
Phase-based Gesture Motion Parametrization and
Transitions for Conversational Agents with MPML3D

Klaus Brügmann
National Institute of

Informatics
2-1-2 Hitotsubashi

Chiyoda-ku
Tokyo 101-8430, Japan

2-1-2 Hitotsubashi
mail@klausbruegmann.de

Hannes Dohrn
Friedrich-Alexander-

Universität
Erlangen-Nürnberg

Computer Graphics Group
Am Weichselgarten 9

91058 Erlangen, Germany
Computer Graphics Group

hannes.dohrn@gmx.de

Helmut Prendinger
National Institute of

Informatics
2-1-2 Hitotsubashi

Chiyoda-ku
Tokyo 101-8430, Japan

2-1-2 Hitotsubashi
helmut@nii.ac.jp

Marc Stamminger
Friedrich-Alexander-

Universität
Erlangen-Nürnberg

Computer Graphics Group
Am Weichselgarten 9

91058 Erlangen, Germany
Computer Graphics Group
stamminger@cs.fau.de

Mitsuru Ishizuka
Graduate School of

Information Science and
Technology

University of Tokyo
7-3-1 Hongo
Bunkyo-ku

Tokyo 113-8656, Japan
ishizuka@i.u-tokyo.ac.jp

ABSTRACT
We present a method to produce smooth transitions between
arbitrary pieces of character animation, which is based on
the application of dynamic transition curves. Unlike other
approaches, we achieve anytime interruptibility for body ex-
pressions, that is, gestures can be changed anytime during
execution while maintaining naturalness of motion transi-
tion. To obtain highly natural skeletal movement, our ap-
proach is integrated with motion parametrization, as pro-
posed in the“Verbs and Adverbs”technique [18], and further
methods of fuzzy motion blending. We will demonstrate how
the latest version of the Multimodal Presentation Markup
Language (MPML3D) integrates parameterized agent be-
havior, and can support the incorporation of personality and
emotional attentiveness in a straightforward way.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—Animations, Artificial, aug-
mented, and virtual realities; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent agents, Lan-
guages and structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee. The Second International Conference on In-
telligent Technologies for Interactive Entertainment (ICST INTETAIN ’08).
January 8-10, 2008, Cancun, Mexico. Copyright 2008 ICST ISBN 978-
963-9799-13-4.

General Terms
Design, Algorithms, Languages

1. INTRODUCTION
Using virtual agents in interactive applications imposes

the need to satisfy users’ expectations about the graphi-
cal quality of animation. In the past, cartoon-style agents
were common due to low production cost. However, as high
quality graphical interfaces and media footage are more af-
fordable in recent years, a trend towards more realism has
become apparent [10].

Display of emotion and personality is an important fea-
ture of conversational interface agents, since it raises the
user’s acceptance of a synthetic character as a communi-
cation partner [17]. Various projects have been investigat-
ing usage patterns for co-verbal gesture behavior and their
impact on conversation outcome [8]. One task is to auto-
matically determine which conversational gestures accom-
pany speech [7]. Often conversational behavior is enhanced
by parametrization for attenuation and variation in expres-
sion style. For example, the EMOTE system [1] proposes a
movement style representation that adapts a subset of the
LMA method (Laban Movement Analysis), by which inner
states are associated with physical movement parameters.
As pointed out in [6], the majority of co-verbal gestures are
subconscious movements. Those movements also depend on
emotional state [6], and thus might change in style and inten-
sity whilst performing. Depending on the speakers’ chang-
ing intention or other external events, gestures might also
be interrupted or merge into other movements at any point
in time.

