
Extracting Key Phrases to Disambiguate
Personal Names on the Web

Danushka Bollegala1, Yutaka Matsuo2, and Mitsuru Ishizuka1

1 University of Tokyo
{danushka,ishizuka}@miv.t.u-tokyo.ac.jp

2 AIST
y.matsuo@carc.aist.go.jp

Abstract. When you search for information regarding a particular per-
son on the web, a search engine returns many pages. Some of these pages
may be for people with the same name. How can we disambiguate these
different people with the same name? This paper presents an unsuper-
vised algorithm which produces key phrases for the different people with
the same name. These key phrases could be used to further narrow down
the search, leading to more person specific unambiguous information.
The algorithm we propose does not require any biographical or social in-
formation regarding the person. Although there are some previous work
in personal name disambiguation on the web, to our knowledge, this is the
first attempt to extract key phrases to disambiguate the different persons
with the same name. To evaluate our algorithm, we collected and hand
labeled a dataset of over 1000 Web pages retrieved from Google using
personal name queries. Our experimental results shows an improvement
over the existing methods for namesake disambiguation.

1 Introduction

The Internet has grown into a collection of billions of web pages. One of the most
important interfaces to this vast information are web search engines. We send
simple text queries to search engines and retrieve web pages. However, due to
the ambiguities in the queries and the documents, search engines return lots of
irrelevant pages. In the case of personal names, we may receive web pages to other
people with the same name (namesakes). However,the the different namesakes
appear in quite different contexts. For example if we search for Michael Jackson
in Google, among the top hundred hits we get a beer expert and a gun dealer
along with the famous singer. However, the context in which the singer appears is
quite different from his namesakes. However, context associated with a personal
name is difficult to identify. In cases where the entire web page is about the
person under consideration, the context could be the complete page. On the
other hand the context could be few sentences having the specified name. In
this paper we explore a method which uses terms extracted from web pages to
represent the context of namesakes. For example, in the case of Michael Jackson,
terms such as music, album, trial associate with the famous singer, whereas we



get beer, travel, hunter as terms for the other (beer expert) namesake of Michael
Jackson. These term sets appear to be defining different contexts. We could use
this difference in context to discriminate the namesakes.

Disambiguating namesakes on the Web is a difficult task due to the diversity
of web pages. We do not know in advance the exact number of namesakes for
a name on the Web. In many cases there are two or three famous namesakes
which have lots of pages regarding them and all other namesakes have just one
or two pages on them. Some of the web pages are not exclusively about a person,
but just mention the name on passing (ex: book reviews on Amazon mentioning
an author of a book, conference programs mentioning names of the authors of
papers, etc). This paper presents an unsupervised clustering framework, which
uses a robust similarity metric to overcome these difficulties.

On the other hand there are cases where an individual has various web ap-
pearances. For example the renowned linguist Noam Chomsky appears as a
linguist and also as a critic of American foreign policy. It would be interesting to
see how a namesake disambiguiation method responds to such complications. In
Chomsky’s example one would like to extract terms such as Generative Gram-
mar, Linguistic Theory, Transformational Grammar, etc from pages which de-
scribe Chomsky’s linguistic work whereas American foreign policy, Iraq, critic,
etc from pages which describe Chomsky’s political views. Although our main
focus is on disambiguating people with one specific web appearance, we also
explore the posibilities of our algorithm to identify the different web apperances
of individuals.

This paper is structured as follows. First we give an overview of the re-
lated work in this area. Then we explain the different components in our sys-
tem. Namely; term extraction, similarity calculation, clustering, determining the
number of namesakes and term ranking. Finally we show experimental results
for the proposed method and conclude this paper.

2 Related Work and Problem Setting

There is little previous work we know of that directly addresses the problem of
extracting key phrases to disambiguate personal names on the web, but some
related problems have been studied. Disambiguation of namesakes is similar to
tuple matching in databases–the problem of deciding whether multiple relational
tuples from heterogeneous sources refer to the same real-world entity [7, 1].

From a natural language perspective, there has been a lot of work on the
related problem of co-reference resolution [2, 11]. The goal in co-reference reso-
lution is to link occurrences of noun phrases and pronouns, typically occurring in
a close proximity, within a few sentences or a paragraph, based on their appear-
ance and local context. Co-reference resolution is vital for many natural language
tasks such as text summarization and question answering. Various algorithms
have been proposed for co-reference resolution. Fundamentally, these algorithms
map the local information around a pronoun to a set of features and use a ma-



chine learning technique to determine whether a given pronoun corresponds to
a given noun phrase.

