering.

While PDDP or 2-means are concerned with how to split a cluster, the problem of which 
cluster to split is also important. Casual strategies are: (1) split each node at a given level,
(2) split the cluster with highest cardinality, and, (3) split the cluster with the largest
intra-cluster variance. All three strategies have problems. For analysis regarding this
subject and better alternatives, see [Savaresi et al. 2002]. 

2.4. Other Developments

Ward’s method [Ward 1963] implements agglomerative clustering based not on linkage 
metric, but on an objective function used in k-means (sub-section K-Means Methods).
The merger decision is viewed in terms of its effect on the objective function. 

The popular hierarchical clustering algorithm for categorical data COBWEB [Fisher
1987] has two very important qualities. First, it utilizes incremental learning. Instead of 
following divisive or agglomerative approaches, it dynamically builds a dendrogram by 
processing one data point at a time. Second, COBWEB belongs to conceptual or model-

based learning. This means that each cluster is considered as a model that can be
described intrinsically, rather than as a collection of points assigned to it. COBWEB’s
dendrogram is called a classification tree. Each tree node C, a cluster, is associated with 
the conditional probabilities for categorical attribute-values pairs, 

llpl ApdlCvx :1,:1),|Pr( === .

This easily can be recognized as a C-specific Naïve Bayes classifier. During the 
classification tree construction, every new point is descended along the tree and the tree 
is potentially updated (by an insert/split/merge/create operation). Decisions are based on 
an analysis of a category utility [Corter & Gluck 1992]
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similar to GINI index. It rewards clusters C  for increases in predictability of the 

categorical attribute values . Being incremental, COBWEB is fast with a complexity

j
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of , though it depends non-linearly on tree characteristics packed into a constant t.

There is the similar incremental hierarchical algorithm for all numerical attributes called
CLASSIT [Gennari et al. 1989]. CLASSIT associates normal distributions with cluster 
nodes. Both algorithms can result in highly unbalanced trees. 
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Chiu et al. [2001] proposed another conceptual or model-based approach to hierarchical 
clustering. This development contains several different useful features, such as the 
extension of BIRCH-like preprocessing to categorical attributes, outliers handling, and a 
two-step strategy for monitoring the number of clusters including BIC (defined below). 
The model associated with a cluster covers both numerical and categorical attributes and 
constitutes a blend of Gaussian and multinomial models. Denote corresponding
multivariate parameters by θ . With every cluster C, we associate a logarithm of its
(classification) likelihood

)|(log θiCx
xp

i ∈
=

The algorithm uses maximum likelihood estimates for parameter θ. The distance between
two clusters is defined (instead of linkage metric) as a decrease in log-likelihood 
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caused by merging of the two clusters under consideration. The agglomerative process 
continues until the stopping criterion is satisfied. As such, determination of the best k is
automatic. This algorithm has the commercial implementation (in SPSS Clementine). The 
complexity of the algorithm is linear in N for the summarization phase. 

Traditional hierarchical clustering is inflexible due to its greedy approach: after a merge
or a split is selected it is not refined. Though COBWEB does reconsider its decisions, it is 
so inexpensive that the resulting classification tree can also have sub-par quality. Fisher 
[1996] studied iterative hierarchical cluster redistribution to improve once constructed 
dendrogram. Karypis et al. [1999b] also researched refinement for hierarchical clustering.
In particular, they brought attention to a relation of such a refinement to a well-studied 
refinement of k-way graph partitioning [Kernighan & Lin 1970].

For references related to parallel implementation of hierarchical clustering see [Olson
1995].

3. Partitioning Relocation Clustering

In this section we survey data partitioning algorithms, which divide data into several
subsets. Because checking all possible subset systems is computationally infeasible,
certain greedy heuristics are used in the form of iterative optimization. Specifically, this 
means different relocation schemes that iteratively reassign points between the k clusters.
Unlike traditional hierarchical methods, in which clusters are not revisited after being 
constructed, relocation algorithms gradually improve clusters. With appropriate data, this 
results in high quality clusters. 

One approach to data partitioning is to take a conceptual point of view that identifies the
cluster with a certain model whose unknown parameters have to be found. More 

12



specifically, probabilistic models assume that the data comes from a mixture of several 
populations whose distributions and priors we want to find. Corresponding algorithms are
described in the sub-section Probabilistic Clustering. One clear advantage of 
probabilistic methods is the interpretability of the constructed clusters. Having concise 
cluster representation also allows inexpensive computation of intra-clusters measures of 
fit that give rise to a global objective function (see log-likelihood below). 

Another approach starts with the definition of objective function depending on a
partition. As we have seen (sub-section Linkage Metrics), pair-wise distances or 
similarities can be used to compute measures of iter- and intra-cluster relations. In 
iterative improvements such pair-wise computations would be too expensive. Using 
unique cluster representatives resolves the problem: now computation of objective 
function becomes linear in N (and in a number of clusters ). Depending on how 
representatives are constructed, iterative optimization partitioning algorithms are
subdivided into k-medoids and k-means methods. K-medoid is the most appropriate data 
point within a cluster that represents it. Representation by k-medoids has two advantages. 
First, it presents no limitations on attributes types, and, second, the choice of medoids is
dictated by the location of a predominant fraction of points inside a cluster and, therefore, 
it is lesser sensitive to the presence of outliers. In k-means case a cluster is represented by 
its centroid, which is a mean (usually weighted average) of points within a cluster. This 
works conveniently only with numerical attributes and can be negatively affected by a 
single outlier. On the other hand, centroids have the advantage of clear geometric and 
statistical meaning. The corresponding algorithms are reviewed in the sub-sections K-

Medoids Methods and K-Means Methods.

Nk <<

3.1. Probabilistic Clustering

In the probabilistic approach, data is considered to be a sample independently drawn 
from a mixture model of several probability distributions [McLachlan & Basford 1988]. 
The main assumption is that data points are generated by, first, randomly picking a model 
j with probability kjj :1, =τ , and, second, by drawing a point x from a corresponding 

distribution. The area around the mean of each (supposedly unimodal) distribution 
constitutes a natural cluster. So we associate the cluster with the corresponding
distribution’s parameters such as mean, variance, etc. Each data point carries not only its
(observable) attributes, but also a (hidden) cluster ID (class in pattern recognition). Each 
point x is assumed to belong to one and only one cluster, and we can estimate the 
probabilities of the assignment  to j)|Pr( xC j

th model. The overall likelihood of the 

training data is its probability to be drawn from a given mixture model

∏ = =
=

Ni kj jij CxCXL
:1 :1

)|Pr()|( τ

Log-likelihood  serves as an objective function, which gives rise to the 

Expectation-Maximization (EM) method. For a quick introduction to EM, see [Mitchell 
1997]. Detailed descriptions and numerous references regarding this topic can be found 
in [Dempster et al. 1977; McLachlan & Krishnan 1997]. EM is a two-step iterative 
optimization. Step (E) estimates probabilities , which is equivalent to a soft

))|(log( CXL

)|Pr( jCx

13



(fuzzy) reassignment. Step (M) finds an approximation to a mixture model, given current 
soft assignments. This boils down to finding mixture model parameters that maximize
log-likelihood. The process continues until log-likelihood convergence is achieved.

Restarting and other tricks are used to facilitate finding better local optimum. Moore
[1999] suggested acceleration of EM method based on a special data index, KD-tree.
Data is divided at each node into two descendents by splitting the widest attribute at the 
center of its range. Each node stores sufficient statistics (including covariance matrix)
similar to BIRCH. Approximate computing over a pruned tree accelerates EM iterations.

Probabilistic clustering has some important features:
It can be modified to handle recodes of complex structure 
It can be stopped and resumed with consecutive batches of data, since clusters 
have representation totally different from sets of points 
At any stage of iterative process the intermediate mixture model can be used to 
assign cases (on-line property) 
It results in easily interpretable cluster system

Because the mixture model has clear probabilistic foundation, the determination of the 
most suitable number of clusters k becomes a more tractable task. From a data mining
perspective, excessive parameter set causes overfitting, while from a probabilistic
perspective, number of parameters can be addressed within the Bayesian framework. See 
the sub-section “How Many Clusters?” for more details including terms MML and BIC 
used in the next paragraph. 

The algorithm SNOB [Wallace & Dowe 1994] uses a mixture model in conjunction with 
the MML principle. Algorithm AUTOCLASS [Cheeseman & Stutz 1996] utilizes a mixture
model and covers a broad variety of distributions, including Bernoulli, Poisson, Gaussian, 
and log-normal distributions. Beyond fitting a particular fixed mixture model,
AUTOCLASS extends the search to different models and different k. To do this AUTOCLASS

heavily relies on Bayesian methodology, in which a model complexity is reflected 
through certain coefficients (priors) in the expression for the likelihood previously 
dependent only on parameters’ values. This algorithm has a history of industrial usage. 
The algorithm MCLUST [Fraley & Raftery 1999] is a software package (commercially
linked with S-PLUS) for hierarchical, mixture model clustering, and discriminant
analysis using BIC for estimation of goodness of fit. MCLUST uses Gaussian models 
with ellipsoids of different volumes, shapes, and orientations.

An important property of probabilistic clustering is that mixture model can be naturally 
generalized to clustering heterogeneous data. This is important in practice, where an 
individual (data object) has multivariate static data (demographics) in combination with
variable length dynamic data (customer profile) [Smyth 1999]. The dynamic data can 
consist of finite sequences subject to a first-order Markov model with a transition matrix
dependent on a cluster. This framework also covers data objects consisting of several

sequences, where number n  of sequences per  is subject to geometric distribution 

[Cadez et al. 2000]. To emulate sessions of different lengths, finite-state Markov model
(transitional probabilities between Web site pages) has to be augmented with a special
“end” state. Cadez et al. [2001] used mixture model for customer profiling based on 
transactional information.

i ix
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Model-based clustering is also used in a hierarchical framework: COBWEB, CLASSIT 
and development by Chiu et al. [2001] were already presented above. Another early 
example of conceptual clustering is algorithm CLUSTER/2 [Michalski & Stepp 1983]. 

3.2. K-Medoids Methods

In k-medoids methods a cluster is represented by one of its points. We have already 
mentioned that this is an easy solution since it covers any attribute types and that medoids
have embedded resistance against outliers since peripheral cluster points do not affect
them. When medoids are selected, clusters are defined as subsets of points close to 
respective medoids, and the objective function is defined as the averaged distance or 
another dissimilarity measure between a point and its medoid.

Two early versions of k-medoid methods are the algorithm PAM (Partitioning Around 
Medoids) and the algorithm CLARA (Clustering LARge Applications) [Kaufman &
Rousseeuw 1990]. PAM is iterative optimization that combines relocation of points 
between perspective clusters with re-nominating the points as potential medoids. The 
guiding principle for the process is the effect on an objective function, which, obviously, 
is a costly strategy. CLARA uses several (five) samples, each with 40+2k points, which
are each subjected to PAM. The whole dataset is assigned to resulting medoids, the 
objective function is computed, and the best system of medoids is retained.