Complementary to high quality graphical output, author-
ing languages for controlling agent behavior on higher lev-
els of abstraction are needed. Various languages have al-

ready emerged that can represent and synchronize verbal
and co-verbal communicative behavior of one virtual agent,
including APML [5] and CML [2]. BML [11] is a recent
initiative that targets at defining a standard for describing
multi-modal behavior for human-like agents. As modeling
the behavior of multiple agents demands a wider range of
constructs, languages like ABL [13] have been developed.
However, ABL require authors to possess a high program-
ming skill level. By contrast, MPML has evolved as a sim-
ple but powerful tool for modeling interactive plot including
overall scene setup, multimodal compound agent behaviors
and user feedback channels [10][4]. MPML provides an easy-
to-use XML based interface to edit interactive presentation
content. The latest version, MPML3D [14], is suitable to be
applied to realistic 3D character models, as it provides action
synchronization on a fine-grained level. Since MPML3D re-
lies on a reactive framework, it offers anytime responsiveness
to scene events, which is a crucial feature for the synthesis
of realistic conversational behavior.

The remainder of this paper is organized as follows. Sec-
tion 2 shows how the latest version of MPML provides script-
ing of parameterized behavior controlled by character states.
Section 3 describes our approach to realize parametrization
and anytime transitions for gesture, and addresses further
measures to increase motion naturalness. Section 4 con-
cludes the paper.

2. MULTIMODAL PRESENTATION
MARKUP LANGUAGE (MPML)

MPML is an authoring language that addresses content
modeling for various agent-based scenarios [10]. MPML3D
refers to the reactive version of MPML that focusses on the
control of 3D agents [14]. Here we discuss the new features
of MPML3D that are relevant for gesture parametrization.
For a complete language specification and an introduction
to MPML3D-authoring please refer to [9].

2.1 Action Parameters
MPML3D action tags now can include any number of be-

havior modulating parameters. For any given application
the number and semantics of those parameters have to be
clearly defined. For our presentation agents, there is a set of
co-verbal gestures defined along with possible parameters.
E.g. a propositional gesture depicting a certain size (Fig. 1)
can be defined, which accepts the actual size to be shown as
an action parameter as follows.

<Action>
yuki.gesture("show_size", 0.55)

</Action>

The script starts with a listing of all scene entities. An entity
description consists of the entities type, it’s name (used for
identification within the document), and other attributes
like positioning information and entity state parameters.

<Scene name="SingleAgentSetting">
<Entity type="human" name="yuki">

<Resource type="model">Girl</Resource>
<Property name="voice">Susan</Property>
<Property name="position">

70.0, 4.5, -20.0
</Property>

</Entity>
</Scene>

Figure 1: Propositional gesture: Showing a size

2.2 Agent State Parameters
Authors may equip scene entities with arbitrary state vari-

ables that can be addressed at runtime to support deci-
sions concerning the scene flow, or to be used directly as
parameters for actual actions. By employing this feature,
any kind of content relevant properties such as personality
traits, agent moods, or more discrete control mechanisms
(counters), can be implemented easily.

The following example defines an entity of type “human
being” equipped with state parameters “extraversion” and
“arousal”, which are constrained and initialized to certain
values.

<Entity type="human" name="yuki">
<StateParameter name="extraversion" type="float"

min="0.0" max="1.0" default="0.6"/>
<StateParameter name="arousal" type="float"

min="0.0" max="1.0" default="0.3"/>
</Entity>

2.3 Using State Parameters
The advantage of agent state parameters is that they can

be used as input for action parameters, and thus implement
the connection between an agent’s internal state and the way
it performs actions. A frequently used gestures in human
conversation is the so-called “beat” gesture [7]. A beat is
typically a stroke with the hand. Although it does not carry
any propositional content, it serves as a means to give em-
phasis to certain words in an uttered sentence or express the
speaker’s attitude. Beat gestures are aligned to passages of a
sentence, if not to single words or even syllables. MPML3D
supports the alignment between speech and gestures by sub-
action synchronization. The style of the beat gesture may
vary continuously with the flow of speech, e.g. increase or
decrease in intensity. MPML3D allows authors to either con-
trol it’s style directly (as described above) or to modulate it
by agent state parameters.

The following example shows how the parameter “vol-
ume” of the “gesture” type action called “beat” is bound to
the agent state parameter “extraversion”. The “mapping”-
attribute thereby specifies a polynomial used as a mapping
function. This is particularly useful, when adverbs from dif-
ferent gestures or even different kinds of actions, which all
interpret the value in their own way, are bound to the same
parameter. Besides that, the embedded scripting function-
ality provides a more flexible usage of state parameters.