A few works address the problem of personal name disambiguation across a
collection of documents. Mann, et al [10] considers the problem of distinguishing
occurrences of a personal name in different documents. They proposes an unsu-
pervised algorithm which extracts people-specific biographical information such
as birth date, birth place, occupation etc using a set of regular expressions to
cluster the documents to their namesakes. However, such person-specific infor-
mation is not always available for all the namesakes on the web. Even in cases
where such information is available, a set of fixed regular expressions as used by
Mann et al [10] is not sufficient to extract them. Bekkerman, et al [4] proposes
a link structure model and an agglomerative-conglomerative double clustering
(A/CDC) based algorithm to disambiguate a group of people on the web. The
algorithm assumes our ability to obtain information regarding the social network
(associates) of the person to be disambiguated. The method can be readily used
when we have such information. However, in most of the situations we do not
know well enough about the associates of the person which we want to disam-
biguate. Pedersen et. al. [13] proposes a method for discriminating names by
clustering the instances of a given name into groups. They extract the context
of each instance of the ambiguous name and generate second order context vec-
tors using significant bigrams. The vectors are clustered such that instances that
are similar to each other are placed into same clusters. Li, et al [9] suggests an
algorithm which could be used to disambiguate not only personal names but
other named entities such as organizations and locations. They propose a dis-
criminative model based on agglomerative clustering and a generative model
which uses a language model combined with EM algorithm. Their experimental
results show that the generative model out performs the discriminative model.
However, they do not discuss the topic of extracting key phrases to distinguish
the different entities. In this paper we try to extract key phrases to distinguish
each of the different namesakes in our document collection. In this paper we will
assume that each document in the collection represents only one of the name-
sakes (i.e. no document covers two or more namesakes). We will first cluster the
set of documents and then select key phrases from these clusters to distinguish
the different namesakes.

3 Method

The outline of our method is illustrated in in figure 1. Our method takes the
name to be disambiguated as the input and outputs a list of key phrases for
each of the different namesakes. As shown in figure 1, the algorithm we propose
for this task consists of eight steps. We first introduce each of the steps in our
method and details are left for the sections to follow.

First we send the name to be disambiguated to a web search engine and
download a set of web pages. We used Google 3 and download the top 100
3 http://www.google.com/apis



Fig. 1. Outline of the method

pages for the given name. These pages will be processed in the next steps in
our method. Downloaded pages are not required to be exclusively on a certain
person. However, we assume one page to be associated with only one of the
namesakes. We extract a set of terms from each one of the pages in our document
collection (which was downloaded in the previous step). The term extraction
algorithm we use for this task is explained in section 3.1. We then cluster the
document collection based on the terms we extracted. To cluster documents
we define a pairwise similarity measure. We use Snippet Similarity to measure
the similarity between two terms. Section 3.2 explains snippet similarity. We
utilize an agglomerative clustering method to cluster the document collection as
described in section 3.3. Ideally, the clusters yielded by the clustering algorithm
should represent a different namesake. However, in reality we do not know the
exact number of namesakes for a given name in advance. Therefore, we define a
measure which we will call Cluster Quality in this paper based on the internal and
external correlation of the clusters, and decide the number of clusters. Finally,
we select representative terms from each of the clusters and rank them according
to their relevance to the name under consideration.

3.1 Term Extraction

Our method is based on the fact that different namesakes appear under different
contexts on the web. We assume that each document in our downloaded web
page collection represents some namesake of the given name. Contextual Hy-
pothesis for Senses [15] states that two occurrences of an ambiguous word
belong to the same sense to the extent that their contextual representations
are similar. According to this hypothesis, if two pages are similar in context,
then we could assume that these pages are likely to be on the same namesake.
However, a document may not totally focus on the namesake, but also contain
lots of irrelevant information. Therefore, we need to represent the documents in
a model that captures the essence of the document and ignores the irrelevant
facts. We use C-value [5, 6], an automatic term recognition algorithm, to extract
multi-word terms from the documents and represent each document by the set
of terms extracted from it.