Further progress is associated with Ng & Han [1994] who introduced the algorithm
CLARANS (Clustering Large Applications based upon RANdomized Search) in the 
context of clustering in spatial databases. Authors considered a graph whose nodes are 
the sets of k medoids and an edge connects two nodes if they differ by exactly one
medoid. While CLARA compares very few neighbors corresponding to a fixed small
sample, CLARANS uses random search to generate neighbors by starting with an 
arbitrary node and randomly checking maxneighbor neighbors. If a neighbor represents a 
better partition, the process continues with this new node. Otherwise a local minimum is 
found, and the algorithm restarts until numlocal local minima are found (value 
numlocal=2 is recommended). The best node (set of medoids) is returned for the 

formation of a resulting partition. The complexity of CLARANS is O  in terms of 

number of points. Ester et al. [1995] extended CLARANS to spatial VLDB. They used 
R*-trees [Beckmann 1990] to relax the original requirement that all the data resides in
core memory, which allowed focusing exploration on the relevant part of the database 
that resides at a branch of the whole data tree.

)( 2N

3.3. K-Means Methods

The k-means algorithm [Hartigan 1975; Hartigan & Wong 1979] is by far the most
popular clustering tool used in scientific and industrial applications. The name comes
from representing each of k clusters C  by the mean (or weighted average) c of its 

points, the so-called centroid. While this obviously does not work well with categorical
attributes, it has the good geometric and statistical sense for numerical attributes. The 
sum of discrepancies between a point and its centroid expressed through appropriate
distance is used as the objective function. For example, the -norm based objective

j j

2L
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function, the sum of the squares of errors between the points and the corresponding 
centroids, is equal to the total intra-cluster variance

2

:1
)(

= ∈
−=

kj Cx ji
ji

cxCE .

The sum of the squares of errors can be rationalized as (a negative of) log-likelihood for 
normally distributed mixture model and is widely used in statistics (SSE). Therefore, k-
means algorithm can be derived from general probabilistic framework (see sub-section 
Probabilistic Clustering) [Mitchell 1997]. Note that only means are estimated. A simple 
modification would normalize individual errors by cluster radii (cluster standard
deviation), which makes a lot of sense when clusters have different dispersions. An 
objective function based on -norm has many unique algebraic properties. For example,

it coincides with pair-wise errors
2L

2
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and with the difference between the total data variance and the inter-cluster variance.
Therefore, the cluster separation is achieved simultaneously with the cluster tightness.

Two versions of k-means iterative optimization are known. The first version is similar to 
EM algorithm and consists of two-step major iterations that (1) reassign all the points to
their nearest centroids, and (2) recompute centroids of newly assembled groups.
Iterations continue until a stopping criterion is achieved (for example, no reassignments
happen). This version is known as Forgy’s algorithm [Forgy 1965] and has many
advantages:

It easily works with any -normpL

It allows straightforward parallelization [Dhillon & Modha 1999] 
It is insensitive with respect to data ordering.

The second (classic in iterative optimization) version of k-means iterative optimization
reassigns points based on more detailed analysis of effects on the objective function 
caused by moving a point from its current cluster to a potentially new one. If a move has 
a positive effect, the point is relocated and the two centroids are recomputed. It is not 
clear that this version is computationally feasible, because the outlined analysis requires
an inner loop over all member points of involved clusters affected by centroids shifts. 
However, in case it is known [Duda & Hart 1973; Berkhin & Becher 2002] that all 

computations can be algebraically reduced to simply computing a single distance! 
Therefore, in this case both versions have the same computational complexity.

2L

There is experimental evidence that compared with Forgy’s algorithm, the second 
(classic) version frequently yields better results [Larsen & Aone 1999; Steinbach et al. 
2000].  In particular, Dhillon et al. [2002] noticed that a Forgy’s spherical k-means (using
cosine similarity instead of Euclidean distance) has a tendency to get stuck when applied 
to document collections. They noticed that a version reassigning points and immediately 
recomputing centroids works much better. Figure 3 illustrates both implementations.
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Besides these two versions, there have been other attempts to find minimum of k-means
objective function. For example, the early algorithm ISODATA [Ball & Hall 1965] used 
merges and splits of intermediate clusters.

The wide popularity of k-means algorithm is well deserved. It is simple, straightforward,
and is based on the firm foundation of analysis of variances. The k-means algorithm also 
suffers from all the usual suspects: 

The result strongly depends on the initial guess of centroids (or assignments) 
Computed local optimum is known to be a far cry from the global one 
It is not obvious what is a good k to use 
The process is sensitive with respect to outliers
The algorithm lacks scalability 
Only numerical attributes are covered
Resulting clusters can be unbalanced (in Forgy’s version, even empty)

A simple way to mitigate
the affects of clusters 
initialization was
suggested by Bradley & 
Fayyad [1998]. First, k-
means is performed on 
several small samples of 
data with a random 
initial guess. Each of
these constructed
systems is then used as a 
potential initialization
for a union of all the 
samples. Centroids of 
the best system
constructed this way are 

suggested as an intelligent initial guesses to ignite the k-means algorithm on the full data. 
Another interesting attempt [Babu & Murty 1993] is based on GA (see below). No 
initialization actually guarantees global minimum for k-means. As is common to any 
combinatorial optimization, a logical attempt to cure this problem is to use simulated
annealing [Brown & Huntley 1991]. Zhang [2001] suggested another way to rectify
optimization process by soft assignment of points to different clusters with appropriate 
weights (as EM does), rather than by moving them decisively from one cluster to another. 
The weights take into account how well a point fits into recipient clusters. This process 
involves so-called harmonic means.
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One point assignment
is changed.

Two-step major iterations (Forgy’s algorithm)

Iterative optimization (with centroid recomputation)

We discuss scalability issues in the section Scalability and VLDB Extensions. For a 
comprehensive approach in relation to k-means see an excellent study [Bradley et al.
1998]. A generic method to achieve scalability is to preprocess or squash the data. Such
preprocessing usually also takes care of outliers. Preprocessing has its drawbacks. It 
results in approximations that sometimes negatively affect final cluster quality. Pelleg &
Moore [1999] suggested how to directly (without any squashing) accelerate k-means
iterative process by utilizing KD-trees [Moore 1999]. The algorithm X-means [Pelleg &
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Moore 2000] goes a step further: in addition to accelerating the iterative process it tries to 
incorporate a search for the best k in the process itself. While more comprehensive
criteria discussed in the sub-section “How Many Clusters?” require running independent 
k-means and then comparing the results (costly experementation), X-means tries to split a 
part of already constructed cluster based on outcome of BIC criterion. This gives a much 
better initial guess for the next iteration and covers a user specified range of admissible k.

The tremendous popularity of k-means algorithm has brought to life many other 
extensions and modifications. Mahalanobis distance can be used to cover hyper-
ellipsoidal clusters [Mao & Jain 1996]. Maximum of intra-cluster variances, instead of 
the sum, can serve as an objective function [Gonzales 1985]. Generalizations that 
incorporate categorical attributes are known. Sometimes the term k-prototypes is used in 
this context [Huang 1998]. Modifications which constructs clusters of balanced size are 
discussed in the sub-section Constrained-Based Clustering.

4. Density-Based Partitioning

An open set in the Euclidean space can be divided into a set of its connected components.
The implementation of this idea for partitioning of a finite set of points requires concepts
of density, connectivity and boundary. They are closely related to a point’s nearest 
neighbors. A cluster, defined as a connected dense component, grows in any direction 
that density leads. Therefore, density-based algorithms are capable of discovering clusters 
of arbitrary shapes. Also this provides a natural protection against outliers. Figure 4
illustrates some cluster shapes that present a problem for partitioning relocation clustering 
(e.g., k-means), but are handled properly by density-based algorithms. They also have 
good scalability. These outstanding properties are tempered with certain inconveniencies.

From a very general data 
description point of view, a single 
dense cluster consisting of two 
adjacent areas with significantly
different densities (both higher 
than a threshold) is not very 
informative. Another drawback is 
a lack of interpretability. An
excellent introduction to density-

based methods is contained in the textbook [Han & Kamber 2001].

Figure 4. Irregular shapes difficult for k-means are

Since density-based algorithms require a metric space, the natural setting for them is 
spatial data clustering [Han et al. 2001; Kolatch 2001]. To make computations feasible, 
some index of data is constructed (such as R*-tree). This is a topic of active research.
Classic indices were effective only with reasonably low-dimensional data. The algorithm
DENCLUE that, in fact, is a blend of a density-based clustering and a grid-based 
preprocessing is lesser affected by data dimensionality.

There are two major approaches for density-based methods. The first approach pins 
density to a training data point and is reviewed in the sub-section Density-Based

Connectivity. Representative algorithms include DBSCAN, GDBSCAN, OPTICS, and 
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DBCLASD. The second approach pins density to a point in the attribute space and is
explained in the sub-section Density Functions. It includes the algorithm DENCLUE. 

4.1. Density-Based Connectivity 

Crucial concepts of this section are density and connectivity both measured in terms of 
local distribution of nearest neighbors.

The algorithm DBSCAN (Density Based Spatial Clustering of Applications with Noise) 
[Ester et al. 1996] targeting low-dimensional spatial data is the major representative in 
this category. Two input parameters ε and MinPts are used to define:

1) An ε-neighborhood }),(|{)( εε ≤∈= yxdXyxN  of the point x,

2) A core object (a point with a neighborhood consisting of more than MinPts

points)
3) A concept of a point y density-reachable from a core object x (a finite sequence 

of core objects between x and y exists such that each next belongs to an ε-

neighborhood of its predecessor)
4) A density-connectivity of two points x, y (they should be density-reachable from a

common core object).

So defined density-connectivity is a symmetric relation and all the points reachable from
core objects can be factorized into maximal connected components serving as clusters. 
The points that are not connected to any core point are declared to be outliers (they are 
not covered by any cluster). The non-core points inside a cluster represent its boundary.
Finally, core objects are internal points. Processing is independent of data ordering. So 
far, nothing requires any limitations on the dimension or attribute types. Obviously, an 
effective computing of ε-neighborhoods presents a problem. However, in the case of low-
dimensional spatial data, different effective indexation schemes exist (meaning

rather than O fetches per search). DBSCAN relies on R*-tree indexation 

[Kriegel et al. 1990]. Therefore, on low-dimensional spatial data theoretical complexity
of DBSCAN is . Experiments confirm slight super-linear runtime.

