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Abstract—In the relation extraction of semantic relations, it
is not uncommon to face settings in which the training data
provides very few instances of some relation classes. This is mostly
due to the high cost of producing such data and to the class
imbalance problem, which may result in some classes presenting
small frequencies even with a large annotated corpus. This work
thus presents a semi-supervised bootstrapped method to expand
this initial training dataset, using pattern matching to extract
new candidate instances from the Web. The core of this process
uses a multiview feature distance-based framework, which allows
quantitative and qualitative analysis of intermediate steps of
the process. Experimental results show that this framework
provides better results in the relation classification task than the
baseline, and the bootstrapped architecture improves the relation
classification task as a whole for these low-frequency semantic
relations settings.

Keywords—Semantic Computing; Concept Description; Natu-
ral Language Text

I. INTRODUCTION

The extraction of semantic relations from natural language

texts has been of increasing interest in Semantic Computing,

since it allows several compelling applications and services

to be developed, such as semantic indexing and searching.

In order to extract these relations, two approaches are the

most evident ones. The first one is to use heuristics to abstract

meaning. However, determining these heuristics proves itself

to be an arduous task and maybe even infeasible, due to the

richness of semantics. The other one is to use machine learning

algorithms to analyze semantically-annotated training data,

utilizing the generated model to find relations in the testing

data, which is a much more reasonable effort.
This annotated training data is acquirable by one of two

methods: manually constructing examples specifically for this

task, or annotating a whole corpus. While the first suffers

from excessive simplicity of the constructed sentences, the

latter presents the class imbalance problem, which results in

any inherently rare relation class producing very few training

instances. Adding the fact that annotating data is a costly

process, the classifier will often have to deal with relation

classes whose frequency is too low, which ultimately produces

incorrect classification due to unknown features in the testing

data.
This work thus proposes a bootstrapped architecture, which

utilizes a semi-supervised method to expand datasets with

low frequency relation classes that are to be used as training

data in a semantic relation extraction process. The relation

classification of the identified candidate relations for this

task is carried by a core framework, which is based on the

distance between relation features. This framework combines

the distinct views introduced by different feature types into

one single multiview matrix, allowing graphical and numerical

analysis of intermediate steps of the classification process.
This article is structured as follows. In section II, some

theoretical aspects and related work are introduced. In section

III, the architecture of the bootstrapped process is outlined.

In section IV, the core framework is proposed. In section V,

experiments are conducted and results are discussed. Finally,

in section VI, a conclusion is provided.

II. BACKGROUND AND RELATED WORK

A. Semantic Relations
Semantic relation is defined as any meaningful association

among two or more concepts. Considering an irreflexive

relation between two linguistic entities, these entities are then

denominated head and tail entities of the relation.
The nature of such associations happen in each of the many

layers of semantics. In order to better understand the scope

of the works related to semantic relations, it is imperative to

first properly categorize the relations concerning their nature.

Therefore, semantic relations will be divided into three types,

each of which corresponding to different granularity levels.
Semantic relations of type 1 are associations at the word

level which are dependent on the lexical information of the

entities. Ferdinand de Saussure [1] described paradigmatic

relations as ones whose entities can occur in the same position

within a context, which is the case of the words today
and tomorrow in the sentence “The game will be today /
tomorrow”. The definition of type 1 relations proposed herein

is derived from that of paradigmatic relations, but it also adds

the property of context-insensitiveness, and allows irreflexive

relations to be included. This way, relations of type 1 are

characterized by the lexical association between entities, such

as in the example below:

Ex.: Tokyo→Japan (capital of)
Semantic relations of type 2 are at the sentence level, and

are based on the role that each entity has in the semantics of
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the sentence. This definition closely follows [1], which defines

syntagmatic relations as ones whose entities co-occur within

a given context. It is noticeable that these relations are highly

dependent on syntax.

Ex.: walk→home in “I walked home” (destination)
Relations of type 2 are the target of tasks such as Semantic

Role Labeling (SRL) [2], whose two of the most notable

examples are the PropBank [3] and the FrameNet [4].