<StateParameter name="extraversion" type="float"
min="0.0" max="1.0" default="0.5">
<BindParameter type="gesture" name="beat"

slot="volume"
mapping="5, 4"/>

</StateParameter>

We use this technique to modulate several other metaphoric
gestures besides the beat gestures. Furthermore, agent states
can be modified via MPML3D commands during presenta-
tion flow.

<Action>
yuki.setStateParameter("arousal", 0.8, 1.0)

</Action>

Here the action tag will change the state “arousal” of agent
“yuki” to the value of 0.8 within 1.0 seconds. Since parame-
ter state changes are actions themselves, they can happen in
parallel to other dependent actions. In this way, an author
can adjust the style of body motion while it is performed.

3. TECHNICAL REALIZATION
The particular features of MPML3D pointed out above

require an animation engine that provides continuous vari-
ation of motion and that responds immediately to gesture
rescheduling. Besides and corresponding to MPML3D’s ease
of use, adopting application dependent animation footage
should demand little expert knowledge. The following sec-
tions show how such requirements can be met by an ECA
animation engine. A key concept thereby are motion phases,
whose utilization is twofold, addressing both motion para-
metrization and transitions. For a visual presentation of the
salient features please consider watching the demonstration
video ([3]) available for download at the project’s homepage.

3.1 Gesture Parametrization
We introduce motion parametrization adapting an influ-

ential approach by Rose et al [18], “Verbs and Adverbs”
(V&Adv). V&Adv is a method to generate new motions for
virtual characters from existing ones on a frame-by-frame in-
teractive basis. The technique requires that motion variants
are similar in anatomy. However, it allows for samples with
differing keyframe timing as well as differing overall dura-
tion. Unlike other approaches ([16]) it does not rely on the
frequency domain. It is based directly on keyframes in the
time-domain and thus facilitates processing of non-periodic
motions, which nearly all conversational gestures are.

Typically a motion is to be modified according to a set
of dimensions of emotional expressivity, the nature of which
depends both on the application and the individual gesture.
A multipurpose motion like a ’beat’ might require a large
set of dimensions, whereas the iconic gesture showing a ’V’
for victory, being implicitly associated with certain emotions
(joy, arousal) might provide only an intensity parameter for
example.

According to V&Adv, we approach this issue with span-
ning a multidimensional expression space for each motion
type (the ’Verbs’) with each dimension referring to one at-
tribute to be parameterized (the ’Adverbs’). These attributes
refer to MPML3D action parameters (refer section 2.1) and
can be associated arbitrarily with application-dependent mo-
tion characteristics. The expression space is populated with
sample motions, each defining the motion style at some lo-
cation. At each frame during performance, the agent’s state

yields the current animation’s adverb parameters. In or-
der to produce the final animation, the sample motions are
blended according to the agent’s parameter setting.

3.1.1 Blending Samples
An advantage of that approach is that with an appro-

priate interpolation technique, animators can freely choose
number and location of samples for each motion, and locally
refine the population where required. We choose a variation
of Shepard’s approach [19] for smoothly interpolating scat-
tered data points. The algorithm yields a weight for each
data point in the vicinity of the interpolated position P . We
take the inverse distance as the main criterion, but also con-
sider shadowing effects, which regard data point pairs that
lie in similar directions as seen from P . As we use the scheme
for blending motion samples, issues addressed by the orig-
inal algorithm like computational error reduction or slope
are of minor importance for our application. Our approach
therefore focusses on distance and shadowing considerations.
Non-normalized sample weights wi are generated by equa-
tion (1)

wi = (1/di)
2 ∗ (1 + ti) (1)

ti = [
∑

DjεC

1

dj
∗ [1− cos(DiPDj)]]/[

∑
DjεC

1

dj
] (2)

, where ti are the direction dependent weighting factors for
each data point Di and di are their respective distances to
P . The ti are determined using the angle between the con-
sidered data point (index i) and the other data points (index
j), C being the set containing all data points. As we use eu-
clidian distance and angles are computed via dot product,
this variant is easily incarnated for any number of expression
space dimensions required by the content creator.