))(log(NO )(N

))log(N(NO

Notice that DBSCAN relies on -neighborhoods and on frequency count within such 
neighborhoods to define a concept of a core object. Many spatial databases contain 
extended objects such as polygons instead of points. Any reflexive and symmetric 
predicate (for example, two polygons have a non-empty intersection) suffice to define a 
“neighborhood”. Additional measures (as intensity of a point) can be used instead of a 
simple count as well. These two generalizations lead to the algorithm GDBSCAN 
[Sander et al. 1998], which uses the same two parameters as algorithm DBSCAN. 

With regard to these two parameters ε and MinPts, there is no straightforward way to fit
them to data. Moreover, different parts of data could require different parameters – the 
problem discussed earlier in conjunction with CHAMELEON. The algorithm OPTICS 
(Ordering Points To Identify the Clustering Structure) [Ankerst et al. 1999] adjusts 
DBSCAN to this challenge. It builds an augmented ordering of data which is consistent
with DBSCAN, but goes a step further: keeping the same two parameters ε, MinPts,
OPTICS covers a spectrum of all different εε ≤′ . The constructed ordering can be used 
automatically or interactively. With each point, OPTICS stores only two additional fields,
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the so-called core- and reachability-distances. For example, the core-distance is the 
distance to MinPts’ nearest neighbor when it does not exceeds ε, or undefined otherwise. 
Experimentally, OPTICS exhibits runtime roughly equal to 1.6 of DBSCAN runtime.

While OPTICS can be considered as a DBSCAN extension in direction of different local 
densities, a more mathematically sound approach is to consider a random variable equal 
to the distance from a point to its nearest neighbor, and to learn its probability 
distribution. Instead of relying on user-defined parameters, a possible conjuncture is that 
each cluster has its own typical distance-to-nearest-neighbor scale. The goal is to 
discover such scales. Such nonparametric approach is implemented in the algorithm 
DBCLASD (Distribution Based Clustering of Large Spatial Databases) [Xu et al. 1998].
Assuming that points inside each cluster are uniformly distributed which may or may not
be realistic, DBSCLAD defines a cluster as a non-empty arbitrary shape subset in X that 
has the expected distribution of distance to the nearest neighbor with a required 
confidence, and is the maximal connected set with this quality. This algorithm handles

spatial data (minefield example is used). -test is used to check distribution requirement

(standard consequence is a requirement for each cluster to have at least 30 points). 
Regarding connectivity, DBCLASD relies on grid-based approach to generate cluster-
approximating polygons. The algorithm contains devices for handling real databases with 
noise and implements incremental unsupervised learning. Two venues are used. First, 
assignments are not final: points can change cluster membership. Second, certain points 
(noise) are not assigned, but are tried later. Therefore, once incrementally fetched points
can be revisited internally. DBCLASD is known to run faster than CLARANS by a factor
of 60 on some examples. In comparison with much more efficient DBSCAN, it can be 2-
3 times slower. However, DBCLASD requires no user input, while empirical search for 
appropriate parameter requires several DBSCAN runs. In addition, DBCLASD discovers 
clusters of different densities. 

2χ

4.2. Density Functions 

Hinneburg & Keim [1998] shifted the emphasis from computing densities pinned to data 
points to computing density functions defined over the underlying attribute space. They
proposed the algorithm DENCLUE (DENsity-based CLUstEring). Along with 
DBCLASD, it has a firm mathematical foundation. DENCLUE uses a density function

∈
=

Dy

D yxfxf ),()(

that is the superposition of several influence functions. When the f-term depends on x -
y, the formula can be recognized as a convolution with a kernel. Examples include a 
square wave function )/(),( σθ yxyxf −= equal to 1, if distance between x and y is

less than or equal to σ, and a Gaussian influence function 
22

2/),( σyx
eyxf

−−= . This 

provides a high level of generality: the first example leads to DBSCAN, the second one 
to k-means clusters! Both examples depend on parameter σ. Restricting the summation to

XkyxyD ⊂<−= }:{ σ  enables a practical implementation. DENCLUE concentrates 

on local maxima of density functions called density-attractors and uses a flavor of 
gradient hill-climbing technique for finding them. In addition to center-defined clusters,
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arbitrary-shape clusters are defined as continuations along sequences of points whose 
local densities are no less than prescribed threshold ξ. The algorithm is stable with 
respect to outliers and authors show how to choose parameters σ and ξ. DENCLUE
scales well, since at its initial stage it builds a map of hyper-rectangle cubes with edge 
length 2σ. For this reason, the algorithm can be classified as a grid-based method.
Applications include high dimensional multimedia and molecular biology data. While no 
clustering algorithm could have less than O  complexity, the runtime of DENCLUE 

scales with N sub-linearly! The explanation is that though all the points are fetched, the 
bulk of analysis (in clustering stage) involves only points in highly populated areas. 

)(N

5. Grid-Based Methods 

In the previous section crucial concepts of density, connectivity, and boundary were used 
which required elaborate definitions. Another way of dealing with them is to inherit the
topology from the underlying attribute space. To limit the search combinations, multi-
rectangular segments are considered. Recall that a segment (also cube, cell, region). is a 
direct Cartesian product of individual attribute sub-ranges (contiguous in case of 
numerical attributes). Since some binning is usually adopted for numerical attributes, 
methods partitioning space are frequently called grid-based methods. The elementary
segment corresponding to single-bin or single-value sub-ranges is called a unit.

Overall, we shift our attention from data to space partitioning. Data partitioning is
induced by points’ membership in segments resulted from space partitioning, while space 
partitioning is based on grid-characteristics accumulated from input data. One advantage
of this indirect handling (data  grid-data  space-partitioning  data-partitioning) is
that accumulation of grid-data makes grid-based clustering techniques independent of 
data ordering. In contrast, relocation methods and all incremental algorithms are very 
sensitive with respect to data ordering. While density-based partitioning methods work 
best with numerical attributes, grid-based methods work with attributes of different types.

To some extent, the grid-based methodology reflects a technical point of view. The 
category is eclectic: it contains both partitioning and hierarchical algorithms. The 
algorithm DENCLUE from the previous section uses grids at its initial stage. The very 
important grid-based algorithm CLIQUE and its descendent, algorithm MAFIA, are 
presented in the section Clustering High Dimensional Data. In this section we survey 
algorithms that use grid-based technique as their major principle instrument.

BANG-clustering [Schikuta & Erhart 1997] improves the similar hierarchical algorithm 
GRIDCLUST [Schikuta 1996]. Grid-based segments are used to summarize data. The
segments are stored in a special BANG-structure that is a grid-directory incorporating
different scales. Adjacent segments are neighbors. If a common face has maximum
dimension they are called nearest neighbors. More generally, neighbors of degree 
between 0 and d-1 can be defined. The density of a segment is defined as a ratio between
number of points in it and its volume. From the grid-directory, a dendrogram is directly 
calculated.

The algorithm STING (STatistical INformation Grid-based method) [Wang et al. 97] 
works with numerical attributes (spatial data) and is designed to facilitate “region 
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oriented” queries. In doing so, STING constructs data summaries in a way similar to
BIRCH. It, however, assembles statistics in a hierarchical tree of nodes that are grid-cells. 
Figure 5 presents the proliferation of cells in 2-dimensional space and the construction of 
the corresponding tree. Each cell has four (default) children and stores a point count, and 
attribute-dependent measures: mean, standard deviation, minimum, maximum, and 
distribution type. Measures are accumulated starting from bottom level cells, and further
propagate to higher-level cells (e.g., minimum is equal to a minimum among the 

children-minimums). Only distribution type presents a problem – -test is used after

bottom cell distribution types are handpicked. When the cell-tree is constructed (in 

time), certain cells are identified and connected in clusters similar to DBSCAN. If the
number of leaves is K, the cluster construction phase depends on K and not on N. This
algorithm has a simple structure suitable for parallelization and allows for multi-
resolution, though defining appropriate granularity is not straightforward. STING has
been further enhanced to algorithm STING+ [Wang et al. 1999] that targets dynamically
evolving spatial databases, and uses similar hierarchical cell organization as its 
predecessor. In addition, STING+ enables active data mining.

2χ
)(NO

Figure 5. Cell generation and tree construction in STING. 

To do so, it supports user defined trigger conditions (e.g., there is a region where at least
10 cellular phones are in use per square mile with total area of at least 10 square miles, or 
usage drops by 20% in a described region). The related measures, sub-triggers, are stored 
and updated over the hierarchical cell tree. They are suspended until the trigger fires with 
user-defined action. Four types of conditions are supported: absolute and relative 
conditions on regions (a set of adjacent cells), absolute and relative conditions on certain 
attributes.

The algorithm WaveCluster [Sheikholeslami et al. 1998] works with numerical attributes 
and has an advanced multi-resolution. It is also known for other outstanding properties:

High quality of clusters 
Ability to work well in relatively high dimensional spatial data 
Successful handling of outliers 

 complexity)(NO

WaveCluster is based on ideas of signal processing. It applies wavelet transforms to filter
the data. Notice that high-frequency parts of a signal correspond to boundaries, while low 
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frequency high amplitude parts of a signal correspond to clusters’ interiors. Wavelet
transform provides us with useful filters. For example, hat-shape filter forces dense areas 
to serve as attractors and simultaneously suppresses lesser dense boundary areas. After
getting back from signal to attribute space this makes clusters more sharp and eliminates
outliers. WaveCluster goes in stages. It: 

1) Bins every dimension and assigns points to corresponding units 
2) Applies discrete Wavelet transform to so accumulated units
3) Finds connected components (clusters) in a transformed attribute space 

(corresponding to a certain level of resolution) 
4) Assigns points

The algorithm’s complexity is  for low dimensions, but exponentially grows with 

the dimension.

