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ABSTRACT
Extracting aliases of an entity is important for various tasks
such as identification of relations among entities, web search
and entity disambiguation. To extract relations among en-
tities properly, one must first identify those entities. We
propose a novel approach to find aliases of a given name
using automatically extracted lexical patterns. We exploit
a set of known names and their aliases as training data and
extract lexical patterns that convey information related to
aliases of names from text snippets returned by a web search
engine. The patterns are then used to find candidate aliases
of a given name. We use anchor texts to design a word co-
occurrence model and use it to define various ranking scores
to measure the association between a name and a candidate
alias. The ranking scores are integrated with page-count-
based association measures using support vector machines
to leverage a robust alias detection method. The proposed
method outperforms numerous baselines and previous work
on alias extraction on a dataset of personal names, achiev-
ing a statistically significant mean reciprocal rank of 0.6718.
Experiments carried out using a dataset of location names
and Japanese personal names suggest the possibility of ex-
tending the proposed method to extract aliases for different
types of named entities and for other languages. Moreover,
the aliases extracted using the proposed method improve
recall by 20% in a relation-detection task.

1. INTRODUCTION
Precisely identifying entities in web documents is neces-

sary for various tasks such as relation extraction [11, 26],
social network extraction from the web [24, 25] search and
integration of data [2, 17] and entity disambiguation [22,
14, 7, 1, 27]. Nevertheless, identification of entities on the
web is difficult for two fundamental reasons: first, different
entities can share the same name (lexical ambiguity); sec-
ondly, a single entity can be designated by multiple names
(referential ambiguity). As an example of lexical ambi-
guity the name Jim Clark is illustrative. Aside from the two
most popular namesakes, the formula-one racing champion
and the founder of Netscape, at least 10 different people are
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listed among the top 100 results returned by Google for the
name. On the other hand, referential ambiguity occurs be-
cause people use different names to refer to the same entity
on the web. For example, the American movie star Will
Smith is often called the the Fresh Prince in web contents.
Although lexical ambiguity, particularly ambiguity related
to personal names, has been explored extensively in the pre-
vious studies of name disambiguation [22, 7, 14, 1, 27], the
problem of referential ambiguity of entities on the web has
received much less attention. In this paper, we specifically
examine on the problem of automatically extracting the var-
ious references on the web to a particular entity.

For an entity e, we define the set A of its aliases to be the
set of all words or multi-word expressions that are used to
refer to e on the web. For example, Godzilla is a one-word
alias for Hideki Matsui, whereas the alias the Fresh Prince
contains three words and refers to Will Smith. Various types
of terms are used as aliases on the web. For instance, in the
case of an actor, the name of a role or the title of a drama
(or a movie) can later become an alias for the person (e.g.,
Fresh Prince, Knight Rider). Titles or professions such as
president, doctor, professor, etc. are also frequently used as
aliases. Variants or abbreviations of names such as Bill for
William and acronyms such as J.F.K. for John Fitzgerald
Kennedy are also types of name aliases that are observed
frequently on the web.

Identifying aliases of a name is important for extracting
relations among entities. For example, Matsuo et al. [24]
propose a social network extraction algorithm, in which they
compute the strength of the relation between two individu-
als A and B by the web hits for the conjunctive query, “A”
AND “B”. However, both persons A and B might also ap-
pear in their alias names in web contents. Consequently, by
expanding the conjunctive query using aliases for the names,
a social network extraction algorithm can accurately com-
pute the strength of a relationship between two persons.

The Semantic Web is intended to solve the entity disam-
biguation problem by providing a mechanism to add seman-
tic metadata for entities. However, an issue that the Se-
mantic Web currently faces is that insufficient semantically
annotated web contents are available. Automatic extraction
of metadata [13, 18, 29] can accelerate the process of seman-
tic annotation. For named entities, automatically extracted
aliases can serve as a useful source of metadata, thereby
providing a means to disambiguate an entity.

Searching for information about people on the web is an



extremely common activity of Internet users. Around 30% of
search engine queries include personal names [3]. However,
retrieving information about a person merely using his or
her real name is insufficient when that person has nicknames.
Particularly with keyword-based search engines, we will only
retrieve pages which use the real name to refer to the person
about whom we are interested in finding information. In
such cases, automatically extracted aliases of the name are
useful to expand a query in a web search, thereby improving
recall.