The C-value approach combines linguistic and statistical information, em-
phasis being placed on the statistical part. The linguistic information consists of
the part-of-speech tagging of the document being processed, the linguistic filter
constraining the type of terms extracted and the stop lits. The statistical part
combines statistical features of the candidate string. The linguistic filter contains
a predefined set of patterns of nouns, adjectives and prepositions that are likely
to be terms. The stop list is a list of words which are not expected to occur as
term words in a given domain. Having a stop list improves the precision. How-
ever, in our experiments we did not use a stop list because it is not possible to
determine in advance the domains which a namesakes belongs to.

The combinations of nouns, adjectives and prepositions that are allowed by
the linguistic filter and the stop list are considered as the potential candidates
as terms. The termhood (likeliness of a candidate to be a term) is evaluated
using C-value. C-value is built using statistical characteristics of the candidate
string, such as, the total frequency of occurrence of the candidate string in
the document, the frequency of the candidate string as part of other longer
candidate strings, the number of these longer candidate terms and the length of
the candidate string (in number of words). C-value is defined as follows,

C − value(a) =
{

log2 |a| · f(a) a is not nested,
log2 |a|(f(a) − 1

P (Ta)

∑
b∈Ta

f(b)) otherwise . (1)

where, a is the candidate string, f(a) is its frequency of occurrence in the
document, |a| is the length of the candidate string, Ta is the set of extracted
candidate terms that contain a, P (Ta) is the number of these candidate terms.

We prefer the candidate terms with higher c-values to terms with lower c-
values. However, there are cases where the terms extracted from Frantzi’s [6]
c-value method tend to be exceedingly longer and meaningless. For example,
we get a term Search Archives Contact Us Table Talk Ad from a page about
the netscape founder, Jim Clark. This term is a combination of words extracted
from a navigation menu and not a genuine term. Using such terms to represent
the context of a namesake cannot be acceptable. To avoid such terms we use
two heuristics. First we ignore any term which is longer than four words. Then,
for the remaining terms, we check the number of hits we get for the term in a
web search engine. Our assumption here is if a term is a meaningful one it is
likely to be used in many web pages. We ignore any terms with less than five
hits. Using these heuristics does not only allow us to extract more expressive
and genuine terms but also prevents data sparseness when calculating snippet
based similarity between terms as explained in the next section.

3.2 Similarity Calculation

Exact matches of terms extracted from different documents are rare. Therefore,
we would require a similarity metric which is capable of comparing the terms
at a semantic level. For example, the two terms George Bush and The president



“George Bush” “The president of the United States”

Fig. 2. Top five snippets extracted for two terms

of the United States are closely related but do not have any words in common.
Word Net 4 based similarity metrics have been widely used as semantic similar-
ity measures between words in sense disambiguating tasks [12, 3]. However, the
major problem with such approaches is the low coverage of words. For example,
we would not find proper nouns such as George Bush in WordNet. However,
such proper nouns (specially human names) are useful to disambiguate name-
sakes (see section 4). We use the World Wide Web as our knowledge source
and define similarity between terms using web snippets. Mehra [14] proposes
a method to calculate similarity between words (also can be used with terms)
using snippets retrieved by a web search engine. A Snippet is a small piece of
text, containing two or three sentences extracted from the document around the
query term. Most web search engines provide snippets along with the links to
the source pages. A user can read the snippet and decide whether the linked
page is relevant to the query, thereby avoiding the time to download and read
the complete page. The snippet gives the context in which the searched term
appear in the page. We use Google as our web search engine and extract the top
100 snippets for each term we extract.

For example, consider the first five snippets we get for George Bush and The
president of the United States shown in figure 2. Even among the first five snip-
pets for these two terms, we find many common words such as President, White
4 http://wordnet.princeton.edu/perl/webwn



House, Official, and, site, etc. However, some of these words (ex: and, of) have
a purely grammatical functionality and do not carry any semantic information
regarding the searched terms. We use a predefined list of stop words and remove
such words from the snippets. We then merge the top hundred snippets together
(here on, we will call this merged result as the snippet text) and compare the
distribution of words to calculate the similarity between the terms. In order
to calculate the word distribution we count the frequency of each word in the
snippet text. We divide the frequency counts by the total number of words to
convert the frequency distribution into a probability distribution. These normal-
ized word distributions, calculated using snippets retrieved for different terms,
are compared using Kullback-Liebler (KL) divergence. KL- divergence is a popu-
lar metric used in measuring the distance between two probability distributions.
For two probability distributions p(x) and q(x), which are defined over a random
variable x ∈ X , their KL-divergence D(p||q) is defined as follows,