It is important to observe that relations of type 1 can also be

expressed as type 2 when they are presented within a context

[5]. For instance, the previous example of type 1 relation

Tokyo→Japan can be found within a sentence, as in “Tokyo
is the capital of Japan”. The lexical connection between head

and tail entities is explicitly expressed here by “is capital of ”,

and the relation can thus be thought as of type 2, since context,

instead of only the interlocutor’s previous knowledge, provides

lexical information.

Finally, semantic relations of type 3 are at a higher level of

text [6] and occur beyond the clause and sentence boundaries.

They can be analyzed from a logical perspective, such as in

equivalence, contradiction and cause-and-effect relations, or

from a textual perspective, such as in cohesion and coherence.

Ex.: “If it rains, I will not go” (conditional)
Type 3 relations are studied by tasks such as discourse pars-

ing, which are examplified by the RST Discourse Treebank [7]

and the Penn Discourse Treebank [8].

B. Concept Description Language (CDL)

CDL [9] is a language proposed by the institute of Seman-

tic Computing of Japan (ISeC)1 that describes the concepts

expressed in different types of media. The subset of CDL that

offers general support for natural languages is officially called

CDL.nl [10], but it will be denominated herein as “CDL” for

simplicity purposes.

The representation of semantics in CDL is based on entities,

relations and attributes. The entities and relations form a

directed graph network for a given text, whereas attributes

describe some properties of concepts, but these will not be

further investigated in this work.

Fig. 1. CDL graphical representation of a sentence

Figure 1 illustrates the sentence “Bill Gates is an American
entrepreneur, philanthropist and chairman of Microsoft, the

1http://www.instsec.org/ (in Japanese)

software company he founded with Paul Allen in Albuquerque,
New Mexico, on April 4, 1975” annotated using CDL and

shown through its graphical representation. The semantic

relation classes proposed by CDL are mostly of type 2, as

is the case of the Agent (agt) and Object (obj) relations.

However, some of them are of type 1, as in the Equivalence

(equ) relation, and even of type 3, such as the Conditional

(con) relation, which is not stated in the example.

Nevertheless, since relation classes of type 1 in the case of

CDL are always expressed within a context, they can also be

seen as a type 2, for the reasons stated in II-A. In addition,

since relation classes of type 3 for CDL explicitly state the

discourse connector, they are highly dependent on the syntactic

structure, just like relations of type 2. Because these classes do

not have the complexity observed in other discourse parsing

tasks, the same detection and classification methods can be

used for all CDL relation classes, maintaining a single method

for simplicity purposes, as evaluation of discourse parsing

techniques is not the intent of this work.

Just as many of the semantic relation classification schemes,

CDL also presents inherently rare classes. The observed class

frequencies in a data source generated from Wikipedia are

stated in table I. This data source consists of relation instances

annotated for nine Wikipedia articles, presenting very few

instances for many of the relation classes.

(a) Dependency tree (b) Phrase structure

Fig. 2. Shortest paths for the syntactic features

C. Modeling Semantic Relations

For various tasks concerning semantic relations, the rela-

tions are modeled by morphological, syntactical and lexical-

semantic features. Some of the recurring features types are:

• Head and tail part-of-speech (POS) tag: Morphological

information that describes the class of head and tail

entities. Ex.: categorizes/VBZ (present tense verb, third

person singular)

• Dependency tree shortest path: The dependency tree pro-

vides the grammatical relations among words. By using

the shortest path [11] between head and tail entities, it

is possible to extract the part of the tree that is relevant

to the relation. Figure 2a illustrates the shortest path of a

tree using Stanford dependencies.
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TABLE I
FREQUENCIES FOR CDL RELATION CLASSES IN THE WIKIPEDIA DATASET

Class Frequency
agt 874
and 1185
aoj 2399
bas 17
ben 17
cag 2
cao 0
cnt 45

Class Frequency
cob 0
con 8
coo 0
dur 37
equ 31
fmt 9
frm 20
gol 120

Class Frequency
icl 0
ins 3
int 0
iof 38

man 863
met 28
mod 1807
nam 9

Class Frequency
obj 3339
opl 4
or 213
per 2
plc 186
plf 0
plt 1
pof 14

Class Frequency
pos 165
ptn 14
pur 165
qua 326
rsn 40
scn 54
seq 1
shd 0

Class Frequency
src 65
tim 124
tmf 8
tmt 4
to 37
via 4

• Phrase structure shortest path: Phrase structure provides

syntactic information of a sentence by breaking it into

constituent parts (phrasal categories). Figure 2b illustrates

the shortest path for the phrase structure of a sentence

using the Penn Treebank notation.

