
A.A. Ozok and P. Zaphiris (Eds.): Online Communities, LNCS 5621, pp. 182–190, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

A Life-Like Agent Interface System with Second Life 
Avatars on the OpenSimulator Server 

Hiroshi Dohi1 and Mitsuru Ishizuka2 

1 Dept. Information and Communication Engineering, Graduate School of Information  
Science and Technology, University of Tokyo 

2 Dept. Creative Informatics, Graduate School of Information Science and Technology,  
University of Tokyo 

7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 
dohi@mi.ci.i.u-tokyo.ac.jp 

Abstract. This paper describes a design of a life-like agent interface system 
with Second Life avatars on a 3D virtual world. We have implemented our pro-
totype system on the OpenSimulator server, instead of the Linden Lab’s Second 
Life server. It is open source and a Second Life official viewer can connect it. 
Although it is still an alpha version and has various problems at present, it has 
many advantages. Our avatar can be controlled by event-driven. And the script 
is environment-independent since the other avatars might be changing the 
world. We have built up our portable experimental environment (our avatar 
controller, the OpenSimulator server, and the Second Life viewer) on an ordi-
nary laptop PC (Windows Vista).  It can run even if it is standalone, without an 
Internet connection. 

1   Introduction 

An online 3D virtual world has grown explosively. For example, the Linden Lab’s 
“Second Life” has more than 15 million residents (registered users). [10] And many 
companies from different industries have entered the Second Life world aiming at 
major business opportunities. In spite of these situations, their evaluation to the Sec-
ond Life is modest. We can easily find many “desolate” towns in the Second Life 
world. There are glittering shops; however no people often exist there. Internet ser-
vices have allowed removing barriers of time and location. Unmanned Web servers 
can offer much information for 24 hours / 7 days. On the other hand, a 3D virtual 
world simulates our real life, and a user operates each avatar. That is, it may cause the 
simple problem again; each area has own “activity” time and hot spots. It may be 
helpful to create an autonomous avatar working every time in the 3D World. 

Until now many life-like agent interface systems have been developed in various 
research labs. We developed a life-like agent interface system with a realistic face and 
speech dialog function, called Visual Software Agent – II (VSA-II) [2], and learned 
much about agent (avatar) control techniques through this research. It worked well in 
our Lab, but it was difficult to become popular. It used a special agent model and 
required some complicated setup. And it didn’t have any easy tools to create various 
contents and environments. In other words, it was missing a common platform. 



 A Life-Like Agent Interface System with Second Life Avatars 183 

  

Fig. 1. Visual Software Agent-II Interface System (VSA-II). The girl is a 3D CG virtual agent 
(avatar) with the realistic face generated from one photograph. The picture is texture-mapped 
onto a 3D deformable wire-frame model. And then the agent is composed with a live back-
ground image (right). A user can talk with her like a videophone.   

Our research goal is to realize autonomous agents on 3D virtual world. We think 
that the Second Life platform and our life-like agent techniques can complement each 
other to build a useful new system. In the Second Life world, we can create and cus-
tomize anything with available easy-to-use building tools. And the residents in Sec-
ond Life can install and use the client viewer on Windows and Linux environment.  

Ullrich et al. have developed new client software for Second Life that controls vir-
tual agents. They make use of the Multimodal Presentation Markup Language 3D 
(MPML3D) to define the behavior of the agents [11]. 

Daden Ltd. has developed Second Life based avatar chatbots, “Abi Carver” – a vir-
tual receptionist and “Halo Rossini” – an autonomous research bot. These are com-
mercial products. Daden Ltd. has long experience of chatbots and applies it within the 
Second Life [1]. 

We have developed a prototype of a life-like agent interface system with Second 
Life avatars. The Second Life official server is a commercial product. It is hosted at 
the Linden lab, and many users (Second Life residents) access it simultaneously 
through an Internet connection. We adopt the OpenSimulator server [8] instead of the 
Linden Lab’s server. We can connect it as well using the Second Life official viewer. 
Although the server is still an alpha version and has various problems at present, we 
think it has many advantages for our research purpose. Ullrich has also attempted to 
integrate MPML3D with the OpenSimulator [12]. Our prototype system is clearly 
another implementation. 

2   OpenSimulator Server and OpenMetaverse Library 

The OpenSimulator [8] is an open source 3D application server. It can be used to 
create a 3D virtual world, and we can access it with the Linden Lab’s official client 
viewer. The OpenSimulator is not just another implementation of the Second Life 
server. It includes much experimental extension.  



184 H. Dohi and M. Ishizuka 

OpenSimulator
Server

(OpenSim)

Linden Lab’s 
Official

Second Life
Server

Client Software

??

Linden Lab’s 
Official

Client Viewer

Fair

Linden Lab’s
World (grid) Other worlds

Good

OpenMetaverse 
library

Client SoftwareClient Software
 

Fig. 2. OpenSimulator server and OpenMetaverse library 

The OpenMetaverse library [7] (its former name is libsecondlife [5]) is another 
open source project in order to study how Second Life works. It is also used to de-
velop original client software for the Second Life official server.  