D(p||q) =
∑
x∈X

p(x) log
p(x)
q(x)

. (2)

Where, X is the set of values that random variable x takes. Since we are con-
cerned on word distributions, X is the vocabulary of words used in the snippets.
However, due to the sparseness of data, some words may not appear in both
distributions. KL-divergence becomes undefined when there are words with zero
probabilities. Skew divergence is used to overcome this problem [8]. Skew diver-
gence Sα(p, q) is defined as follows,

Sα(p, q) = D(q||αp + (1 − α)q). (3)

Therein: α ∈ [0, 1] is the degree of skewness between the two distributions p
and q. It has been shown that( [8]) skew divergence best expresses the divergence
between two distributions when the value of α is closer to 1. In our experiments
we set α = 0.99.

However, both KL-divergence and skew divergence are not symmetric and
does not satisfy the properties of distance metrics. We define a distance function
d(p, q) by considering the skew divergence on both ways. Thus, the distance
d(p, q) between two distributions p, q is defined as follows,

d(p, q) =
1
2
(sα(p, q) + sα(q, p)). (4)

We further convert the distance values given by equation 4 to similarity values
sim(p, q) by taking their negative exponential values as follows,

sim(p, q) = exp(−d(p, q)). (5)

Equation 5 defines the similarity between two terms using the probability
distributions calculated for each of the terms.



However, to cluster the documents, we need a pairwise similarity measure
which is defined upon the documents. For this we extend the similarity func-
tion defined by equation 5 to two documents. We take the average of similar-
ity for all the pairs of terms extracted by the two documents. The similarity,
DocSim(A, B), between two documents A and B is defined as follows,

DocSim(A, B) =
1

|A||B|
∑

(a,b)∈(A×B)

sim(a, b). (6)

Therein: A and B are the sets of terms extracted from the corresponding
documents. |A| denotes the cardinality of the set A. A×B gives the set of pairs
taken from the two sets. a ∈ A and b ∈ B are terms in the sets.

3.3 Clustering

Having defined a similarity metric in section 3.2, our next task is to cluster
the documents using this similarity metric. In this paper, we use group-average
agglomerative clustering (GAAC) as our clustering algorithm, a hybrid of single-
link and complete-link clustering. We begin by assigning a separate cluster for
each document in the collection. GAAC in each iteration executes the merger
that gives rise to the cluster Γ with the largest average correlation C(Γ ) where,

C(Γ ) =
{

1 |Γ | = 1,
1
2

1
|Γ |(|Γ |−1)

∑
u∈Γ

∑
v∈Γ DocSim(u, v) otherwise. (7)

Therein: |Γ | denotes the number of documents in the merged cluster Γ ; u and
v are two documents in Γ and DocSim(u, v) is given by equation 6. Ideally, the
clustering process should terminate when there is exactly one cluster representing
each of the namesakes in the collection. However, in practice, the exact number of
different namesakes that exist in the collection is not known. Therefore, we define
a measure which we will call Cluster Quality in section 3.4 and terminate the
above mentioned GAAC process when the cluster quality falls below a predefined
threshold. In section 4 we show empirical evidence to the fact that the cluster
quality measure approximates well the disambiguation accuracy and stops the
clustering when there are sufficient clusters to represent the different namesakes.

3.4 Cluster Quality

Clustering in general can be considered as an optimizing problem. In clustering
we try to;

1. maximize the similarity of items (documents) within a cluster,
2. minimize the similarity of items (documents) between clusters.