Along with the recent rapid growth of social media such
as blogs, extracting and classifying sentiment on the web has
received much attention [28]. Typically, a sentiment analysis
system classifies a text as positive or negative according to
the sentiment expressed in it. However, when people express
their views about a particular entity, they do so by referring
to the entity not only using the real name but also using
various aliases of the name. By aggregating texts that use
various aliases to refer to an entity, a sentiment analysis
system can produce an informed judgment related to the
sentiment.

In this paper, we propose a fully automatic method to ex-
tract aliases of a given name. The proposed method includes
two steps: given a name, extract all potential candidate
aliases from the web; then rank the extracted candidates
according to the likelihood that they are aliases of the given
name. Our main contributions are the following:

• We propose a lexical pattern-based approach to ex-
tract aliases of a given name using snippets returned
by a web search engine. We propose an algorithm to
automatically generate lexical patterns using a set of
real-world name-alias data.

• To select the best aliases among the extracted candi-
dates, we propose numerous ranking scores based upon
two approaches: a word co-occurrence model using an-
chor texts, and page-counts returned by a search en-
gine. Moreover, using real world name alias data, we
train a ranking support vector machine to learn the
optimal combination of individual ranking scores to
leverage a robust alias extraction method.

2. RELATED WORK
Alias identification is closely related to the problem of

cross-document coreference resolution [5, 6, 16], in which
the objective is to determine whether two mentions of a
name in different documents refer to the same entity. Bagga
and Baldwin [5] proposed a cross-document coreference reso-
lution algorithm by first performing within-document coref-
erence resolution for each individual document to extract
coreference chains, and then clustering the coreference chains
under a vector space model to identify all mentions of a
name in the document set. However, the vastly numer-
ous documents on the web render it impractical to perform
within-document coreference resolution to each document
separately and then cluster the documents to find aliases.

In personal name disambiguation the goal is to disam-
biguate various people that share the same name (name-
sakes) [22, 7, 14, 1, 27]. Given an ambiguous name, most
name disambiguation algorithms have modeled the problem
as one of document clustering, in which all documents that
discuss a particular individual of the given ambiguous name
are grouped into a single cluster. The web people search task
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Figure 1: Outline of the proposed method
.

(WEPS) at SemEval 2007 1 provided a dataset and evalu-
ated various name disambiguation systems. However, the
name disambiguation problem differs fundamentally from
that of alias extraction because, in name disambiguation
the objective is to identify the different entities that are re-
ferred by the same ambiguous name; in alias extraction, we
are interested in extracting all references to a single entity
from the web.

Approximate string matching algorithms have been used
for extracting variants or abbreviations of personal names
(e.g. matching Will Smith with the first name initialized
variant W. Smith) [15]. Rules in the form of regular expres-
sions and edit-distance-based methods have been used to
compare names. Bilenko and Mooney [9] proposed a method
to learn a string similarity measure to detect duplicates in
bibliography databases. However, an inherent limitation of
such string matching approaches is that they cannot identify
aliases which share no words or letters with the real name.
For example, approximate string matching methods would
not identify Fresh Prince as an alias for Will Smith.

Hokama and Kitagawa [20] propose an alias extraction
method that is specific to the Japanese language. For a
given name p, they search for the query “* koto p” and ex-
tract the context that matches the asterisk. The Japanese
word koto, roughly corresponds to also known as in En-
glish. However, koto is a highly ambiguous word in Japanese
that can also mean incident, thing, matter, experience and
task. As reported in their paper, many noisy and incorrect
aliases are extracted using this pattern, which requires var-
ious post-processing heuristics that are specific to Japanese
language to filter-out the incorrect aliases. Moreover, man-
ually crafted patterns do not cover various ways that convey
information about name aliases. In contrast, we propose a
method to leverage such lexical patterns automatically using
a training dataset of names and aliases.

3. METHOD
The proposed method is outlined in Fig.1 and comprises

two main components: pattern extraction, and alias extrac-
tion and ranking. Using a seed list of name-alias pairs, we
first extract lexical patterns that are frequently used to con-
vey information related to aliases on the web. The extracted
patterns are then used to find candidate aliases for a given
name. We define various ranking scores using the hyperlink
stricture on the web and page counts retrieved from a search

1http://nlp.uned.es/weps



engine to identify the correct aliases among the extracted
candidates.