• Head and tail named entity (NE) tag: Lexical information

that indicates proper nouns, labeling them as people,

institutions or places, of the head and tail entities. Ex.:

New York/PLACE

• Head and tail WordNet sense: WordNet [12] is a lexical

database for English that provides word senses for head

and tail entities. The senses are structured in a tree-like

structure. Ex.: <verb.cognition> categorize#1

D. Extraction Tasks for Semantic Relations

The semantic relation extraction task for the CDL relations

was introduced in [13]. It proposed a hybrid method with

a rule-based relation detection and a feature-based relation

classification step. For the rule-based detection, heuristics

based on the syntax of a sentence are defined, and candidate

relations are detected from the corpus. As for the feature-based

relation classification, a feature vector (i.e. a vector υ in which

each element υk indicates the existence of each feature k) is

extracted for each training and candidate relation instances.

The feature vectors of the training instances are used to build

the SVM classifier model, which in turn is used to classify the

vectors for the candidate instances. The experiments showed

that while the classification step produced satisfactory results

for high-frequency classes, the results for the detection step

were below expectation.

For dealing with the small training data setting, we can men-

tion two works. In the first one, a bootstrapped set expansion

architecture with a graph-based method was proposed by [14]

for type 1 relations. Given the dual behavior of such relations

[15], the process starts with two initial sets, one of entity pairs

such as Tokyo→Japan and the other of contexts such as “is
capital of ”, which are then used to expand each other using

bootstrapped Web search and filtering. Finally, the results are

ranked according to their relevance to the initial seed using

ranking score propagation on the intra-view entity pair and

context graphs, and the inter-view correlation graph.

The second one, proposed by [16], is a feature vector exten-

sion method for type 3 relations. Given a d-dimensional feature

vector υi = [υi
1, . . . , υ

i
d], υ

i
j ∈ R, for each relation instance i,

it calculates a feature co-occurrence matrix C generated using

the χ2-measure on features extracted from a large unlabeled

dataset, and uses this matrix to add new elements to the initial

feature vectors υi. This extended features represent correlation

among features inexistent in the training data.

The differences in the nature of type 2 relations compared

to types 1 and 3 require another approach to relation modeling,

and thus to the relation classification task. This is accom-

plished herein by combining several methods, including Web

extraction of sentences possibly containing candidate rela-

tions, candidate relation identification using syntactic pattern

matching, and classification using feature distance, in order to

improve the overall performance of the relation classification

task proposed by [13] in the cases in which the amount of

training data would otherwise compromise the results.

III. ARCHITECTURE

A. Overview

The architecture for improving the training dataset proposed

herein is based on bootstrapped set expansion, similarly to

[14]. However, due to the nature of the type 2 semantic

relations, it is expected that the Web search generates a lot

of noise. In addition, syntax-based pattern matching must be

carried, instead of using sequential pattern mining algorithms

[17] such as prefixspan [18], and most importantly, a novel

multiview feature-based method becomes necessary.

Fig. 3. Architecture of the bootstrapped set expansion process

The overview of the architecture is given in figure 3. First,

given a certain relation class RN , consider positive and nega-

tive sets of relation instances. Then, sentences that may contain

a relation instance similar to one of the positive relations are

extracted from the Web. In the same time, patterns are also

extracted from these positive relations. These patterns are then

matched against the extracted sentences, generating candidate

relations. These candidates are classified using positive and
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negative examples, and are fed as seeds for the next iteration

of a bootstrapped process. In the end, it is expected that the

set of positive relations is larger than the original one, but with

recombined and new features.