By producing zero weights for sample distances above a
dynamic distance threshold, sample motions gain only lo-
cal control on the expression space, such that with equally
spaced sample positions the algorithm evaluates zero weights
for most of the sample motions and only few source anima-
tions have to be evaluated at each frame.

3.1.2 Time Normalization
To preserve semantically essential motion details over blend-

ing, all samples contributing to a motion must be struc-
turally similar [18]. To give an example, all variations for a
hand-waving gesture must have the same number of actual
waves and start at the same side. However, to leave freedom
in temporal articulation to the animators, no constraints re-
garding timing should be imposed upon the motion samples.
This is solved by defining motion phases. Those are seg-
menting the motion of a each gesture into meaningful parts.
For example, a beat gesture might consist of a “preparing”,
a “downstroke”, a “rebound” and a “return” phase (figure 2).
While the motion phases are the same for all samples, the
temporal profiles may vary. When blending the samples it is
essential that each one contributes with the same semantical
part of it’s motion. We therefore compute a normalized time
index tn similar to V&Adv (equation (3)). This time index
is derived from the interpolated phase profile (and time in-
dex tb) and determines the current time index for the sample

Figure 2: Possible phase profile of a beat gesture

motions ti individually (equation (4)).

tn(tb) =
((m) +

tb−smb
emb

−smb
)

n
(3)

ti(tn) = smi + f ∗ (emi − smi)

m = btn ∗ nc
f = (tn ∗ n)−m

(4)

In both equations m is the index of the current phase, smi

and emi are the starting resp. ending times of that phase
and n is the total number of phases.

3.1.3 Introducing New Samples or Parameters
Using this approach, specifying new gesture motions or

refining the parametrization for existing ones requires only
few steps. Introducing a new sample motion for an existing
gesture is done by creating the desired animation footage
and equipping it with phase annotation. This is done by
specifying phase-boundary times (section 3.1.1) and setting
interruptibility flags for each phase (section 3.2.6). Further,
the sample has to be positioned by specifying an n-vector,
with n being the number of dimensions of the expression
space. The new sample will thus be considered when per-
forming the motion and structurally refine the blended mo-
tion in the respective region.

Introducing new parameters to an existing motion means
increasing the dimensionality of the expression space. When
doing so, all that has to be done is to extend the position
vector of each sample with the new coordinate. Of course,
to make the new characteristics addressable by the control-
framework, it must be given an (meaningful) identifier (such
as “horizontal extend” or “intensity”). The semantics of the
new parameter is usually what the author needs to be avail-
able for some new feature of the application.

Last, to introduce a whole new gesture motion, a non-
empty set of samples and a (maybe empty) set of expressiv-
ity dimensions have to be specified. An author can freely
define the phase profile for the motion, dependent on the
motion details she needs to remain temporally aligned.

3.2 Gesture Interruptibility and Transitions

3.2.1 Desired Features
An aim of this approach is to provide anytime interrupt-

ibility for gesture motion. Unlike walking movements, which

involve balancing requirements and thus in reality cannot be
interrupted at any point, conversational gesture can. Ges-
ture motion is generated along with and aligned to spoken
words, both of which are driven by a continuously updated
decision machine, the human mind.

To successfully simulate life-like gesture for virtual agents,
any evolving motion has to be interruptible and transitable
to other motions, according to changing “intention” of the
agent. When interrupted, the intermediate motion produced
must be smooth and maintain it’s naturalness. An inter-
rupted gesture should lose the impression of dedication im-
mediately but not break in physical terms. Reflecting the
change in the actor’s mind, the motion must adapt the newly
targeted gesture and create a transitional movement. The
initial situation then is always two arbitrary configurations
of the figure’s skeleton for which a transition is needed (re-
ferred to as the “junction points” in the following). A config-
uration thereby means both the value and the velocity (1st
order derivative) of the motion functions.