3.1 Extracting Lexical Patterns from Snippets
Many modern search engines provide a brief text snippet

for each search result by selecting the text that appears in
the web page in the proximity of the query. Such snippets
provide valuable information related to the local context of
the query. For names and aliases, snippets convey useful
semantic clues that can be used to extract lexical patterns
that are frequently used to express aliases of a name. For
example, consider the snippet returned by Google2 for the
query “Will Smith * The Fresh Prince”.

...Rock the House, the duo's debut album of 1987, 

demonstrated that Will Smith, aka the Fresh Prince,

 was an entertaining and amusing storyteller...

Figure 2: A snippet returned for the query “Will
Smith * The Fresh Prince” by Google

Here, we use the wildcard operator * to perform a NEAR
query and it matches with one or more words in a snip-
pet. In Fig.2 the snippet contains aka (i.e. also known
as), which indicates the fact that fresh prince is an alias
for Will Smith. In addition to a.k.a., numerous clues exist
such as nicknamed, alias, real name is, nee, which are used
on the web to represent aliases of a name. Consequently, we
propose the shallow pattern extraction method illustrated in
Fig.3 to capture the various ways in which information about
aliases of names is expressed on the web. Lexico-syntactic
patterns have been used in numerous related tasks such as
extracting hypernyms [19] and meronyms (i.e. words in a
part-whole relation) [8], measuring semantic similarity [10]
and automatic metadata extraction [13].

Given a set S of (NAME, ALIAS) pairs, the function
ExtractPatterns returns a list of lexical patterns that fre-
quently connect names and their aliases in web-snippets.
For each (NAME, ALIAS) pair in S, the GetSnippets func-
tion downloads snippets from a web search engine for the
query “NAME * ALIAS”. Then, from each snippet, the
CreatePattern function extracts the sequence of words that
appear between the name and the alias. Results of our
preliminary experiments demonstrated that consideration of
words that fall outside the name and the alias in snippets
did not improve performance. Finally, the real name and
the alias in the snippet are respectively replaced by two
variables [NAME] and [ALIAS] to create patterns. For
example, from the snippet shown in Fig.2, we extract the
pattern [NAME] aka [ALIAS]. We repeat the process de-
scribed above for the reversed query, “ALIAS * NAME” to
extract patterns in which the alias precedes the name.

Once a set of lexical patterns is extracted, we use the
patterns to extract candidate aliases for a given name as
portrayed in Fig.4. Given a name, NAME and a set, P
of lexical patterns, the function ExtractCandidates returns
a list of candidate aliases for the name. We associate the
given name with each pattern, p in the set of patterns, P
and produce queries of the form: “NAME p *”. Then the
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Algorithm 1: ExtractPatterns(S)

comment: S is a set of (NAME, ALIAS) pairs

P ← null
for each (NAME, ALIAS) ∈ S

do





D ← GetSnippets(“NAME ∗ ALIAS”)
for each snippet d ∈ D
do P ← P + CreatePattern(d)

return (P )

Figure 3: Given a set of (NAME, ALIAS) instances,
extract lexical patterns.
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Algorithm 2: ExtractCandidates(NAME, P )

comment: P is the set of patterns

C ← null
for each pattern p ∈ P

do





D ← GetSnippets(“NAME p ∗ ”)
for each snippet d ∈ D
do C ← C + GetNgrams(d, NAME, p)

return (C)

Figure 4: Given a name and a set of lexical patterns,
extract candidate aliases.

GetSnippets function downloads a set of snippets for the
query. Finally, the GetNgrams function extracts continuous
sequences of words (n-grams) from the beginning of the part
that matches the wildcard operator *. Experimentally, we
selected up to 5-grams as candidate aliases. Moreover, we
removed candidates that contain only stop words such as
a, an, and the. For example, assuming that we retrieved
the snippet in Fig.3 for the query “Will Smith aka *”, the
procedure described above extracts the fresh and the fresh
prince as candidate aliases.

3.2 Ranking of Candidates
Considering the noise in web-snippets, candidates extracted

by the shallow lexical patterns might include some invalid
aliases. From among these candidates, we must identify
those which are most likely to be correct aliases of a given
name. We model this problem of alias recognition as one of
ranking candidates with respect to a given name such that
the candidates which are most likely to be correct aliases
are assigned a higher rank. First, we define various rank-
ing scores to measure the association between a name and a
candidate alias using two approaches: co-occurrences in in-
bound anchor texts of a url and page-counts retrieved from a
search engine. Next, we integrate those ranking scores using
ranking support vector machines (SVMs) [21] to leverage a
robust ranking function.