B. Detailed Architecture

The process starts with a seed data which consists of a

relation set R, composed of many relation classes RN , so that⋃
N RN = R and RN1 ∩ RN2 = ∅, ∀RN1, RN2. For each

relation class RN , we define the set of positive relations R+

and the set of negative relations R− to be used in a one-vs-all

relation classification. We can consider R+ to be all instances

whose class is RN (i.e. the class to be evaluated), and the R−

to be just a subset of the remaining relations. In fact, only

relations that are syntactically or semantically similar to R+

are used for R−, based on the assumption that non-similar

relations are considered easily separable by a classifier. Class

similarity is information available in the specification in the

case of CDL [10].

From this seed data, candidate relations are extracted

through the following steps: Web search, pattern extraction and

pattern matching, as stated previously. For the Web search step,

the positive relations R+ are used to generate two Web search

engine queries, one of which substituting the head entity for a

wildcard, and the other substituting the tail entity. Moreover,

all prepositions and conjunctions that occur between the head

and tail entities in the phrase structure are considered. For

instance, the instrument (INS) relation categorizes→products
in the sentence “The new definition categorizes genes by
functional products” produces the following queries:

(1) “categorizes by *”

(2) “* by products ”

The pattern extraction step consists of identifying patterns

from the positive relations R+. For this matter, syntactic

patterns are used, since the semantic relations in our scope

are highly dependent on the syntactic structure. The patterns

considered are based on the dependency tree shortest path

(figure 2a), since they generate reasonably less noise than

those based on phrase structure, increasing the precision of

the results. For the same example, the pattern would be as

follows:

<head> [prep by] <tail>
Finally, for the pattern matching step, the Web search results

of the first step are matched against the patterns extracted in

the second step. For example, if the following two sentences

resulted from the Web search engine query, then relation (A)

would be matched by categorizes→products, but relation (B)

would not, since the head entity of (B) is a noun, not a verb.

(A) interact→Armed with Science in the sentence

“. . . interact with Armed with Science. . . ”

(B) relationships→patients in the sentence “Improv-
ing relationships with patients”

After candidate relations are extracted, they are classified

using a confidence measure. Given two sets of positive and

negative relations R+ and R−, let C be a classifier that creates

a classifying model. This model is a function f : R →
[−1, 1] ∈ R that for each input relation instance ri, produces

the confidence measure θ′ of this classification. This measure

θ′ assumes a value of −1 if the classifier is absolutely certain

that ri /∈ R+, +1 if it is absolutely certain that ri ∈ R+, or

any intermediate values between these. How this classification

is carried is presented further in section IV.

Only the candidates whose classification confidences θ′ are

larger than a specified threshold θ are used as seeds of the next

iteration of this bootstrapped process. Using a semi-automatic

process to avoid error propagation in the bootstrapping itera-

tions is advisable if no errors are tolerable.

IV. CORE FRAMEWORK

A. Overview

The core framework performs classification of relations in

situations in which the training dataset R presents very few

instances. Given the positive and negative relation sets R+

and R− of a relation class RN , it provides one-versus-all

classification with a confidence measure output.

The feature distance-based method was chosen as it is very

suitable to address the unknown feature problem. However, in

order to properly account for the importance of each different

feature type, a multiview approach is proposed. This not only

provides a way to cluster the relation instances in the training

data, but it also allows qualitative and quantitative analysis

of the unified view and of each feature type separately. This

is a much desired property especially for the rare relation

class setting, in which it is crucial to understand how the

training data responds to the feature set and how the feature

set describes the training data.

B. Single View Distance Matrix

When classifying low-frequency semantic relations, one of

the largest concerns is when features of the testing data are

unknown to the classifier. One way to address this problem is

to guarantee that there will always be a value to be used in

the classification.

For each feature type k, we define the distance measure

δk : R × R → R as a function that outputs a value in the

range [0, 1] for any two input relation instances. Obviously,

δk(ri, ri) = 0, ∀ri ∈ R.