When synthesizing skeleton animation (in contrast to man-
ual authoring by an artist) issues like inter-limb collisions
and adherence to joint angle constraints have to be ad-
dressed. This constitutes a problem for researchers, be-
cause constraints are rarely included in keyframed animation
footage and collisions are not trivial to handle with complex
skeletons like the human one. However, for the majority
of movements apparent in conversational body expressions,
those issues are of little severity as the motion is performed
mainly by arms and hands and naturally takes place in front
of the body or, more precisely, in the shared space between
the interlocutors. Also, interaction with the environment is
not a major feature. Therefore we advocate a straightfor-
ward approach by applying dynamic transition curves for
each degree of freedom (DOF).

3.2.2 Dynamic Transition Curves
A forward kinematics animation is given by motion func-

tions addressing each DOF independently. A smooth transi-
tion between two skeleton configurations can be created by
fitting a piecewise function that adheres first order deriva-
tives at the junction points for each DOF. We choose Bezier
curves of grade 3 as they combine C1-continuity at both end
points with low computational cost. Transition functions
may be fit in from any point of a motion - with some restric-
tions justified by natural circumstances (section 3.2.6). We
therefore realize anytime interruptibility of co-verbal ges-
ture.

3.2.3 Transition Timing
How much time should a transition take? For producing

smooth motions, any time is applicable, however naturalness
and emotive expression strongly depend on a transition’s du-
ration. As our control framework schedules motions as soon
as they are to be performed, we assume that the speaker
wants to perform the follow up gesture as soon as possible.
So the transition duration should reflect the time required
to reposition the limbs to start the new movement. We com-
pute the transition duration duri for each DOF separately
by averaging the distances of control polygon vertices bk of
the transition Bezier curve, as given in equation (5). We
thus consider the distance to be bridged as well as the ve-
locity at the junction points. To account for mass inertia,
the length of the limb li is also considered. The largest duri

finally determines the actual transition time durmax.

duri =

3∑
k=0

|b(k+1)mod3 − bk|
2

∗ li (5)

To avoid angle constraint violation, this technique exploits
the fact that those constraint intervals are implicitly given
by the animation footage: For conversational gesture move-
ments, if two configurations are compliant to those bound-
aries, a linear interpolation between them will also be. We
however assume the footage does to not contain (unnatural)
rapid motions towards the constraint intervals, for which the
smooth blending might result in violation of the constraints.

3.2.4 Compound Curves
As all DOF-functions must reach the target configuration

at the same time, most of the optimized curve shapes re-
sulting from duri will be lost. To compensate for that we
use blended transition curves. Those are pairs of piecewise
functions (tr0 and tr1) each of which approximates the op-
timized Bezier curve shape near one junction point (CS and
CE) for arbitrary durations. Equation 6 shows the formula
of tr0 for some DOF i, F (t/fi) being the Bezier part with
two control points aligned to the linearly interpolating func-
tion Li(t) (equation 7), as shown in figure 3. The effective
transition then is given by again linearly interpolating be-
tween tr0 and tr1.

tr0(t) =

{
F (t/fi) if t < fi, fi = duri

durmax

L(t) else
(6)

L(t) = (1− t) ∗ CS + t ∗ CE (7)

Figure 3: Piecewise transition curve function tr0

3.2.5 Rotational DOF
With the human skeleton and forward kinematics, most of

the DOF regard rotations. Using quaternion representation,
each rotational DOF-function issues 4 values that cannot
be processed independently as cartesian vector coordinates
can. To compute transition curves for rotational DOF, we
use quaternion-control points as shown by Shoemake [20].
As linear interpolation between quaternions does not pro-
duce linear angular changes, quaternion Bezier curves are
evaluated by combining the DeCasteljau algorithm with the
“Slerp” operator ([20]). Distance between orientations is
given by the angle and scaling a rotation is done by scaling
the rotation angle. Rotational derivatives are represented
by quaternions as well.