3.3 Co-occurrences in Anchor Texts
Anchor texts have been studied extensively in informa-

tion retrieval and have been used in various tasks such as
synonym extraction, query translation in cross-language in-



Table 1: Contingency table for a candidate alias x
x C − {x} C

p k n− k n
V − {p} K − k N − n−K + k N − n

V K N −K N

Table 2: Anchor text-based co-occurrence measures.
Measure Definition Measure Definition

CF k tfidf k log N
K+1

PMI log2
kN
Kn

cosine k√
n+
√

K

Dice 2k
n+K

Overlap k
min(n,K)

formation retrieval, and ranking and classification of web
pages [12], However, anchor texts have not been exploited
fully in Semantic Web applications. We revisit anchor texts
to measure the association between a name and its aliases
on the web. Anchor texts pointing to a url provide useful
semantic clues related to the resource represented by the url.
For example, if the majority of inbound anchor texts of a url
contain a personal name, it is likely that the remainder of
the inbound anchor texts contain information about aliases
of the name.

We define a name p and a candidate alias x as co-occurring,
if p and x appear in two different inbound anchor texts of
a url u. Moreover, we define co-occurrence frequency (CF)
as the number of different urls in which they co-occur. We
can use this definition to create a contingency table like that
shown in Table 1. Therein, C is the set of candidates ex-
tracted by the algorithm described in Fig.4, V is the set of
all words that appear in anchor texts, C −{x} and V −{p}
respectively denote all candidates except x and all words
except the given name p, k is the co-occurrence frequency
between x and p. Moreover, K is the sum of co-occurrence
frequencies between x and all words in V , whereas n is the
same between p and all candidates in C. N is the total
co-occurrences between all word pairs taken from C and
V . To measure the strength of association between a name
and a candidate alias, using Table 1 we define nine popu-
lar co-occurrence statistics: chi-squared measure (CS), Log-
likelihood ratio (LLR), hyper-geometric distributions (HG)
and the six measures shown in Table 2. Because of the lim-
ited availability of space, we omit the definitions of these
measures (see Manning and Schutze [23] for a detailed dis-
cussion).

A frequently observed phenomenon related to the web
is that many pages with diverse topics link to so-called
hubs such as Google, Yahoo, or MSN. Two anchor texts
might link to a hub for entirely different reasons. There-
fore, co-occurrences coming from hubs are prone to noise.
To overcome the adverse effects of a hub h when comput-
ing co-occurrence measures, we multiply the number of co-
occurrences of words linked to h by a factor α(h, p), where

α(h, p) =
t

d
.

Here, t is the number of inbound anchor texts of h that
contain the real name p, and d is the total number of inbound
anchor texts of h. If many anchor texts that link to h contain
p (i.e. larger t value), then the reliability of h as a source

Table 3: Page-count-based association measures.
Measure Definition Measure Definition

WebPMI log2
L×H(p∩x)
H(p)×H(x)

Prob(p|x) H(p∩x)
H(x)

WebDice 2×H(p∩x)
H(p)+H(x)

Prob(x|p) H(p∩x)
H(p)

of information about p increases. On the other hand, if h
has many inbound links (i.e. larger d value), then it is likely
to be a noisy hub and gets discounted when multiplied by
α(<< 1). Intuitively, Eq.1 boosts hubs that are likely to
contain information related to p, while penalizing those that
contain various other topics.

3.4 Page-count-based Association Measures
In previous section we defined various ranking scores using

anchor texts. However, not all names and aliases are equally
well represented in anchor texts. Consequently, in this sec-
tion, we define word association measures that consider co-
occurrences not only in anchor texts but in the web overall.
Page counts retrieved from a web search engine for the con-
junctive query, p∩x, for a name p and a candidate alias x can
be regarded as an approximation of their co-occurrences in
the web. We define the four measures shown in Table 3 us-
ing page-counts retrieved from a search engine. Therein, the
function H(q) denotes the page-counts for a query q. Web-
Dice and WebPMI [10] respectively are based on the Dice
coefficient and pointwise mutual information. In WebPMI,
L is the number of pages indexed by the web search engine,
which we approximated as L = 1010 according to the num-
ber of pages indexed by Google. Prob(x|p) and Prob(p|x)
respectively denote the conditional probabilities of a candi-
date (x) given a name (p) and a name given a candidate.