We prefer our clusters to be well correlated internally and each of the clusters
to be different among themselves. The quality (goodness) of the formed clusters
can be evaluated based on how well the clusters satisfy these two conditions. We



define internal correlation as a measure of how well the first condition is satisfied
(i.e. the degree of similarity of documents within clusters). Internal correlation,
IntCor(Λ), of a set Λ of n clusters c1, c2, . . . , cn is defined as follows,

IntCor(Λ) =
1
n

∑
Γ∈Λ

C(Γ ). (8)

Where, C(Γ ) is the average correlation defined in equation 7.
We define external correlation as a measure of how well the second condition

is satisfied (i.e. the degree of dis-similarity between clusters). Using the above
notation, external correlation, ExtCor(Λ), is defined as the dis-similarity between
the two most similar clusters in Λ as follows,

ExtCor(Λ) = 1 − 1
|Γa||Γb|

∑
u∈Γa

∑
v∈Γ2

DocSim(u, v). (9)

Where,
(Γa, Γb) = argΓi,Γj∈Λ min C(Γi ⊕ Γj) (10)

and the operator ⊕ denotes the merging operation between two clusters. Using
equations 8 and 9 we define Cluster Quality, Q(Λ), as follows,

Q(Λ) =
1
2
(IntCor(Λ) + ExtCor(Λ)). (11)

We terminate GAAC when cluster quality drops below a predefined threshold
and assign the remaining documents to the already formed clusters.

3.5 Term Selection and Ranking

GAAC (section 3.3) creates clusters for different namesakes. The next step is
to select a set of terms from these clusters that describes each namesake. We
select all the terms that appear in a cluster for a certain namesake but does not
appear in other clusters. We then rank these terms by the relevancy of the term
to the ambiguous name. We use snippets based similarity measure described in
section 3.2 to calculate relevancy.

4 Results and Discussion

4.1 Test Data

We evaluated our algorithm on pseudo names as well as naturally ambiguous
names. For automated pseudo name evaluation purposes, we collected 50 doc-
uments from the web for three different people for conflation. Our collection
contains documents for Maria Sharapova the tennis player, Bill Gates chairman
and chief software architect of Microsoft corporation and Bill Clinton former
president of the United Sates. We then replace every occurrence of these names
in the documents with person-x.



To evaluate our algorithm on naturally ambiguous names we selected names
that appear in previous work( [10, 4]) in this field, such as Jim Clark, William
Cohen, Tom Mitchell, Michael Jackson. To evaluate our algorithm on people
with different web appearances we tested for Noam Chomsky.

4.2 Disambiguation Accuracy

To evaluate the clusters produced by the proposed algorithm, we first assign
each cluster to the namesake that appears most (we will call this namesake the
holder of the cluster) in that cluster. We then count the number of documents
in the collection for each of the different namesakes. Precision, P (C), of cluster
C is calculated as follows;

P (C) =
Number of documents in C, representing the holder of C

Total number of documents in C
. (12)

However, the distribution of documents for each of the different namesakes in
the collection is not even. Some namesakes have lots of pages representing them,
where as for some namesakes they are mentioned only in one or two documents.
To reflect this fact in our evaluation metric we define Disambiguation Accu-
racy, as the weighted sum of each cluster’s precision. Accuracy (disambiguation
accuracy) is defined as follows,

Accuracy =
∑
C∈Λ

P (C)
Number of documents in the collection for the holder of C

Total number of documents in the collection
.

(13)
Where, Λ is the set of clusters and P (C) is given by equation 12.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
c
c
u
r
a
c
y
/
Q
u
a
l
i
t
y

No of Clusters

Quality
Accuracy

(a) Accuracy/Quality Vs No of Clusters
without Quality Threshold

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
c
c
u
r
a
c
y

No of Clusters

With Threshold
Without Threshold

(b) Accuracy Vs No of Clusters, with
and without Quality Threshold

Fig. 3. Effect of the quality threshold



Figure 3(a) depicts the accuracy/quality vs the number of clusters in the
experiment with pseudo names. From figure 3(a) it can be seen that when we do
not impose a threshold on quality, there exists a steep drop in accuracy when
ten clusters are formed. This is due to the outliers that get attached to the
otherwise pure (representing the dominant namesakes) clusters. The value of
quality when this happens is 0.6. Although the number of clusters when this
happens is different for different names, our experiments show that the value of
quality is around 0.6 in all the experiments. Therefore, we set the threshold of
quality to 0.6. When the threshfold is imposed, accuracy does not drop as it can
be seen from figure 3(b).