3.2.6 Transitions and Phases
Our approach relies on phases to identify the essential part

of a motion, per default all but the first an the last one.
Those two phases are movements from and to the normal
pose and are only used when a transition partner is missing.
A conventional transition therefore will connect from the
end of the next to last phase to the start of the subsequent
motion’s second phase. Similarly, in case of an interruption,
the first phase of the follow-up gesture is skipped.

The problems described in section 3.2.1 we address with
phases-based transition inhibition. Each motion may declare
so-called “vital” phases, i.e. phases in which the skeleton is
in a twisted configuration such that the transition curve ap-
proach would produce unnatural configurations. The engine
then will delay a transition’s begin until the end of that
phase (and vital phases immediately following). For exam-
ple, a posture showing the arms fold will define a vital phase
lasting all the time that the arms wind around each other.
An interruption during a vital phase will therefore not have
immediate effect. This is a justified restriction to anytime
interruptibility as it only reflects natural circumstances: A
real human as well has to unwind his arms properly and
before moving them freely again.

For further improving vital phase interruptions, a hold flag
can be set for any phase, indicating that there is no actual
movement taking place in it. Although the time that passes
during a hold is semantically essential, it is not desirable
to wait for it to pass even if that phase is declared vital.
Hold phases have the property to have identical skeleton
configuration an the beginning at the end regarding 0th and
1st order derivative. Thus, any hold phase can be skipped
without destroying motion function’s C1-continuity (figure
4). When a vital phase is interrupted, we perform all phases
until the begin of the next non-vital phase but skip all phases
that have the hold flag set. If the interrupted phase itself is
a vital hold phase, the time index is proceeded to it’s end
immediately.

vital

hold

phase

vital

phase

vital

phase

t

f i(t)

vital

phase

vital

phase

t

f i(t)

Figure 4: Skipping of vital hold phases

The motion phase annotation scheme presented here is
highly adaptable. Possible extensions are repeatable phases,
author-defined entry phases or hold phases with author-
specified duration.

3.3 Secondary Motion
Even in static postures there is always a subtle motion of

balance. In computer animation, as pointed out in [12], ig-
noring that kind of motion leads to an effect called “moving
hold”, i.e. the animated figure seems to freeze for a moment.
To avoid this effect, fuzzy motion has successfully been ap-
plied by engaging noise functions [15]. Instead of mixing ges-
ture with random motion, we introduce a secondary motion
overlay, where the transformation of multiple animations is
accumulated in each joint. Choosing only subtle movement
like breathing and swaying, we avoid the moving hold ef-
fect while retaining more control compared to noise-based
approaches.

4. CONCLUSION
We demonstrated how MPML3D supports current needs

for control and quality of character animation. We described
it’s easy-to-use interface to model expressive behavior driven
by dynamic agent- and action-specific parameters.Complemen-
ting the control interface features we presented a phase-
based scheme for highly natural motion synthesis in real-
time, providing the author with the non-restrictive yet in-
tuitive expression space modeling paradigm. The salient
features include parametrization of arbitrary dimensionality
and anytime transitions, using traditionally key-framed ani-
mation footage with only minimal annotation requirements.
The presented technique is applicable to any engine working
on animation data applied to a joint hierarchy that typically
resembles a creature’s skeleton. Special focus is on anima-
tion of arms and hands which are the most significant limbs
of communicative body expressions.

5. ACKNOWLEDGEMENTS
The research was supported by the Research Grant (FY1999–

FY2003) for the Future Program of the Japan Society for the
Promotion of Science (JSPS), by a JSPS Encouragement of
Young Scientists Grant (FY2005–FY2007), and an NII Joint
Research Grant with the Univ. of Tokyo (FY2006). The first
author was partly supported by the JSPS Grant and a Ger-
man Academic Exchange Service (DAAD) Scholarship. The
second author was supported by the JSPS Grant.

6. REFERENCES
[1] J. Allbeck and N. Badler. Representing and

parameterizing agent behaviors. In Prendinger and
Ishizuka [17], pages 19–38.