3.5 Training
Using a dataset of name-alias pairs, we train a ranking

support vector machine [21] to rank candidate aliases ac-
cording to their strength of association with a name. For a
name-alias pair we define three feature types: anchor text-
based co-occurrence measures, web page-count-based asso-
ciation measures, and frequencies of observed lexical pat-
terns. The nine co-occurrence measures: CF, tfidf, CS,
LLR, PMI, HG, cosine, overlap, Dice (Table 2) are
computed with and without weighting for hubs to produce
18(2× 9) features. Moreover, the four page-count-based as-
sociation measures defined in Table 3 and the frequency of
lexical patterns extracted by algorithm 1 are used as features
in training the ranking SVM. If numerous patterns connects
a name and a candidate alias in snippets, then the confi-
dence of the candidate alias as a correct alias of the name
increases.

Given a set of personal names and their aliases, we model
the training process as a preference learning task. For each
name, we impose a binary preference constraint between the
correct alias and each candidate. Then we consider one alias
at a time and combine it with the candidates if more than
one correct alias exists. For example, let us assume that
for a name p we selected the four candidates a1, a2, a3, a4.
Without loss of generality, let us further assume that a1

and a2 are the correct aliases of p. Consequently, we form
four partial preferences: a1 Â a3, a1 Â a4, a2 Â a3 and
a2 Â a4. Here, x Â y denotes the fact that x is preferred



to y. During training, ranking SVMs attempt to minimize
the number of discordant pairs in the training data, thereby
improving the average precision. The trained SVM model is
used to rank the set of candidates that were extracted for a
name. Finally, the highest-ranking candidate is selected as
the alias of the name.

4. EXPERIMENTS

4.1 Datasets
To train and evaluate the proposed method, we create

three name-alias datasets3: the English personal names dataset
(50 names), the English place names dataset (50 names),
and the Japanese personal names (100 names) dataset. Both
our English and Japanese personal name datasets include
people from various fields of cinema, sports, politics, sci-
ence, and mass media. The place name dataset contains
aliases for the 50 U.S. states.

To compute the anchor text-based word co-occurrence
measures, we crawled English and Japanese web sites and
extracted anchor texts and urls linked by the anchor texts.
A web site might use links for purely navigational purposes,
which would convey no semantic clue. To remove naviga-
tional links in our dataset, we prepare a list of words that
are commonly used in navigational menus, such as top, last,
next, previous, links, etc., and remove anchor texts that con-
tain those words. The resultant dataset contains 24, 456, 871
anchor texts pointing to 8, 023, 364 urls. All urls in the
dataset contain at least two inbound anchor texts. The av-
erage number of inbound anchor texts per url is 3.05 and its
standard deviation is 54.02.

4.2 Pattern Selection
We used the English personal name dataset to extract

lexical patterns as described in algorithm 1. The proposed
pattern extraction algorithm extracts over 8000 unique pat-
terns that represent various ways in which names and aliases
are introduced on the web. Of those patterns, 70% occur
less than 5 times for name-alias pairs in the dataset. Given
the relatively small number of training instances (i.e. 50
instances in the English personal names dataset), it is not
possible to train with such numerous sparse patterns. From
among these patterns, we must select the patterns that are
most accurate. We use algorithm 1 to extract patterns and
then evaluate those patterns based on the candidates they
extract when used in algorithm 2. We perform 5-fold cross
validation on English personal names dataset. Precision and
recall of a pattern s is defined as follows:

Precision(s) =
No. of correct aliases retrieved by s

No. of total aliases retrieved s
,

Recall(s) =
No. of correct aliases retrieved by s

No. of total aliases in the dataset
.

Consequently, the F -score, F (s), can be computed as

F (s) =
2× Precision(s)× Recall(s)

Precision(s) + Recall(s)
.