A list of distance measures for the eight feature types used

in this work is presented below:

• Head and tail POS tags: Pre-defined distances among

POS tags

• Dependency tree shortest path: Normalized general Lev-

enshtein distance

• Phrase structure shortest path: Normalized general Lev-

enshtein distance

• Head and tail NE tags: Binary (0 if equal, 1 otherwise)

• Head and tail word senses: Given s1, s2 word senses, cp
their common parent, r the root of the lexical hierarchy

tree, and d(n1, n2) the number of edges between tree

nodes n1 and n2, then δ = min(d(s1,cp),d(s2,cp))
d(cp,r)+min(d(s1,cp),d(s2,cp))
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(a) Head POS (b) Tail POS (c) Dependency (d) Syntax

(e) Head NE (f) Tail NE (g) Head Lexical (h) Tail Lexical

Fig. 4. Graphical representation of distance matrix for the INS relation class

Having defined the distance measures, we then define the

single view distance matrix Dk as an n× n matrix, n = |R|,
as the matrix of the distances between every two relations

instances of R:

Dk = [δk(ri, rj)]n×n, ri, rj ∈ R (1)

Figures 4a through 4h illustrate the single view distance ma-

trices for the INS relation class. This graphical representation

is on greyscale, where darker pixels represent lower distances

(closer to 0). A black line was also drawn to better separate

positive (R+) and negative (R−) relations.

C. Multiview Distance Matrix

Each distance matrix Dk provides only one view of the

classification problem. However, a consolidated view of all

distance matrices is desirable, but this is not trivial to obtain,

since it is difficult to account for the importance of features

that measure different properties. One possible approach is to

consider a linear model:

D = β0 +
∑
k

βk ·Dk (2)

The n×n matrix D is called the multiview distance matrix,

and is an integrated view of all Dk matrices. It uses linear

coefficients β, which indicate the weight of each feature type.

In order to find D, we first need to find β coefficients for

the hypothetical optimal case. Let the n × n matrix Y be

the multiview distance matrix for this case. In this situation,

considering that the relation instances in R can be grouped in

hard clusters Ci ⊂ R, we have that:

Yij =

{
0 if ri ∈ Ci, rj ∈ Cj and Ci = Cj

1 otherwise
(3)

This leads to a block diagonal matrix if the relation instances

are sorted by cluster. However, it is not possible to know

beforehand the number of clusters in Y . A best-effort approach

is then taken at this step, considering that each relation class

generates only one cluster. Proper clustering will be carried in

future steps. Figure 5a illustrates an example of matrix Y .

Since Y is a symmetric matrix and values of Yij for

i, j between |R+| + 1 and |R+| + |R−| do not matter for

the classification in the set expansion setting, the number

of equations m can be decreased. As a result, considering

equation 2, the following system of equations is observed:

Yij = β0 +
∑
k

βk ·Dk
ij , i = 1 . . . |R+|, j = i+ 1 . . . n (4)

This can be rewritten using an m× k+1 matrix D′ and an

m-dimensional array Y ′, which contain the values of D and

Y from equation 4 respectively, as follows:

β = (D′TD′)−1D′TY ′ = D′+Y ′ (5)

The β coefficients can now be easily calculated using least

squares multiple regression. Although the algorithm involves

a step of singular value decomposition (SVD), which has a

time complexity of O(m(k+1)2), this should not be an issue,

since only eight features are used and the number of relation

instances is greatly restricted.

(a) Y (b) D

Fig. 5. Multiview distance matrices Y and D for the INS relation class

The multiview distance matrix D is now calculated using

equation 2 and the result of equation 5. Figure 5b illustrates

D when calculated from the single view matrices in figure 4.

D. Clustering and Classification

In this work, three different methods for clustering of

D and classification of candidate relations will be used for

comparison purposes: a spectral clustering with distance-

based classification, a hybrid spectral clustering and SVM
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classification, and the baseline SVM classification. For each

classification, a confidence measure will also be proposed, as

this is required for the bootstrapped process.