)(NO

The hierarchy of grids allows definition of the Hausdorff Fractal Dimension (HFD) 
[Schalkoff 1991]. HFD of a set is the negative slope of a log-log plot of the number of 
cells  (occupied by a set) as a function of a grid size r. A fast algorithm (box

counting) to compute HFD was introduced in [Liebovitch & Toth 1989]. The concept of 
HFD is fundamental to the FC (Fractal Clustering) algorithm [Barbara & Chen 2000] for 
numeric attributes, which works with several layers of grids (cardinality of each 
dimension is increased 4 times with each next layer). Although only occupied cells are 
kept to save memory, memory usage is still a significant problem. FC starts with
initializing of k clusters. Initialization threshold and a data sample are used at this stage to 
come up with the appropriate k. Then FC scans full data incrementally. It tries to add an 
incoming point to each cluster that results in certain increase of HFD. If the smallest
increase exceeds a threshold τ, a point is declared an outlier; otherwise a point is assigned 
so that HFD would be minimally impacted. The FC algorithm has few appealing 
properties:

)(rCell

Incremental structure (batches of data are fetched into core memory)
Suspendable nature always ready for on-line assignments
Ability to discover clusters of irregular shapes

 complexity)(NO

It also has a few problems: 
Data order dependency 
Strong dependency on clusters initialization 
Dependency on parameters (threshold used in initialization, and τ)

6. Co-Occurrence of Categorical Data 

In this section we talk about categorical data, which frequently relates to the concept of a
variable size transaction that is a finite set of elements called items from a common item
universe. For example, market basket data has this form. Every transaction can be
presented in a point-by-attribute format, by enumerating all items j, and by associating
with a transaction the binary attributes that indicate whether j-items belong to a 
transaction or not. Such representation is sparse and two random transactions have very 
few items in common. This is why similarity (sub-section Proximity Measures) between 
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them is usually measured by Jaccard coefficient 212121 ),( TTTTTTsim = . Common

to this and others examples of point-by-attribute format for categorical data, is high
dimensionality, significant amount of zero values, and small number of common values 
between two objects. Conventional clustering methods, based on similarity measures, do 
not work well. Since categorical/transactional data is important in customer profiling, 
assortment planning, Web analysis, and other applications, different clustering methods
founded on the idea of co-occurrence of categorical data have been developed.

The algorithm ROCK (Robust Clustering algorithm for Categorical Data) [Guha et al.
1999] deals with categorical data and has many common features with the algorithm 
CURE (section Hierarchical Clustering): (1) it is a hierarchical clustering, (2) 
agglomeration continues until specified number k of clusters is constructed, and (3) it 
uses data sampling in the same way as CURE does. ROCK defines a neighbor of a point 
x as a point y such that θ≥),( yxsim  for some threshold θ, and proceeds to a definition of 

links link(x,y) between two points x, y equal to number of their common neighbors. 
Clusters consist of points with a high degree of connectivity – pair-wise points inside a 
cluster have on average a high number of links. ROCK utilizes the objective function

)(21

,:1
/),(

θf

jCyxkj j CyxlinkCE
j

+

∈=
⋅= ,

where f(θ) is a data dependent function. E represents specifically normalized intra-
connectivity measure.

To put this formula into perspective, notice that linkage metrics normalize the aggregate 
measures by the number of edges. For example, the average link metric is the sum of 

distances between each point C  and each point in C  divided by the factor i j ji CCL ⋅= .

The value L can be rationalized on a more general level. If the expected number of edges

per cluster is ]2,1[, ∈ββ
C , then the aggregate inter-cluster similarity has to be 

normalized by the factor ( ) βββ
jij CCC −−iC +  representing the number of inter-

cluster edges. The average link normalization factor L corresponds to 2=β , the highest 

expected connectivity indeed. The ROCK objective function uses the same idea, but fits 
it with parameters. Whether a model fits particular data is an open question. Frequently, 
different regions of data have different properties, and therefore, global fit is impossible.
ROCK relies on an input parameter θ and on a function f(θ) that have to fit data. It has a
complexity of O , where coefficient c  is a product of 

average and maximum number of neighbors.

))log( samplesample N+( samplemNc 2N m

The algorithm SNN (Shared Nearest Neighbors) [Ertoz et al. 2002] blends a density-
based approach with the idea of ROCK. SNN sparsifies similarity matrix (therefore,

unfortunately resulting in  complexity) by only keeping K-nearest neighbors, and 

thus derives the total strength of links for each x.

)( 2NO

For this matter, the idea to use shared nearest neighbors in clustering was suggested by 
Jarvis & Patrick [1973] long ago. See also [Gowda & Krishna 1978]. 
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The algorithm CACTUS (Clustering Categorical Data Using Summaries) [Ganti et al.
1999a] looks for hyper-rectangular clusters (called interval regions) in point-by-attribute 
data with categorical attributes. In our terminology such clusters are segments. CACTUS 
is based on the idea of co-occurrence for attribute-value pairs. (Implicitly uniform
distribution within the range of values for each attribute is assumed). Two values a, b of 
two different attributes are strongly connected if the number of data points having both a
and b is larger than the frequency expected under independency assumption by a user-
defined margin α. This definition is extended to subsets A, B of two different attributes
(each value pair a  has to be strongly connected), to segments (each 2D 

projection is strongly connected), and to the similarity of pair of values of a single
attribute via connectivity to other attributes. The cluster is defined as the maximal
strongly connected segment having at least α times more elements than expected from
the segment under attributes independency assumption. CACTUS uses data summaries to 
generate all the strongly connected and similar attribute value pairs. As a second step, a 
heuristic is used to generate maximum segments. The complexity of the summarization
phase is O , where the constant c depends on whether all the attribute-value

summaries fit in memory (one data scan), or not (multiple data scans).

BbA ∈∈ ,
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The situation with clustering transactional data becomes more aggravated when size of 
item universe grows. Here we have a classic case of low separation in high-dimensional
space (section Clustering High Dimensional Data). With categorical data, the idea of 
auxiliary clustering of items, or more generally of categorical attribute values, gained 
popularity. It is very similar to the idea of co-clustering (sub-section Co-Clustering).
This, formally speaking, preprocessing step becomes the major concern, while the 
following data clustering remains a lesser issue. 

We start with the development of Han et al. [1997] that exemplifies this approach. After 
items are clustered (major step), a very simple method to cluster transactions themselves
is used: each transaction T is assigned to a cluster  of items having most in common

with T, as defined by a function 

jC

jj CCT /

}

. Other choices come to mind, but again the 

primary objective is to find item groups. To achieve this association rules and hyper-

graph machineries are used. First, frequent item-sets are generated from transactional 
data. A hyper-graph  can be associated with item universe, so that vertices V

are items. In a common graph, pairs of vertices are connected by edges, but in a hyper-
graph several vertices are connected by hyper-edges. Hyper-edge in H corresponds
to a frequent item-set {  and has a weight equal to an average of confidences 

among all association rules involving this item-set. A solution to the problem of k-way
partitioning of a hyper-graph H is provided by algorithm HMETIS [Karypis et al. 1997].
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The algorithm STIRR (Sieving Through Iterated Reinfircement) [Gibson et al. 1998] 
deals with co-occurrence for d-dimensional categorical objects, tuples. Extension to
transactional data is obvious. It uses beautiful technique from functional analysis. Define 
configurations as weights  over all different values v for all d attributes.

Consider, for example, a value v of the first attribute. The tuples 

}{ vww =
),...,,( 11 −= duuvx
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containing v result in a weight update , where terms

depend on a combining operator . An example of a combining operator is
. So the weight is redistributed among different values. The 

major iteration scans the data X and results in the propagation of weights between
different nodes  equal to a described update followed by the normalization of 

weights among the values of each attribute. Function f can be considered as a dynamic

system (non-linear, if is non-linear). STIRR relies on a deep analogy with the spectral

graph partitioning. For linear dynamic system defined over the graph, a re-
orthogonalization Gram-Schmidt process can be engaged to compute its eigenvectors that 
introduces negative weights. The few first non-principal eigenvectors (non-principle 
basins) define graph partitioning corresponding to positive/negative weights. The process 

works like this: few weights (configurations)  are initialized. A major iteration

updates them, , and new weights are re-orthogonalized. The process 

continues until fixed point of a dynamic system is achieved. Non-principle basins are 
analyzed. In STIRR a dynamic system instead of association rules formalizes co-
occurrence. Additional references related to spectral graph partitioning can be found in
[Gibson et al. 1998]. As the convergence of the process can cause a problem, the further 
progress is related to the modification of the dynamic system that guarantees it [Zhang et 
al. 2000]. 
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7. Other Clustering Techniques 

A number of other clustering algorithms have been developed. Some deal with the 
specific application requirements. Constraint-based clustering belongs to this category. 
Others have theoretical significance or are mostly used in other than data mining
applications. We briefly discuss these developments in the sub-sections Relation to

Supervised Learning, Gradient Descent and ANN, and Evolutionary Methods. Finally, in 
the sub-section Other Developments we very briefly mention developments that simply 
do not fit well in our classification.

7.1. Constraint-Based Clustering 

In real-world applications customers are rarely interested in unconstrained solutions.
Clusters are frequently subjected to some problem-specific limitations that make them
suitable for particular business actions. Building of so conditioned cluster partitions is the 
subject of active research; for example, see survey [Han et al. 2001].

The framework for the constrained-based clustering is introduced in [Tung et al. 2001].
The taxonomy of clustering constraints includes constraints on individual objects (e.g., 
customer who recently purchased) and parameter constraints (e.g., number of clusters) 
that can be addressed through preprocessing or external cluster parameters. The
taxonomy also includes constraints on individual clusters that can be described in terms
of bounds on aggregate functions (min, avg, etc.) over each cluster. These constrains are 
essential, since they require a new methodology. In particular, an existential constraint is 
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a bound from below on a count of objects of a certain subset (i.e. frequent customers) in 
each cluster. Iterative optimization used in partitioning clustering relies on moving
objects to their nearest cluster representatives. This may violate such constraint. A 
methodology of how to resolve this conflict is developed in [Tung et al. 2001]. 

The most frequent requirement is to bound number of cluster points from below. 
Unfortunately, k-means algorithm, which is used most frequently, sometimes provides a 
number of very small (in certain implementations empty) clusters. The modification of 
the k-means objective function and of k-means updates that incorporate lower limits on 
cluster volumes is suggested in [Bradley et al. 2000]. This includes soft assignments of 
data points with coefficients subject to linear program requirements. Banerjee & Ghosh 
[2002] presented another modification to k-means algorithm. Their objective function
corresponds to an isotropic Gaussian mixture with widths inversely proportional to 
numbers of points in the clusters. The result is the frequency sensitive k-means. Still 
another approach to building balanced clusters is to convert a task into a graph-
partitioning problem [Strehl & Ghosh 2000].

Important constraint-based clustering application is to cluster 2D spatial data in the 
presence of obstacles. Instead of regular Euclidean distance, a length of the shortest path 
between two points can be used as an obstacle distance. The COD (Clustering with
Obstructed Distance) algorithm [Tung et al. 2001] deals with this problem. It is best 
illustrated by the figure 6, showing the difference in constructing three clusters in absence
of obstacle (left) and in presence of a river with a bridge (right). 

Figure 6. Obstacle (river with the bridge) makes a difference.

7.2. Relation to Supervised Learning 

Both Forgy’s k-means implementation and EM algorithms are iterative optimizations.
Both initialize k models and then engage in a series of two-step iterations that: (1) 
reassign (hard or soft) data points, (2) update a combined model. This process can be 
generalized to a framework relating clustering with predictive mining [Kalton et al. 
2001]. The model update is considered as the training of a predictive classifier based on 
current assignments serving as the target attribute values supervising the learning. Points’ 
reassignments correspond to the forecasting using the recently trained classifier. 