Table 4 shows the patterns with the highest precision scores.
As shown in the table, unambiguous and highly descriptive
patterns are extracted using the proposed method. Most of

3www.miv.t.u-tokyo.ac.jp/danushka/aliasdata.zip

Table 4: Lexical patterns with the highest F -scores
as extracted using the proposed method

pattern F -score

* aka [NAME] 0.335
[NAME] aka * 0.322
[NAME] better known as * 0.310
[NAME] alias * 0.286
[NAME] also known as * 0.281

* nee [NAME] 0.225
[NAME] nickname * 0.224

* whose real name is [NAME] 0.205
[NAME] aka the * 0.187

* was born [NAME] 0.153
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Figure 5: Selecting patterns for training

the patterns shown in Table 4 are asymmetric in the sense
that the variable [NAME] and the wildcard * appear only
in one combination among top ranked patterns. In contrast,
pattern aka is symmetric and both combinations show high
F -scores. Although not shown in Table 4 because of limited
space, the proposed method also extracted some patterns
written in other languages other than English. For example,
de son vrai nom (French for his real name) and vero nome
(Italian for vero nome) were also extracted as patterns using
the proposed method, despite the fact that we searched only
for English search results in Google.

To find the optimum number of patterns that should be
used in training, we sort the patterns by their precision and
measure the overall recall when more patterns are used to
extract candidate aliases. Here, the overall recall of using
a set of patterns is computed as the ratio of the number
of aliases extracted using all the patterns in the set to the
total number of correct aliases in the dataset. Experimental
results are shown in Fig.5. It is apparent in Fig.5 that overall
recall is rapidly enhanced by a greater number of patterns.
However, low-precision patterns do not increase recall to a
great degree. Consequently, recall settles to a maximum
value of 0.75 at 25 patterns.

4.3 Accuracy of Alias Extraction
In Table 5, we compare the proposed SVM-based method



Table 5: Proposed method vs. baselines and previ-
ous studies of alias extraction

Method MRR Method MRR
SVM (Linear) 0.6718 Prob(p|x) 0.1414
SVM (Quad) 0.6495 CS(h) 0.1186
SVM (RBF) 0.6089 CF 0.0839
Hokama et al. [20] 0.6314 cosine 0.0761
tfidf(h) 0.3957 tfidf 0.0757
WebDice 0.3896 Dice 0.0751
LLR(h) 0.3879 overlap(h) 0.0750
cosine(h) 0.3701 PMI(h) 0.0624
CF(h) 0.3677 LLR 0.0604
HG(h) 0.3297 HG 0.0399
Dice(h) 0.2905 CS 0.0079
Prob(x|p) 0.2142 PMI 0.0072
WebPMI 0.1416 overlap 0.0056

Table 6: Overall performance
Dataset MRR Average Precision
English Personal Names 0.6150 0.6865
English Place Names 0.8159 0.7819
Japanese Personal Names 0.6718 0.6646

against various individual ranking scores (baselines) and pre-
vious studies of alias extraction (Hokama and Kitagawa. [20])
on Japanese personal names dataset. We used linear, poly-
nomial (quadratic), and radial basis functions (RBF) kernels
for ranking SVM. We use mean reciprocal rank (MRR) [4] to
evaluate the various approaches. If a method ranks the cor-
rect aliases of a name on top, then it receives a higher MRR
value. As shown in Table 5, the best results are obtained
by the proposed method with linear kernels (SVM(Linear)).
Both ANOVA and Tukey HSD tests confirm that the im-
provement of SVM(Linear) is statistically significant (p <
0.05). A drop of MRR occurs with more complex kernels,
which is attributable to over-fitting. Hokama and Kita-
gawa’s [20] method which uses manually created patterns,
can only extract Japanese name aliases. Their method re-
ports an MRR value of 0.6314 on our Japanese personal
names dataset. In Table 5 we denote the hub-weighted ver-
sions of anchor text-based co-occurrence measures by (h).
Among the numerous individual ranking scores used as fea-
tures for training, the best results are reported by the hub-
weighted tfidf score (tfidf(h)). It is noteworthy that, for an-
chor text-based ranking scores, the hub-weighted version al-
ways outperforms the non-hub-weighted counterpart, which
justifies the hub-weighting method given by Eq.1. Among
the four page-count-based ranking scores, WebDice reports
the highest MRR. It is comparable to the best anchor text-
based ranking score, tfidf(h). Between the two conditional
probabilities, conditioning on the real name (i.e. Prob(x|p))
gives slightly better performance. This result implies that
we have a better chance in identifying an entity given its
real name than an alias.