Spectral clustering [19] uses the spectrum of the distance

matrix in order to perform dimensionality reduction. The algo-

rithm has as input α∗, which controls the recursive partitioning

of the algorithm. The value for α∗ is found by grid search,

testing which of several values produces the best clustering,

that is, the clustering that produces a result as close to a block

diagonal as possible. Figure 6 presents examples of good and

bad spectral clustering results of different distance matrices.

(a) Good clustering (b) Bad clustering

Fig. 6. Examples of spectral clustering

The relation classification for this clustering will be

distance-based. The distance between a relation instance ri
and a cluster Cj is given by:

δ(ri, Cj) = min(δ(ri, rj)), ∀rj ∈ Cj (6)

The class assigned by the classifier corresponds to the

cluster with lowest distance C. In addition, the confidence

measure is given by:

θ′ = 1− δ(ri, C)∑
j δ(ri, Cj)

(7)

The second clustering and classification algorithm is a

hybrid spectral and SVM [20]. The clusters are found in

the same way as the normal spectral clustering. However,

the difference lies in the input of the SVM. Case (1) below

illustrates the input using the feature vector υi for a relation

instance i, and (2) using the result of the spectral clustering:

(1) <+1| − 1> : <υi
1> <υi

2> <υi
3> . . .

(2) <Ci> : <D[i, 1]> <D[i, 2]> <D[i, 3]> . . .

The confidence measure for SVM classification is a sig-

moidal probabilistic output [21].

Finally, the third classification algorithm is the baseline

SVM proposed by [13], which uses feature vectors as input.

The original method will be extended by adding the sigmoidal

probabilistic output confidence measure.

V. EXPERIMENTS AND RESULTS

A. Core Framework Evaluation

In order to analyze the behavior of the core framework,

the classification of newly acquired relations for one iteration

of the bootstrapped process is evaluated using macro-average

accuracy and precision. Accuracy measures the percentage

of the correct classifications, whereas precision measures the

percentage of correct positive classifications. Macro-average

stands for an average which gives equal weights for each

relation class RN , instead of giving equal weights for each

individual relation instance. The two metrics are expressed in

equations 8 and 9 below:

MAAcc =
1

|RN |
∑
RN

Correct predictions for RN

Total predictions for RN
(8)

MAPrec =
1

|RN |
∑
RN

Correct positive predictions for RN

Total positive predictions for RN
(9)

It is noticeable that the recall measure is not used in this

context, since the percentage of positive instances identified

from the total instances is not important. The extracted positive

cases classified as negative may be ignored without further

losses to the process.

The newly acquired relations mentioned previously are can-

didate relation instances that have been confidently classified.

Given a threshold value θ, a confidently classified relation

has a confidence measure θ′ for a given classification method

such that θ′ ≥ θ. The accuracy and precision values are then

calculated for different values of θ ∈ [0, 1]. They are also

calculated in function of the percentage of newly acquired

relation instances that are confidently classified.

The training data for this task is a small subset of the

Wikipedia-annotated corpus presented in section II. For each

one of the 29 CDL relation classes that presents at least one

similar class and at least one relation instance in the training

data, a set of at most 10 instances is randomly selected.

The results for this experiment are given in figure 7.

Spectral clustering with distance-based classification provides

the best results for all situations, and greatly outperforms

the other methods when considering precision. This indicates

that the SVM classifier from the baseline method is not able

to distinguish the positive class in the one-vs-all problem,

which strongly suggests the existence of the unknown feature

problem. It is also evident in the hybrid method that the

confidence measure provides poor ranking, as observed from

the disparities in threshold and percentage of confidently

classified results graphs.

B. Architecture Evaluation

For the evaluation of the whole architecture, a training

dataset was manually constructed. It aims to describe the

relations for each class thoroughly using as few instances as

possible. As a result, it is composed of an average of 4.544

relation instances per class, and at most seven instances for

one given class. The testing dataset is the one presented in

section II.

In this experiment, the improvement in performance of

the method in [13] after some iterations of the bootstrapped

process is analyzed. The performance metrics used are macro-

average precision, recall and F-value. After each iteration, a

manual classification step is also carried, in order to minimize

the effects of error propagation. Moreover, the features used

are the ones presented in this work in section II, instead

of the ones in the baseline work, since the main objective
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(a) MAAcc × Threshold (b) MAAcc × % of confidently classified relations

(c) MAPrec × Threshold (d) MAPrec × % of confidently classified relations

Fig. 7. Experimental results

is to compare the difference in the performance of relation

classification regardless of which features are considered.