Liu et al. [2000] suggested another elegant connection to supervised learning. They 
considered binary target attribute defined as Yes on points subject to clustering, and 
defined as No on non-existent artificial points uniformly distributed in a whole attribute 
space. A decision tree classifier is applied to the full synthetic data. Yes–labeled leaves
correspond to clusters of input data. The new technique CLTree (CLustering based on 
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decision Trees) resolves the challenges of populating the input data with artificial No–
points such as: (1) adding points gradually following the tree construction; (2) making
this process virtual (without physical additions to input data); (3) problems with uniform
distribution in higher dimensions.

7.3. Gradient Descent and Artificial Neural Networks

Soft reassignments make a lot of sense, if k-means objective function is slightly modified
to incorporate (similar to EM) “fuzzy errors”, that is if it accounts for distances not only 
to the closest, but also to the less fit centroids:
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Exponential probabilities are defined based on Gaussian models. This makes the 
objective function differentiable with respect to means and allows application of general 
gradient decent method. Marroquin & Girosi [1993] presented a detailed introduction to 
this subject in the context of vector quantization.  Gradient decent method in k-means is
known as LKMA (Local K-Means Algorithm). At each iteration t, it modifies means t
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in the direction of gradient decent. In the second case one x is selected randomly. Scalars 
 satisfy certain monotone asymptotic behavior and converge to zero, coefficients w are

defined trough  [Bottou & Bengio 1995]. Such updates are also used in a different 
context of artificial neural network (ANN) clustering, namely SOM (Self-Organized 
Map) [Kohonen 1990]. SOM is popular in vector quantization. Bibliography related to 
this dynamic field can be found in the monograph [Kohonen 2001]. We will not elaborate 
here about SOM except for two important features: (1) SOM uses incremental approach – 
points (patterns) are processed one-by-one; (2) SOM allows to map centroids into 2D 
plane that provides for a straightforward visualization. In addition to SOM, other ANN 
developments, such as adaptive resonance theory [Carpenter et al. 1991], have relation to 
clustering. For further discussion see [Jain & Mao 1996]. 

ta

7.4. Evolutionary Methods

Substantial information on simulated annealing in the context of partitioning (main 
focus) or hierarchical clustering is accumulated, including the algorithm SINICC
(SImulation of Near-optima for Internal Clustering Criteria) [Brown & Huntley 1991].
The perturbation operator used in general annealing has a simple meaning in clustering: it 
amounts to a relocation of a point from its current to a new randomly chosen cluster (very 
similar to k-means scheme). SINICC also tries to address the interesting problem of 
choosing the most appropriate objective function. It has a real application – surveillance 
monitoring of ground-based entities by airborne and ground-based sensors. Similar to 
simulating annealing is the so-called tabu search [Al-Sultan 1995]. 

Genetic Algorithms (GA) [Goldberg 1989] are also used in cluster analysis. An example 
is the GGA (Genetically Guided Algorithm) for fuzzy and hard k-means [Hall et al.
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1999]. This article can be used for further references. Sarafis et al. [2002] applied GA in 
the context of k-means objective function. A population is a set of “k-means” systems
represented by grid segments instead of centroids. Every segment is described by d rules
(genes), one per attribute range. The population is improved through mutation and 
crossover specifically devised for these rules. Unlike in normal k-means, clusters can 
have different size and elongation; however, shapes are restricted to segments, a far cry 
from density-based methods. GA were also applied to clustering of categorical data using 
so-called generalized entropy to define the dissimilarity [Cristofor and Simovici 2002].

Evolutionary techniques rely on certain parameters to empirically fit data and have high 
computational costs that limit their application in data mining. However, usage of 
combined strategies (e.g., generation of initial guess for k-means) has been attempted
[Babu & Murty 1993; Babu & Murty 1994]. Usage of GA with variable length genome to 
simultaneously improve k-means centroids and k itself [Lee & Antonsson 2000] also has 
a merit in comparison with running multiple k-means to determine a k, since changes in k
happen before full convergence is achieved. 

7.5. Other Developments 

There are other developments that in terms of their performance qualify for data mining.

For 2D spatial data (for example, GIS database) the algorithm AMOEBA [Estivill-Castro
& Lee 2000] uses Delaunay diagram (the dual of Voronoi diagram) to represent data 
proximity and has  complexity.))log(( NNO

Harel & Koren [2001] suggested an approach related to agglomerative hierarchical graph 
methodology that they showed to successfully find local clusters in 2D. As above, 
consider a connectivity graph G . Using Delaunay diagram or keeping with any 

point only its K-nearest neighbors sparsifies the graph. The method relies on random

walk to find separating edges F so that clusters become connected components of 
.
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8. Scalability and VLDB Extensions 

Clustering algorithms face problems of scalability both in terms of computing time and 
memory requirements. In data mining reasonable runtime and ability to use certain
limited core memory become especially important. There have been many interesting 
attempts to extend clustering to very large databases (VLDB), which can be divided into: 

- Incremental mining,
- Data squashing,
- Reliable sampling.

The algorithm DIGNET [Thomopoulos et al. 1995; Wann & Thomopoulos 1997] 
(compare with “the leader” clustering algorithm in [Hartigan 1975]) is an example of 
incremental unsupervised learning. This means that it handles one data point at a time,
and then discards it. DIGNET uses k-means cluster representation without iterative 
optimization. Centroids are instead pushed or pulled depending on whether they loose or 
win each next coming point. Such on-line clustering needs only one data pass, but 
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strongly depends on data ordering, and it can result in sub-quality clusters. However, it 
handles outliers, clusters can be dynamically born or discarded, and the training process 
is resumable. This makes it very appealing for dynamic VLDB.  Some further tools can 
be used to improve obtained clusters. 

Data squashing techniques scan data to compute certain data summaries (sufficient

statistics) [DuMouchel et al. 1999]. The obtained summaries are then used instead of the 
original data for further clustering. The pivotal role here belongs to the algorithm BIRCH 
(Balanced Iterative Reduction and Clustering using Hierarchies) [Zhang et al. 1996; 
Zhang et al. 1997]. This work had a significant impact on overall direction of scalability 
research in clustering. BIRCH creates a height-balanced tree of nodes that summarize
data by accumulating its zero, first, and second moments. A node, called Cluster Feature

(CF), is a tight small cluster of numerical data. The construction of a tree residing in core 
memory is controlled by some parameters. A new data point descends along the tree to 
the closest CF leaf. If it fits the leaf well and if the leaf is not overcrowded, CF statistics
are incremented for all nodes from the leaf to the root. Otherwise a new CF is 
constructed. Since the maximum number of children per node (branching factor) is 
limited, one or several splits can happen. When the tree reaches the assigned memory
size, it is rebuilt and a threshold controlling whether a new point is assigned to a leaf or 
starts a new leaf is updated to a coarser one. The outliers are sent to disk, and refitted 
gradually during tree rebuilds. The final leaves constitute input to any algorithm of 
choice. The fact that a CF-tree is balanced allows the log-efficient search. BIRCH 
depends on parameters that control CF tree construction (branching factor, maximum of 
points per leaf, leaf threshold), and it also depends on data ordering. When the tree is 
constructed (one data pass), it can be additionally condensed in the optional 2nd phase to 
further fit desired input cardinality of post-processing clustering algorithm. Next, in the 
3rd phase a global clustering of CF (considered as individual points) happens. Finally, 
certain irregularities (for example, identical points getting to different CFs) can be 
resolved in an optional 4th phase. It makes one or more passes through data reassigning 
points to best possible clusters, as k-means does. The overall complexity is O .

Summarization phase of BIRCH was extended to mixed numerical and categorical
attributes [Chiu et al. 2001]. 

)(N

A full interface between VLDB and relocation clustering (as k-means) includes following
requirements [Bradley et al. 1998]. Algorithm has to: 

Take one (or less – early termination) data scan 
Provide on-line solution: some solution in-progress should always be available 
Be suspendable, stoppable, resumable
Be able to incorporate additional data incrementally
Be able to work in prescribed memory buffer
Utilize different scanning modes (sequential, index, sample)
Be able to operate in forward-only cursor over a view of database

The article suggests data compression that accumulates sufficient statistics like BIRCH 
does, but makes it in phases. Points that are compressed over the primary stage are 
discarded.  They can be attributed to their clusters with very high confidence even if other 
points would shift. The rest is taken care of in the secondary phase, which tries to find
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dense subsets by k-means method with higher than requested k. Violators of this stage are 
still kept in retained set (RT) of singletons to be analyzed later.

BIRCH-like preprocessing substantially relies on vector-space operations. Meanwhile, in 
many applications, objects (for example, strings) belong to a metric space. In other 
words, all we can do with data points is to compute distances between them. Ganti et al.
[1999b] proposed BIRCH-type data squashing BUBBLE for VLDB in metric spaces.
Each leaf of the BUBBLE-tree is characterized by:

1) Number of its points 
2) Medoid (called clustroid) that delivers a minimum to an error – a squared distance 

between it and all other points belonging to the leaf 
3) Radius equal to the square root of an average error per a point

The problem to overcome is how to insert new points in the absence of a vector structure. 
BUBBLE uses a heuristic that relates to a distance preserving embedding of leaf points 
into a low-dimensional Euclidean vector space. Such embedding is known as isometric
map in geometry and as multidimensional scaling in statistics. Certain analogy can also 
be made with embeddings used in support vector machines. While Euclidean distance 
(used in BIRCH) is cheap, the computation of a distance in a metric space (for example, 
edit distance for strings) can be expensive. Meanwhile, every insertion requires to
compute distances to all the nodes descending to a leaf. The similar algorithm BUBBLE-
FM handles this difficulty. It relaxes the computations by using approximate isometric
embedding. This is possible due to the algorithm FastMap [Faloutsos & Lin 1995].

In the context of hierarchical density-based clustering in VLDB, Breunig et al. [2001] 
analyzed data reduction techniques such as sampling and BIRCH summarization, and 
noticed that they result in deterioration of cluster quality. To cure this, they approached
data reduction through accumulation of data bubbles that are summaries of local
information about distances and nearest neighbors. A data bubble contains an extent, the
distance from a bubble’s representative to most points in X, and the array of distances to 
each of MinPts nearest neighbors. Data bubbles are then used in conjunction with the 
algorithm OPTICS (see sub-section Density-Based Connectivity).

Grid-methods also generate data summaries, though their summarization phase relates to 
units and segments and not to CFs. Therefore, they are scalable.

Many algorithms use old-fashioned sampling with or without rigorous statistical 
reasoning. It is especially handy for different initializations as in CLARANS (sub-section 
K-Medoids Methods), Fractal Clustering (section Grid-Based Methods), or k-means
[Bradley & Fayyad 98]. Notice that when clusters are constructed using whatever sample, 
assigning the whole data to the most appropriate clusters minimally adds the term

to the overall complexity.