We evaluate the proposed method using three types of
alias data: personal names in English, place (location) names
in English and personal names in Japanese using the mean
reciprocal rank and average precision [4]. Different from
the mean reciprocal rank, which focuses only on rank, av-
erage precision incorporates consideration of both precision

Table 8: Effect of aliases on relation detection

Method
real name only real name and top alias

P R F P R F

Jaccard .4902 .5229 .4527 .4999 .7748 .5302
PMI .4812 .7185 .4792 .4833 .9083 .5918

at each rank and the total number of correct aliases in the
dataset. Both MRR and average precision have been used
in rank evaluation tasks such as evaluating the results re-
turned by a search engine or a question-answering (QA)
system. With each dataset we performed a 5-fold cross val-
idation. As shown in Table 6, the proposed method reports
high scores for both MRR and average precision on all three
datasets. Best results are achieved for the place name alias
extraction task.

Table 7 presents aliases extracted for some entities in-
cluded in our datasets. The gold standard is the aliases
assigned by humans for the named entities in the datasets.
Overall, in Table 7 the proposed method extracts most aliases
assigned in the gold standard. It is interesting to note that,
for actors the extracted aliases include their roles in movies
or television dramas (e.g. Michael Knight for David Has-
selhoff and Susan Mayer for Teri Hatcher). We extract n-
grams from snippets as candidate aliases. Therefore, some
of the extracted aliases do overlap (e.g. aliases for Texas).
This might be prevented by using a post-processing heuristic
such as ignoring aliases that are nested within an alias that
has a higher rank. However, to keep the proposed method as
simple as possible, we use no such post-processing heuristics.

4.4 Relation Detection
We evaluate the effect of aliases on a real-world relation

detection task as follows. First, we manually classified 50
people in the English personal names dataset, depending on
their field of expertise, into four categories: music, politics,
movies, and sports. Following earlier research on web-based
social network extraction [24, 25], we measured the associ-
ation between two people using the Jaccard coefficient and
pointwise mutual information. We then use group average
agglomerative clustering (GAAC) [23] to group the people
into four clusters. Initially, each person is assigned to a sep-
arate cluster. In subsequent iterations, group average ag-
glomerative clustering process, merges the two clusters with
the highest correlation. Correlation, Corr(Γ), between two
clusters X and Y is defined as

Corr(Γ) =
1

2

1

|Γ|(|Γ| − 1)

∑

(u,v)∈Γ

sim(u, v). (1)

Here, Γ is the merger of the two clusters X and Y . |Γ|
denotes the number of elements (persons) in Γ and sim(u, v)
is the association between two persons u and v in Γ. We
used the Jaccard coefficient, which is calculated using page
counts as

Jaccard(u, v) =
hits(“u”AND“v”)

hits(“u”OR“v”)
,

and pointwise mutual information (Table 3) to measure the
association between two persons u and v. We terminate the
GAAC process when exactly four clusters are formed.



Table 7: Aliases extracted using the proposed method
Real Name gold standard First Second Third
David Hasselhoff hoff, michael knight, michael hoff michael knight michael
Courteney Cox cece, lucy, dirt lucy, monica geller, monica dirt lucy lucy monica
Al Pacino sonny, alfredo james pacino, michael corleone michael corleone alfredo james pacino alphonse pacino
Teri Hatcher hatch, susan mayer, susan, lois lane, lois susan mayer susan mayer
Texas lone star state lone star state lone star lone
Vermont green mountain state green mountain state green green mountain
Wyoming equality state, cowboy state equality equality state cowboy state
Hideki Matsui Godzilla, nishikori, matsu hide Godzilla nishikori matsui

Ideally, people who work in the same field should be clus-
tered into the same group. We used the B-CUBED metric
[5] to evaluate the clustering results. The B-CUBED eval-
uation metric was originally proposed for evaluating cross-
document coreference chains. We compute the precision,
recall and F -score for each name in the dataset and average
the results over the number of people in the dataset. For
each person p in our dataset, let us denote the cluster that p
belongs to as C(p). Moreover, we use A(p) to represent the
affiliation of person p, e.g. A(“Bill Clinton”) =“politics”.
Then we calculate the precision and recall for person p as

Precision(p) =
No. of people in C(p) with affiliation A(p)

No. of people in C(p)
,

Recall(p) =
No. of people in C(p) with affiliation A(p)

Total No. of people with affiliation A(p)
.

Then, the F -score of person p is defined as

F(p) =
2× Precision(p)× Recall(p)

Precision(p) + Recall(p)
.

The overall precision (P), recall (R) and F -score (F) are
computed by taking the averaged sum over all the names in
the dataset.