The overall performance per iteration process is given in

table II. By analyzing the results, it is observed that a larger

training dataset provides better macro-average precision, recall

and F-value as expected, since the unknown feature problem is

properly addressed and the existing features are recombined.

TABLE II
OVERALL PERFORMANCE PER ITERATION OF THE BOOTSTRAPPED

PROCESS

Iteration MA Precision MA Recall MA F-Value Set size

Initial 29.15% 27.20% 28.14% 209
#01 36.74% 34.97% 35.83% 969
#02 42.55% 35.58% 38.75% 2357

Detailed results for some of the relation classes are stated

in table III, in which entries are ordered by the improvement

in the F-value for the first iteration. From these results, it is

observed that while three relation classes (OPL, CAG and INS)

started being identified by the classifier, one of them (PTN)

stopped being identified. In addition, increasing the amount

of instances was not necessarily benefitial for some individual

classes, although the observed net effect is indeed positive, as

the majority of the relation classes experience improvement.

It is important to notice that although this work is focused on

evaluating the method for CDL relations, it can be applied to

the relation classification task of other low-frequency semantic

relations that can also be modeled as a vector composed by

features that express different dimensions, as is the case of

semantic relations of type 2.

VI. CONCLUSION

This work proposed a bootstrapped architecture and a

multiview feature distance-based framework in order to deal

with syntax-dependent semantic relations, in a setting in which

the training data of the relation extraction process presents

few instances for some of the relation classes. The proposed

framework is used as the core of a bootstrapped architecture,

which intends to expand the initial set of training data using

a semi-supervised method.

By using feature distances, the framework is able to min-

imize the effects of the unknown feature problem, which

happens when the classifier does not recognize a feature

present in the testing data that was not in the training data.

Moreover, it provides a consolidated view of the different

feature types by proposing a multiview distance matrix. This

matrix can be used for qualitative and quantitative analysis

of intermediate steps of the classification process, and is

especially desirable when the size of training dataset is small,

since it becomes possible to analyze how the training data

responds to the chosen feature set or how the feature set

describes the training data, and even try to predict the future
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TABLE III
DETAILED PERFORMANCE AFTER ONE ITERATION

INITIAL DATASET ITERATION #01 F1−F0
F1+F0Class Freq P0 R0 F0 Set size P1 R1 F1 Set size

OPL 4 0.00% 0.00% 0.00% 3 33.33% 25.00% 28.57% 5 1.00
CAG 2 0.00% 0.00% 0.00% 4 14.29% 50.00% 22.22% 17 1.00
INS 3 0.00% 0.00% 0.00% 4 7.14% 66.67% 12.90% 22 1.00
BAS 17 5.56% 23.53% 8.99% 5 62.50% 29.41% 40.00% 20 0.63
DUR 37 20.00% 8.33% 11.76% 5 37.04% 27.78% 31.75% 24 0.45
RSN 40 4.03% 12.50% 6.10% 5 36.36% 10.00% 15.69% 15 0.44
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IOF 38 17.65% 7.89% 10.91% 4 100.00% 2.63% 5.13% 6 -0.36
TO 37 40.00% 10.81% 17.02% 4 7.14% 5.41% 6.15% 25 -0.46

PER 2 5.56% 100.00% 10.53% 5 1.80% 100.00% 3.54% 34 -0.49
PTN 20 25.00% 5.00% 8.33% 5 0.00% 0.00% 0.00% 24 -1.00

outcome of the classification process.

Finally, for the experimental results, when using spectral

clustering, the proposed method outperforms other clustering

and classification approaches, indicating that the core frame-

work provides better support for the low-frequency semantic

relation setting. The expanded training dataset obtained by

running some iterations of the bootstrapped process is also

able to improve the relation classification task as a whole,

proving to be a less costly alternative to corpus-annotation.
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