Table 1. Accuracy for ambiguous names

Name Number of namesakes Proposed TF IDF

Jim Clark 8 71.95 59.20

Michael Jackson 3 94.96 88.76

William Cohen 10 72.71 57.96

person-X 3 81.10 39.88

Noam Chomskey 2 94.19 82.79

Table 1 shows results of our experiments. We implemented a TF-IDF based
similarity metric and compared our algorithm against it. In the TF-IDF based
method, we consider all the words in each document (except stop words) and
represent documents with TF-IDF weighted vectors. Then we take the cosine
similarity between the vectors as the similarity measure in the group average
agglomerative clustering in section 3.3. However, note that the TF-IDF based
method does not produce any key phrases. Table 1 reports higher accuracy values
for the proposed method compared to this TF-IDF based method.

Our algorithm finds key phrases such as racing driver Jim Clark,Formula
One World Championships and motor racing for the racing car driver-Jim Clark
and Silicon Valley, netscape for the founder of netscape -Jim Clark. In the case
of Michael Jackson, the top ranking terms for the singer are Fan Club, World
network, news, Micheal Jackson case and pop star. The proposed method had
the lowest accuracy for william cohen as it found only three out of the ten
namesakes in the collection. In the person-X experiments, we find key phrases
such as first set, US open, Wimbledon, Venus Williams and Grand Slam title for
Maria Sharapova, wealthiest person, Microsoft for Bill Gates and White house,
former president for Bill Gates. Although, Noam Chomskey is not an ambiguous
name, we tested on it to evaluate the algorithm on individuals with different web
appearances. Interestingly, the algorithm ranks key phrases such as preventive
war, government complicity, George Bush, Tony Blair in the Chomskey the critic
cluster and universal grammar, linguistic theory in the Chomskey the linguist
cluster.



5 Conclusion

We proposed and evaluated an algorithm to extract key phrases from the web,
to disambiguate personal names. In future, we intend to explore the possibilities
to extend the proposed method to disambiguate other types of entities such as
location names and organization names.

References

1. P. Andritsos, R. Miller, and P. Tsapars. Information-theoretic tools for mining
database structure from large data sets. In Proceedings of the ACM SIGMOD
Conference, 2004.

2. A. Bagga and B. Baldwin. Entity-based cross-document coreferencing using the
vector space model. In Proceedings of COLING, pages 79–85, 1998.

3. S. Banerjee and T. Pedersen. An adapted lesk algorithm for word sense disam-
biguation using word net. In Proceedings of the third international conference on
computational linguistics and intelligent text processing, pages 136–145, 2002.

4. R. Bekkerman and A. McCallum. Disambiguating web appearances of people in a
social network. In Proceedings of the 14th international conference on World Wide
Web, pages 463–470, 2005.

5. K. Frantzi and S. Ananiadou. Extracting nested collocations. In 16th Conference
on Computational Lingustics, pages 41–46, 1996.

6. K. Frantzi and S. Ananiadou. The c-value/nc-value domain independent method
for multi-word term extraction. Journal of Natural Language Processing, 6(3):145–
179, 1999.

7. M. Hernandez and S. Stolfo. The merge/purge problem for large databases. In
SIGMOD Conference, pages 127–138, 1995.

8. L. Lee. On the effectiveness of the skew divergence for statistical language analysis.
Artificial Intelligence and Statistics, pages 65–5, 2001.

9. X. Li, P. Morie, and D. Roth. Semantic integration in text, from ambiguous
names to identifiable entities. AI Magazine, American Association for Artificial
Intelligence, Spring:45–58, 2005.

10. G. S. Mann and D. Yarowsky. Unsupervised personal name disambiguation. In
Proceedings of CoNLL-2003, pages 33–40, 2003.

11. A. McCallum and B. Wellner. Toward conditional models of identity uncertainty
with application to proper noun coreference. In IJCAI Workshop on Information
Integration on the Web, 2003, 2003.

12. D. McCarthy, R. Koeling, J. Weeds, and J. Carroll. Finding predominant word
senses in untagged text. In Proceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), pages 279–286, 2004.

13. T. Pedersen, A. Purandare, and A. Kulkarni. Name discrimination by clustering
similar contexts. In Proceedings of the Sixth International Conference on Intelligent
Text Processing and Computational Linguistics, 2005.

14. M. Sahami and T. Heilman. A web-based kernel function for matching short text
snippets. In International Workshop located at the 22nd International Conference
on Machine Learning (ICML 2005), 2005.

15. H. Schutze. Automatic word sense discrimination. Computational Linguistics,
24(1):97–123, 1998.