[2] Y. Arafa, K. Kamyab, and E. Mamdani. Towards a
unified scripting language. Lessons learned from
developing CML & AML. In Prendinger and Ishizuka
[17], pages 39–63.

[3] K. Brügmann. Graceful anytime interruptibility for
virtual agents - demonstration video, 2007.

[4] K. Brügmann, H. Prendinger, M. Stamminger, and
M. Ishizuka. Graceful anytime interruptibility for
virtual agents. In Proceedings ACM SIGCHI
International Conference on Advances in Computer
Entertainment Technology (ACE-07), pages 284–285.
ACM Press, 2007.

[5] B. D. Carolis, C. Pelauchaud, I. Poggi, and
M. Steedman. APML: Mark-up language for
communicative character expressions. In Prendinger
and Ishizuka [17], pages 65–85.

[6] J. Cassell. Nudge nudge wink wink: Elements of
face-to-face conversation for embodied conversational
agents. In J. Cassell, J. Sullivan, S. Prevost, and
E. Churchill, editors, Embodied Conversational Agents,
pages 1–27. The MIT Press, Cambridge, MA, 2000.

[7] J. Cassell, H. Vilhjálmsson, and T. Bickmore. BEAT:
the Behavior Expression Animation Toolkit. In
Proceedings of SIGGRAPH-01, pages 477–486, 2001.

[8] N. E. Chafai, C. Pelachaud, D. Pele, and G. Breton.
Gesture expressivity modulations in an ECA
application. In Proceedings 6th International
Conference on Intelligent Virtual Agents (IVA-06),
Springer LNAI 4133, pages 181–192, 2006.

[9] H. Dohrn and K. Brügmann. The mpml3d reference
manual. http://research.nii.ac.jp
/˜prendinger/MPML3D/MPML3D.html, 2007.

[10] M. Ishizuka and H. Prendinger. Describing and
generating multimodal contents featuring affective
lifelike agents with MPML. New Generation
Computing, 24:97–128, 2006.

[11] S. Kopp, B. Krenn, S. Marsella, A. Marshall,
C. Pelachaud, H. Pirker, K. Thórisson, and
H. Vilhjálmsson. Towards a common framework for
multimodal generation: the Behavior Markup
Language. In Proceedings 6th International Conference
on Intelligent Virtual Agents (IVA-06), Springer LNAI
4133, pages 205–217, 2006.

[12] J. Lasseter. Tricks to animating characters with a
computer. SIGGRAPH Computer Graphics,
35(2):45–47, 2001.

[13] M. Mateas and A. Stern. A Behavior Language: Joint
action and behavioral idioms. In Prendinger and
Ishizuka [17], pages 19–38.

[14] M. Nischt, H. Prendinger, E. André, and M. Ishizuka.
MPML3D: a reactive framework for the Multimodal
Presentation Markup Language. In Proceedings 6th
International Conference on Intelligent Virtual Agents
(IVA-06), Springer LNAI 4133, pages 218–229, 2006.

[15] K. Perlin. An image synthesizer. In International
Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH-85), pages 287–296. ACM
Press, 1985.

[16] K. Perlin. Real time responsive animation with
personality. IEEE Transactions on Visualization and
Computer Graphics, 1(1):5–15, 1995.

[17] H. Prendinger and M. Ishizuka, editors. Life-Like
Characters. Tools, Affective Functions, and
Applications. Cognitive Technologies. Springer Verlag,
Berlin Heidelberg, 2004.

[18] C. Rose, B. Bodenheimer, and M. F. Cohen. Verbs
and adverbs: multidimensional motion interpolation.
IEEE Computer Graphics and Applications,
18(5):32–40, 1998.

[19] D. Shepard. A two-dimensional interpolation function
for irregularly-spaced data. In Proceedings of the 1968
23rd ACM national conference, pages 517–524, New
York, NY, USA, 1968. ACM Press.

[20] K. Shoemake. Animating rotation with quaternion
curves. In SIGGRAPH ’85: Proceedings of the 12th
annual conference on Computer graphics and
interactive techniques, pages 245–254, New York, NY,
USA, 1985. ACM Press.