)(NO

Sampling has got a new life with the adoption by the data mining community of a special 
uniform check to control its adequacy. This check is based on Hoffding or Chernoff

bounds [Motwani & Raghavan 1995] and says that, independent of the distribution of a 
real-valued random variable Y, the average of n independent observations lies 

within  of the actual mean

,0 RY ≤≤

31



ε≤−
= nj jY

n
Y

:1
1

with probability 1-  as soon as 

nR 2/)/1ln(2 δε = .

These bounds were used in the clustering algorithm CURE [Guha et al. 1998] and in the 
development of scalable decision trees in predictive mining [Hulten et al. 2001]. In the
context of balanced clustering, a statistical estimation of a sample size is provided in 
[Banerjee & Ghosh 2002]. Due to their nonparametric nature, the bounds have a 
ubiquitous significance. 

9. Clustering High Dimensional Data 

The objects in data mining could have hundreds of attributes. Clustering in such high 
dimensional spaces presents tremendous difficulty, much more so than in predictive 
learning. In decision trees, for example, irrelevant attributes simply will not be picked for
node splitting, and it is known that they do not affect Naïve Bayes as well. In clustering,
however, high dimensionality presents a dual problem. First, under whatever definition of 
similarity, the presence of irrelevant attributes eliminates any hope on clustering

tendency. After all, searching for clusters where there are no clusters is a hopeless 
enterprise. While this could also happen with low dimensional data, the likelihood of 
presence and number of irrelevant attributes grows with dimension.

The second problem is the dimensionality curse that is a loose way of speaking about a 
lack of data separation in high dimensional space. Mathematically, nearest neighbor
query becomes unstable: the distance to the nearest neighbor becomes indistinguishable 
from the distance to the majority of points [Beyer et al. 1999]. This effect starts to be 
severe for dimensions greater than 15. Therefore, construction of clusters founded on the 
concept of proximity is doubtful in such situations. For interesting insights into 
complications of high dimensional data, see [Aggarwal et al. 2000]. 

Basic exploratory data analysis (attribute selection) preceding the clustering step is the
best way to address the first problem of irrelevant attributes. We consider this topic in the 
section General Algorithmic Issues. Below we present some techniques dealing with a
situation when the number of already pre-selected attributes d is still high.

In the sub-section Dimensionality Reduction we talk briefly about traditional methods of
dimensionality reduction. In the sub-section Subspace Clustering we review algorithms
that try to circumvent high dimensionality by building clusters in appropriate subspaces 
of original attribute space. Such approach has a perfect sense in applications, since it is
only better if we can describe data by fewer attributes. Still another approach that divides 
attributes into similar groups and comes up with good new derived attributes representing 
each group is discussed in the sub-section Co-Clustering.

Important source of high dimensional categorical data comes from transactional (market 
basket) analysis. Idea to group items very similar to co-clustering has already been 
discussed in the section Co-Occurrence of Categorical Data.
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9.1. Dimensionality Reduction 

When talking about high dimensionality, how high is high?

Many spatial clustering algorithms depend on indices in spatial datasets (sub-section
Data Preparation) to facilitate quick search of the nearest neighbors. Therefore, indices 
can serve as good proxies with respect to dimensionality curse performance impact. 
Indices used in clustering algorithms are known to work effectively for dimensions below 
16. For a dimension d > 20 their performance degrades to the level of sequential search
(though newer indices achieve significantly higher limits). Therefore, we can arguably 
claim that data with more than 16 attributes is high dimensional.

How large is the gap? If we are dealing with a retail application, 52-weeks sales volumes
represent a typical set of features, which is a special example of more general class of 
time series data. In customer profiling dozens of generalized item categories plus basic
demographics result in at the least 50-100 attributes. Web clustering based on site 
contents results in 200-1000 attributes (pages/contents) for modest Web sites. Biology 
and genomic data can have dimensions that easily surpass 2000-5000 attributes. Finally,
text mining and information retrieval also deal with many thousands of attributes (words
or index terms). So, the gap is significant.

Two general purpose techniques are used to fight high dimensionality: (1) attributes

transformations and (2) domain decomposition.

Attribute transformations are simple functions of existent attributes. For sales profiles
and OLAP-type data, roll-ups as sums or averages over time intervals (e.g., monthly
volumes) can be used. Due to a fine seasonality of sales such brute force approaches 
rarely work. In multivariate statistics principal components analysis (PCA) is popular 
[Mardia et al. 1980; Joliffe 1986], but this approach is problematic since it leads to 
clusters with poor interpretability. Singular value decomposition (SVD) technique is used 
to reduce dimensionality in information retrieval [Berry et al. 1995; Berry & Browne 
1999] and statistics [Fukunaga 1990]. Low-frequency Fourier harmonics in conjunction 
with Parseval’s theorem are successfully used in analysis of time series [Agrawal et al.
1993], as well as wavelets and other transformations [Keogh et al. 2001]. 

Domain decomposition divides the data into subsets, canopies, [McCallum et al. 2000] 
using some inexpensive similarity measure, so that the high dimensional computation
happens over smaller datasets. Dimension stays the same, but the costs are reduced. This
approach targets the situation of high dimension, large data, and many clusters. 

9.2. Subspace Clustering 

Some algorithms better adjust to high dimensions. For example, the algorithm CACTUS 
(section Co-Occurrence of Categorical Data) adjusts well since it defines a cluster only
in terms of a cluster’s 2D projections. In this section we cover techniques that are 
specifically designed to work with high dimensional data.

The algorithm CLIQUE (Clustering In QUEst) [Agrawal et al. 1998] for numerical
attributes is fundamental in subspace clustering. It marries the ideas of: 

Density-based clustering
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Grid-based clustering 
Induction through dimensions similar to Apriori algorithm in association rules 
MDL principle to select appropriate subspaces 
Interpretability of clusters in terms of DNF representation 

CLIQUE starts with the definition of a unit – elementary rectangular cell in a subspace.
Only units whose densities exceed a threshold τ are retained. A bottom-up approach of 
finding such units is applied. First, 1-dimensional units are found by dividing intervals in 
 equal-width bins (a grid). Both parameters τ and are the algorithm’s inputs. The 

recursive step from q-1-dimensional units to q-dimensional units involves self-join of q-1
units having first common q-2 dimensions (Apriori-reasoning). All the subspaces are 
sorted by their coverage and lesser-covered subspaces are pruned. A cut point is selected 
based on MDL principle. A cluster is defined as a maximal set of connected dense units. 
It is represented by a DNF expression that is associated with a finite set of maximal
segments (called regions) whose union is equal to a cluster. Effectively, CLIQUE results
in attribute selection (it selects several subspaces) and produces a view of data from 
different perspectives! The result is a series of cluster systems in different subspaces.
This versatility goes more in vein with data description rather than with data partitioning:
different clusters overlap. If q is a highest subspace dimension selected, the complexity of 

dense units generations is . Identification of clusters is a quadratic task in

terms of units. 

)( qNconstO q +

The algorithm ENCLUS (ENtropy-based CLUStering) [Cheng et al. 1999] follows in the 
footsteps of CLIQUE, but uses a different criterion for subspace selection. The criterion 
is derived from entropy related considerations: the subspace spanned by attributes

 with entropy  smaller than a threshold  is considered good for 

clustering. Any subspace of a good subspace is also good, since 
qAA ,...,1 ),...,( 1 qAAH

ω<≤−= −− ),...,(),...,|(),...,(),...,( 111111 qqqqq AAHAAAHAAHAAH .

Low entropy subspace corresponds to a skewed distribution of unit densities. The 
computational costs of ENCLUS are high. 

The algorithm MAFIA (Merging of Adaptive Finite Intervals) [Goil et al. 1999; Nagesh 
et al. 2001] significantly modifies CLIQUE. It starts with one data pass to construct 
adaptive grids in each dimension. Many (1000) bins are used to compute histograms by 
reading blocks of data in core memory, which are then merged together to come up with 
a smaller number of variable-size bins than CLIQUE does. The algorithm uses a 
parameter , called cluster dominance factor, to select bins that are -times more densely 
populated relative to their volume than on average. These are q=1 candidate dense units
(CDUs). Then MAFIA proceeds recursively to higher dimensions (every time a data scan 
is involved). The difference between MAFIA and CLIQUE is that to construct a new q-
CDU, MAFIA tries two q-1-CDUs as soon as they share any (not only first dimensions)
q-2-face. This creates an order of magnitude more candidates. Adjacent CDUs are 
merged into clusters and clusters that are proper subsets of the higher dimension clusters 
are eliminated. The parameter  (default value 1.5 works fine) presents no problem in 
comparison with global density threshold used in CLIQUE. Reporting for a range of  in 
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a single run is supported. If q is a highest dimensionality of CDU, the complexity is

.)( qNconstO q +

The algorithm OPTIGRID [Hinneburg & Keim 1999] uses data partitioning based on 
divisive recursion by multi-dimensional grids. Authors present a very good introduction 
into the effects of high-dimension geometry. Familiar concepts, as for example, uniform
distribution, become blurred for large d. OPTIGRID uses density estimations in the same
way the algorithm DENCLUE (by the same authors) does. It primarily focuses on 
separation of clusters by (hyper) planes that are not necessarily axes parallel. To find 

such planes consider a set of contracting linear projectors (functionals) 1,,...,1 ≤jk PPP

)( yx −
of

the attribute space A at a 1D line. For a density kernel of the form  (a tool of

trade in DENCLUE) and a contracting projection, density induced after projection is
more concentrated. A cutting plane is chosen so that it goes through the point of minimal
density and discriminates two significantly dense half-spaces. Several cutting planes are 
chosen, and recursion continues with each subset of data.

K

The algorithm PROCLUS (PROjected CLUstering) [Aggarwal et al. 1999a] associates 
with a subset C a low-dimensional subspace such that the projection of C into the
subspace is a tight cluster. The subset – subspace pair when exists constitutes a projected

cluster. The number k of clusters and the average subspace dimension l are user inputs.
The iterative phase of the algorithm deals with finding k good medoids, each associated 
with its subspace. A sample of data is used in a greedy hill-climbing technique.
Manhattan distance divided by the subspace dimension is a useful normalized metric for 
searching among different dimensions. An additional data pass follows after iterative 
stage is finished to refine clusters including subspaces associated with the medoids.

The algorithm ORCLUS (ORiented projected CLUSter generation) [Aggarwal & Yu 
2000] uses a similar approach of projected clustering, but employs non-axes parallel 
subspaces of high dimensional space. In fact, both developments address a more generic 
issue: even in a low dimensional space, different portions of data could exhibit  clustering 
tendency in different subspaces (consider several non-parallel non-intersecting cylinders
in 3D space). If this is the case, any attribute selection is doomed. ORCLUS has a k-
means-like transparent model that defines clusters as sets of points (partition) that have 
low sum-of-squares of errors (energy) in a certain subspace. More specifically, for ,
and directions (specific to C), the projection is defined as { .