Precision =
1

N

∑
p∈DataSet

Precision(p)

Recall =
1

N

∑
p∈DataSet

Recall(p)

F−Score =
1

N

∑
p∈DataSet

F(p)

Here, DataSet is the set of 50 names selected from the En-
glish personal names dataset. Therefore, N = 50 in our
evaluations.

We first conduct the experiment only using real names (i.e.
u, v =“real name”) Next, we repeated the experiment by ex-
panding the query with the top ranking alias extracted by
the proposed algorithm (i.e. u, v =“real name” OR “alias”).
Experimental results are summarized in Table 8. From Ta-
ble 8, we can see that F-scores have increased as a result
of including aliases with real names in relation identifica-
tion. Moreover, the improvement is largely attributable to
the improvement in recall. In both Jaccard and PMI, the
inclusion of aliases has boosted recall by more than 20%.
By considering not only real names but also their aliases, it
is possible to discover relations that are unidentifiable solely
using real names.

5. DISCUSSION
The concepts of entities and relations are central to nu-

merous web search and mining tasks. However, uniquely
identifying entities on the web is made complicated by lexi-
cal and referential ambiguities in entities. This study specif-
ically examined referential ambiguity of names. However,
lexical and referential ambiguities are closely connected. For
example, in the case of extracting aliases for a personal
name, the given name itself might be ambiguous. If more
than one entity is represented by the name, then merely stat-
ing the real name does not enable us to identify the entity
uniquely. In such situations, we must first disambiguate the
real name (i.e. resolve the lexical ambiguity) before we at-
tempt to extract aliases (i.e. resolve referential ambiguity).
On the other hand, two web pages about the same indi-
vidual might use different aliases of the person’s real name.
A namesake disambiguation system that attempts to clus-
ter these two pages together might require the knowledge
about aliases. Moreover, aliases themselves can sometimes
be ambiguous. For example, Godzilla, an alias for Hideki
Matsui is also a movie and an imaginary monster. A single
alias might be insufficient to identify an entity on the web
uniquely. In fact, during an error analysis, we discovered
that the phrase beer hunter was incorrectly extracted as an
alias for Michael Jackson. However, Michael Jackson has
several namesakes on the web; one of whom was, in fact, an
expert on beer and introduces himself as the beer hunter.
In our future work in alias extraction, we intend to explore
methods that can identify aliases for different namesakes of
a given name.

Consider the problem of detecting whether a particular re-
lation R holds between two entities A and B. One approach
to solve this problem is to find contexts in which A and B
co-occur and decide whether the relation R pertains between
the entities. For example, if A and B are two researchers,
then we can expect a high co-occurrence on the web if they
publish their mutual works together or work on the same
project. In fact, previous studies of social network extrac-
tion [24, 25] have considered co-occurrences on the web as a
measure of the social association among people. However, if
A and B have name aliases, then it is not possible to collect
all the contexts in which they co-occur merely by searching
using the real names. To illustrate this point, let us assume
the aliases of A and B to be a, b. Then there exists four
possible co-occurrences: (A,B), (A,b), (a, B) and (a,b). The
query which contains only real names, A AND B, covers
only one of the four outcomes. Moreover, the number of
possible combinations grows exponentially along with the
number of aliases for each entity. As seen from the relation
detection experiment in section 4.4, knowledge related to



aliases can improve a relation detection system by provid-
ing more accurate information related to the co-occurrences
of entities.

6. CONCLUSION
In this paper, we specifically addressed the problem of

extracting aliases of a given name from the web. We pro-
posed a lexical-pattern-based approach to represent the var-
ious ways in which names and aliases are introduced on the
web. Using a set of name-alias pairs, we proposed a method
to extract such lexical patterns automatically from snippets
returned by a web search engine. We then used the ex-
tracted patterns to determine candidate aliases of a given
name. We proposed a word co-occurrence measures using
anchor texts and page counts to evaluate the confidence
of an candidate alias for a name. Moreover, the various
ranking scores proposed in the paper were integrated us-
ing ranking support vector machines to leverage a robust
ranking function. We evaluated the proposed method us-
ing both personal and place names. The proposed method
outperformed numerous baselines introduced in the paper
and previous work on alias extraction. Moreover, indepen-
dent evaluations on English and Japanese datasets suggest
the possibility of extending the proposed method to other
languages.
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