The projection only decreases energy. SVD diagonalization can be used to find directions 
(eigenvectors) corresponding to the lowest l eigenvalues of the covariance matrix. In 
reality, the algorithm results in X partitioning (the outliers excluded) into k clusters

together with their subspace directions . The algorithm builds more than k clusters,

with larger than l-dimensional E gradually fitting the optimal subspace and requested k.
Though suggestion of picking a good parameter l is provided, uniform l is a certain
liability.

Cx ∈
}lex ⋅

jC

},...,{ 1 leeE = ,...,1ex ⋅

jE

Any other comparison aside, projected clusters provide data partitioning, while cluster
systems resulted from CLIQUE overlap.
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9.3. Co-Clustering 

In OLAP attribute roll-ups can be viewed as representatives of the attribute groups. An 
interesting general idea of producing attribute groups in conjunction with clustering of 
points themselves leads to the concept of co-clustering. Co-clustering is a simultaneous
clustering of both points and their attributes. This approach reverses the struggle: to 
improve clustering of points based on their attributes, it tries to cluster attributes based on 
the points. So far we were concerned with grouping only rows of a matrix X. Now we are 
talking about grouping its columns as well. This utilizes a canonical duality contained in 
the point-by-attribute data representation.

The idea of co-clustering of data points and attributes is old [Anderberg 1973; Hartigan 
1975] and is known under the names simultaneous clustering, bi-dimensional clustering,
block clustering, conjugate clustering, distributional clustering, and information

bottleneck method. The use of duality for analysis of categorical data (dual or 
multidimensional scaling) also has a long history in statistics [Nishisato 1980]. The 

similar approach of
building groups of 
item was presented
in the section Co-

Occurrence of 
Categorical Data.
In this section we
turn to numerical
attributes. Assume
that the matrix X

has non-negative 
elements. In this
context it is known 
as incidence,

relational,
frequency,

contingency
matrix. In
applications it can
reflect intensity of
a gene response in 
a tissue sample,
frequency of 
visitation activity 

of a page, or the amount of a sale in a store per item category. 

Figure 7. Learning referring traffic on a Web site. 

Govaert [1995] researched simultaneous block clustering of the rows and columns of
contingency tables. He also reviewed an earlier work on the subject. An advanced
algebraic approach to co-clustering based on bi-partite graphs and their minimal cuts in
conjunction with text mining was proposed in [Dhillon 2001]. This paper contains an
excellent introduction in relations between simultaneous clustering and graph 
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partitioning, as well as in connection with SVD. A simple algorithm Ping-Pong [Oyanagi 
et al. 2001] was suggested to find populated areas in a sparse binary matrix. It 
redistributes influence of columns on rows and vice versa (compare with algorithm 
STIRR above) by transversal connection through matrix elements and provides an 
example of other than co-clustering, but a related development.

A series of publications deal with distributional clustering of attributes based on the
informational measures of attribute similarity. Two attributes (two columns in matrix X)
with exactly the same probability distributions are identical for the purpose of data 
mining, and so, one can be deleted. Attributes that have probability distributions that are 
close in terms of their Kullback-Leibler (KL) distance [Kullback & Leibler 1951] can 
still be grouped together without much of an impact. In addition, a natural derived 
attribute, the mixed distribution (a normalized sum of two columns) is now available to 
represent the group. This process can be generalized. The grouping simplifies the original 

matrix X to the compressed form X . Attribute clustering is productive when it minimally

impacts information reduction )()( XIXIR −= , where is mutual information

contained in X [Cover & Thomas 1990]. Such attribute grouping is intimately related to 
Naïve Bayes classification in predictive mining [Baker & McCallum 1998].

)(XI

The outlined technique is very much relevant to grouping words in text mining. In this 
context the technique was explored under the name information bottleneck method

[Tishby et al. 1999]. It was used to facilitate agglomerative co-clustering of words in
document clustering [Slonim & Tishby 2000] and classification [Slonim & Tishby 2001].

Berkhin & Becher [2002] showed deep algebraic connection of distributional clustering 
to k-means. They used k-means adaptation to KL-distance as a major iterative step in the 
algorithm SIMPLIFYRELATION that gradually co-clusters points and attributes. This
development has industrial application in Web analysis. Figure 7 shows how an original 
incidence matrix of Web site traffic between 197 referrers (rows) and 203 Web site pages 
(columns) is clustered into 26x22 matrix with 6% information loss. While KL-distance is
not actually a distance, since it is not symmetric, it can be symmetrized to the so-called
Jensen-Shanon divergence. Dhillon et al. [2002] used Jensen-Shanon divergence to
cluster words in k-means fashion in text classification. Besides text and Web mining, the 
idea of co-clustering finds its way into other applications, as for example, clustering of 
gene microarrays [Busygin et al. 2002]. 

10. General Algorithmic Issues

We have presented many different clustering techniques. However, there are common 
issues that must be addressed to make any clustering algorithm successful. Some are so 
ubiquitous that they are not even specific to unsupervised learning and can be considered 
as a part of overall data mining framework. Others are resolved in certain algorithms we 
presented. In fact, many algorithms were specifically designed for this reason. Now we 
overview common issues, and necessarily our coverage will be very fragmented.

Scalability for VLDB and high dimensional clustering were already surveyed above, but 
several others significant issues are discussed below:

- Assessment of results
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- Choice of appropriate number of clusters 
- Data preparation
- Proximity measures
- Handling outliers

10.1. Assessment of Results 

The data mining clustering process starts with the assessment of whether any cluster

tendency has a place at all, and correspondingly includes, appropriate attribute selection,
and in many cases feature construction. It finishes with the validation and evaluation of 
the resulting clustering system. The clustering system can be assessed by an expert, or by 
a particular automated procedure. Traditionally, the first type of assessment relates to two 
issues: (1) cluster interpretability, (2) cluster visualization. Interpretability depends on the 
technique used. Model-based probabilistic and conceptual algorithms, as COBWEB, have 
better scores in this regard. K-means and k-medoid methods generate clusters that are 
interpreted as dense areas around centroids or medoids and, therefore, also score well. 
The review [Jain et al. 1999] extensively covers cluster validation, while a discussion of 
cluster visualization and related references can be found in [Kandogan 2001].

Regarding automatic procedures, when two partitions are constructed (with the same or 
different number of subsets k), the first order of business is to compare them. Sometimes
the actual class label s of one partition is known. Still clustering is performed generating 
another label j. The situation is similar to testing a classifier in predictive mining when 
the actual target is known. Comparison of s and j labels is similar to computing an error,
confusion matrix, etc., in predictive mining. Simple criterion Rand serves this purpose 
[Rand 1971]. Computation of a Rand index (defined below) involves pairs of points that 
were assigned to the same and to the different clusters in each of two partitions. Hence it

has complexity and is not always feasible. Conditional entropy of a known label s

given clustering partitioning [Cover & Thomas 1990] 

)( 2NO

−=
j s jsjsj pppJSH )log()|( ||

is another measure used. Here  are probabilities of j cluster, and conditional

probabilities of s given j. It has O  complexity. Other measures are also used, for 

example, the F-measure [Larsen & Aone 1999].

jsj pp |,

)(N

10.2. How Many Clusters? 

In many methods number k of clusters to construct is an input user parameter. Running an 
algorithm several times leads to a sequence of clustering systems. Each system consists 
of more granular and less-separated clusters. In the case of k-means, the objective
function is monotone decreasing. Therefore, the answer to the question of which system 
is preferable is not trivial.

Many criteria have been introduced to find an optimal k. Some industrial applications 
(SAS, NeoVista) report pseudo F-statistic. This only makes sense for k-means clustering
in context of ANOVA. Earlier publications on the subject analyzed cluster separation for
different k [Engleman & Hartigan 1969; Milligan & Cooper 1985]. For instance, a 
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distance between any two centroids (medoids) normalized by corresponding cluster’s
radii (standard deviations) and averaged (with cluster weights) is a reasonable choice of 

coefficient of separation. This coefficient has a very low O  complexity. Another 

popular choice for separation measure is a Silhouette coefficient [Kaufman & 
Rousseeuw 1990]. For example, Silhouette coefficient is used in conjunction with 

CLARANS in [Ng & Han 1994]. It has  complexity. Consider average distance

between the point x of cluster C and other points within C and compare it with averaged
distance to the best fitting cluster G other than C
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The Silhouette coefficient of x is , values close to +1 

corresponding to a perfect and values below 0 to a bad clustering choice. The overall 
average of individual s(x) gives a good indication of cluster system appropriateness.
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Still another approach to separation is to employ possible soft (or fuzzy) assignments. It
has an intermediate  complexity. Remember that assignment of a point to a

particular cluster may frequently involve certain arbitrariness. Depending on how well a 
point fits a particular cluster C, different probabilities or weights  can be 

introduced so that a hard (strict) assignment is defined as 
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A Partition coefficient [Bezdek 1981] is equal to the sum of squares of the weights 
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(compare with GINI index). Each of the discussed measures can be plotted as a function 
of k and the graph can be used to choose the best k.

The strong probabilistic foundation of the mixture model, discussed in sub-section 
Probabilistic Clustering, allows viewing a choice of optimal k as a problem of fitting the
data by the best model. The question is whether adding new parameters results in a better
model. In Bayesian learning (for example, AUTOCLASS [Cheeseman & Stutz 1995]) the
likelihood of the model is directly affected (through priors) by the model complexity
(number of parameters is proportional to k). Several criteria were suggested including: 

Minimum Description Length (MDL) criterion [Rissanen 1978; Schwarz 1978;
Rissanen 1989] 
Minimum Message Length (MML) criterion [Wallace & Freeman 87; Wallace &
Dowe 94] 
Bayesian Information Criterion (BIC) [Schwarz 1978; Fraley & Raftery 1998] 
Akaike’s Information Criterion (AIC) [Bozdogan 1983] 
Non-coding Information Theoretic Criterion (ICOMP) [Bozdogan 1994] 
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Approximate Weight of Evidence (AWE) criterion [Banfield & Raftery 1993] 
Bayes Factors [Kass & Raftery 1995] 

All these criteria are expressed through combinations of log-likelihood L, number of 
clusters k, number of parameters per cluster, total number of estimated parameters p, and 
different flavors of Fisher information matrix. For example,

, ,) )(argmin kMDLkbest =log(2/)( ppLkMDL −+−=

)log(2)( n
p

LkBIC −= , .)(argmax kBICkbest =

Further details and discussion can be found in [Bock 1996; Oliver et al. 1996; Fraley & 
Raftery 1998]. Few examples: MCLUST and X-means use BIC criterion, SNOB uses 
MML criterion, CLIQUE and evolutionary approach to k determination [Lee & 
Antonsson 2000] use MDL. Significant expertise is developed in estimation of goodness 
of fit based on the criteria above. For example, different ranges of BIC are suggested for
weak, positive, and very strong evidence in favor of one clustering system versus another
[Fraley & Raftery 1999]. Smyth [1998] suggested a likelihood cross-validation technique
for determination the best k.

10.3. Data Preparation 

Irrelevant attributes make chances of a successful clustering futile, because they 
negatively affect proximity measures and eliminate clustering tendency. Therefore, sound
exploratory data analysis (EDA) is essential. An overall framework for EDA can be
found in [Becher et al. 2000]. As its first order of business, EDA eliminates inappropriate 
attributes and reduces the cardinality of the retained categorical attributes. Next it 
provides attribute selection. Different attribute selection methods exist. Inconsistency 
rates are utilized in [Liu & Setiono 1996]. The idea of a Markov blanket is used in 
[Koller & Sahami 1996]. While there are others methods (for example, [Jebara & 
Jaakkola 2000]), most are used primarily for predictive and not descriptive mining and 
thus do not address general-purpose attribute selection for clustering. We conclude that 
cluster-specific attribute selection yet to be invented.

Attributes transformation and clustering have already been discussed in the context of 
dimensionality reduction. The practice of assigning different weights to attributes and/or
scaling of their values (especially, standardization) is widespread and allows constructing 
clusters of better shapes. To some extent attribute scaling can be viewed as the 
continuation of attribute selection.

In real-life applications it is crucial to handle attributes of different nature. For example,
images are characterized by color, texture, shape, and location, resulting in four attribute 
subsets. Modha & Spangler [2002] suggested a very interesting approach for attribute 
scaling that pursues the objective of clustering in each attribute subset by computing
weights (a simplex) that minimize the product of intra-cluster to inter-cluster ratios for
the attribute subset projections (called generalized Fisher ratio).

In many applications data points have different significance. For example, in assortment
planning, stores can be characterized by the profiles of sales of particular items in 
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percentage. However, the overall sale volume gives additional weight to larger stores.
Partitioning relocation algorithms easily handle weighted data, because centroids become
centers of weights instead of means. The described practice is called case scaling.

Some algorithms depend on the effectiveness of data access. To facilitate this process
data indices are constructed. Examples include the extension of the algorithm CLARANS 
[Ester et al. 1995] and the algorithm DBSCAN [Ester et al. 1996]. Index structures used 
for spatial data, include KD-trees [Friedman et al. 1977], R-trees [Guttman 1984], R*-
trees [Kriegel et al. 1990]. A blend of attribute transformations (DFT, Polynomials) and 
indexing technique is presented in [Keogh et al. 2001a]. Other indices and numerous
generalizations exist [Beckmann 1990; Faloutsos et al. 1994; Berchtold et al. 98; Wang et 
al. 1998; Karypis & Han 2000; Keogh et al. 2001b]. The major application of such data 
structures is in nearest neighbors search.

Preprocessing of multimedia data that is based on its embedding in Euclidean space (the
algorithm FastMap) [Faloutsos & Lin 1995]. 

A fairly diverse range of preprocessing is used for variable length sequences. Instead of 
handling them directly (as in the sub-section Probabilistic Clustering), a fixed set of
features to represent variable length sequences can be derived [Guralnik & Karypis 2001; 
Manilla & Rusakov 2001].

10.4. Proximity Measures

Both hierarchical and partitioning methods use different distances and similarity
measures [Jain & Dubes 1988]. The usual  distancepL
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is used for numerical data, 1 , in which lower p corresponds to a more robust

estimation (therefore, less affected by outliers). Euclidean (p=2) distance is by far the 
most popular choice used in k-means objective function (sum of squares of distances 
between points and centroids) that has a clear statistical meaning of total inter-clusters
variance. Manhattan distance corresponds to p=1. The distance that returns the maximum
of absolute difference in coordinates is also used and corresponds to 

∞<≤ p

∞=p . In many

applications (profile analyses) points are scaled to have a unit norm, so that the proximity
measure is an angle between the points,

( )yxyxyxd T ⋅= arccos),( .

It is used, in specific tools, as DIGNET (section Scalability and VLDB Extensions), and 
in particular applications, as text mining. All above distances assume attributes 
independence (diagonal covariance matrix S). Mahanalabonis distance

)()(),( 1 yxSyxyxd T −−= −

[Mardia et al. 1980] is used in algorithms, as ORCLUS [Aggarwal & Yu 2000], that do 
not make this assumption.
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Formula ( )),(11),( yxdyxs +=  defines similarity for numerical attributes. Other choices

are cosine, Dice coefficients and distance exponent

( )22

cos 2,),( yxyxsyxyxyxs T
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T +== , ( )α
yxs −−= expexp .

Now we shift our attention to categorical data. A number of similarity measures exist for
categorical attributes [Dubes 1993; Everitt 1993]. Assuming binary attributes with 
values ±=βα , , let  be a number of attributes having outcomesαβd α  in x and β  in y.

Then the Rand and Jaccard (also known as Tanimoto) indices R, J are equal to 

( ) ( ) ( ) ( )+−−+++++−−+−−+++−−++ ++=++++= ddddyxJddddddyxR ),(,),(

Notice that Jaccard index treats positive and negative values asymmetrically, which 
makes it the measure of choice for transactional data, + meaning that an item is present. It 
is simply the fraction of common items of two transactions relative to the number of
items in both transactions. It is also used in collaborative filtering, sequence analysis, text 
mining, and pattern recognition. Extended Jaccard coefficient is advocated in [Ghosh 
2002]. For construction of similarity measures for market basket analysis see [Aggarwal
et al. 1999b; Baeza-Yates 1992]. Similarity can also be constructed axiomatically based
on information-theoretical considerations [Lin 1998]. The last two references contain 
material related to strings similarity (biology is one application). For strings over the 
same alphabet, edit distance is a frequent choice [Arslan & Egecioglu 2000]. It is based 
on the length of a sequence of transformations (such as insertion, deletion, transposition,
etc.) that are necessary to transform one string into another. A classic Hamming distance 
[Cover & Thomas 1990] is also used. Further references can be found in the review [Jain 
et al. 1999]. Historically textual mining was a source of major inspirations for a concept 
of similarity [Resnik 1995]. 

Proximity measures between two clusters that can be derived from proximities between
pairs of their points were discussed in the sub-section Linkage Metrics.

10.5. Handling Outliers 

Applications that derive their data from measurements have an associated amount of 
noise, which can be viewed as outliers. Alternately, outliers can be viewed as legitimate
records having abnormal behavior. In general, clustering techniques do not distinguish 
between the two: neither noise nor abnormalities fit into clusters. Correspondingly, the 
preferable way to deal with outliers in partitioning the data is to keep one extra set of
outliers, so as not to pollute factual clusters.

There are multiple ways of how descriptive learning handles outliers. If a summarization
or data preprocessing phase is present, it usually takes care of outliers. For example, this
is the case with grid-based methods. They simply rely on input thresholds to eliminate
low-populated cells. Algorithms in the section Scalability and VLDB Extensions provide 
further examples. The algorithm BIRCH [Zhang et al. 1996; Zhang et al. 1997] revisits 
outliers during the major CF tree rebuilds, but in general handles them separately. This 
approach is shared by other similar systems [Chiu et al. 2001]. The framework of 
[Bradley et al. 1998] utilizes a multiphase approach to outliers. 
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Certain algorithms have specific features for outliers handling. The algorithm CURE 
[Guha et al. 1998] uses shrinkage of cluster’s representives to suppress the effects of 
outliers. K-medoids methods are generally more robust than k-means methods with 
respect to outliers: medoids do not “feel” outliers. The algorithm DBCSAN [Ester et al.
1996] uses concepts of internal (core), boundary (reachable), and outliers (non-reachable) 
points. The algorithm CLIQUE [Agrawal et al. 1998] goes a step further: it eliminates
subspaces with low coverage. The algorithm WaveCluster [Sheikholeslami et al. 1998] is 
known to handle outliers very well through its filtering DSP foundation. The algorithm
ORCLUS [Aggarwal & Yu 2000] produces a partition plus a set of outliers.

What is an outlier? Statistics defines an outlier as a point that does not fit a probability

distribution. This approach has the problem with discordance testing for unknown 
multivariate distribution. Classic data analysis utilizes a concept of depth [Tukey 1977] 
and defines an outlier as a point of low depth. This concept becomes computationally
infeasible for d > 3. Data mining is gradually develops its own definitions.

Consider two positive parameters , . A point can be declared an outlier if its -
neighborhood contains less than 1-  fraction of a whole dataset X [Knorr & Ng 1998]. 
Ramaswamy et al. [2000] noticed that this definition can be improved by eliminating
parameter . Rank all the points by their distance to the K-nearest neighbor and define the
 fraction of points with highest ranks as outliers. Both definitions are uniformly global. 

How to describe local outliers? In essence, different subsets of data have different
densities and may be governed by different distributions. A point close to a tight cluster
can be a more probable outlier than a point that is further away from a more dispersed
cluster. The concept of local outlier factor (LOF) that specifies a degree of outlier-ness
comes to rescue [Breunig et al. 2000]. The definition is based on the distance to the k-

nearest neighbor. Knorr et al. [2001] addressed a related problem of how to eliminate 
outliers in order to compute an appropriate covariance matrix that describes a given 
locality. To do so, they utilized Donoho-Stahel estimator in two-dimensional space.

Crude handling of outliers works surprisingly well in many applications, because the 
simple truth is that many applications are concerned with systematic patterns. An 
example is customer segmentation with an objective of a direct mail campaign. On the 
other hand, philosophically outlier is a non-typical leftover after a regular clustering and, 
as such, it can easily attain a prominent significance. Therefore, in addition to eliminating
negative effects of outliers on clusters construction, there is a separate reason driving 
interest in outlier detection. The reason is that in some applications, the outlier is the
commodity of trade. This is so in medical diagnostics, fraud detection, network security,
anomaly detection, and computer immunology. Some connections and further references 
can be found in [Forrest et al. 1997; Lee & Stolfo 1998; Ghosh et al. 1999]. In CRM, E-
commerce, Web-site analytics outliers relate to a concept of interesting and unexpected

[Piatetsky-Shapiro & Matheus 1994; Silberschatz & Tuzhilin 1996; Padmanabhan & 
Tuzhilin 1999; Padmanabhan & Tuzhilin 2000]. Most of the research in these
applications is not directly related to clustering (but to pruning association rules).
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