Since both the OpenSimulator and the OpenMetaverse library are still on alpha 
version at this time and include many problems, it is not necessarily recommended to 
combine these softwares. We think, however, this combination may be very attractive 
for us. 

They have many advantages, especially for research purposes, such as shown  
below. 

• Open sources.  
 Hence we can access and investigate internal codes. 
• It can run in standalone mode on a local PC.  

It does not necessarily require high-speed network connection. We can easily build 
private environment.  

• Free of charge. 

We can use a free land about 16 acres for any activities on the OpenSimulator server. 
It also requires no service charges to upload some materials. 

On the other hand, we sometimes encounter various problems when using the 
OpenSimulator. Therefore we have sometimes to apply our own patches in order to 
avoid the problems / bugs. 

3   Life-Like Agent Interface System on 3D Virtual World 

3.1   System Configuration 

Fig. 3 shows our prototype system configuration. It consists of an avatar controller 
module, the OpenSimulator server, and at least one Second Life viewer. 



 A Life-Like Agent Interface System with Second Life Avatars 185 

OpenSimulator
Server

OpenMetaverse
library

Second Life
Viewer

Second Life
Viewer

Linden Lab’s Official
Client Viewer

Guests 
on Internet 

(Watch the scene, and 
direct control)Script

engine
Chat 
engine

Environment
manager

Avatar
manager

On Windows XP/Vista 
(Standalone)

“cast” avatar “guest-0(privilege)”
avatar (optional)

“guest-1” avatar “guest-n” avatar

Avatar controller

 

Fig. 3. System configuration 

In this paper, we call the computer-controlled avatar the “cast avatar”, and other 
avatars that controlled directly by humans the “guest avatar”. 

Avatar Controller. The avatar controller controls the cast avatar automatically in-
stead of a human. It is one of Second Life client software, and can log in to the server 
like the Second Life viewer. The server cannot distinguish the avatar controller with a 
human.  

The avatar controller consists of following functional blocks. 

1. OpenMetaverse library  
The avatar controller can access the OpenSimulator server through the Open-
Metaverse library. 

2. Avatar manager 
The avatar manager controls the avatar in cooperation with both the chat engine 
and the script engine. 

3. Environment manager 
The environment manager accesses the server periodically and gets avatars infor-
mation in the world. It also gets the inventory list and resolves the object name and 
UUID. 

4. Chat engine 
The chat engine receives a text from other avatars through a chat channel, and  
replies to it. It also invokes scripts for a presentation. 



186 H. Dohi and M. Ishizuka 

5. Script engine 
 The script engine manages various predefined scripts. 

Second Life Viewer(s). Our avatar controller module doesn’t have an own viewer. In 
order to watch the cast avatar in the scene, we use a Second Life official viewer. The 
viewer joins the Second Life world as a guest avatar with another login name. That is, 
we need at least two login accounts. Then we can watch the cast avatar and the scene 
from the back of the guest avatar. 

The viewer is optional. The cast avatar appears on other client viewers when the 
avatar controller joins (logged-in) the Second Life world even if it doesn’t have own 
viewer. Thus, the avatar controller can work on an old PC with modest graphics  
performance.  

Privilege Avatar. A privilege avatar is one of guest avatars, and uses a special login 
name. This avatar can also control the chat avatar and objects directly through a chat 
channel. It is mainly used for debugging purpose. Other guest avatars ask some ac-
tions to the cast avatar through the chat channel, but their requests are not necessarily 
accepted. 

3.2   Implementation 

The OpenSimulator server supports multiple platforms, i.e. Windows, Linux, and Mac 
OS. We have implemented and tested our prototype system on Windows XP/Vista.  

Second Life has excellent 3D graphics. Although it is said that the Linden lab’s of-
ficial viewer requires both high-performance graphics card and high-speed networks, 
a recent mid-performance PC may be able to run it since Windows Vista has  
advanced graphics interface.  

We have built up one of our experimental environments (the avatar controller, the 
OpenSimulator server, and the official viewer) on an ordinary laptop PC.  Its specifi-
cation is, Windows Vista, Core2 Duo CPU 1.6GHz, GM965 express chipset, and 2GB 
memory. It uses an integrated graphics controller on the GM965 chipset and has no 
high-performance GPU.  

It can work even if it doesn’t have Internet connection.  
Fig. 4 shows a screen snapshot of our experimental environment on Windows 

XP/Vista. 

3.3   Environment-Independent Script 

It is important that scripts for the avatar control are environment-independent and 
reusable.  

These are simple examples of our “greeter” scripts. (Low-level scripts.) 

 Turnto   $guest  ; turn to the guest avatar. 
 Moveto   $guest  ; step forward to the guest avatar. 
 Anim    HELLO  ; HELLO action. 
 Say    “Hi, $guest” ; say “Hi, (guest name)” 

;        through the chat channel. 
 Display  img1,screen1 ; display “img1” on “screen1”. 



 A Life-Like Agent Interface System with Second Life Avatars 187 

Second Life viewer

Avatar controller

cast avatar

guest avatar

OpenSimulator

 

Fig. 4. A screen snapshot of our experimental environment on Windows XP/Vista. There are 
three windows, the avatar controller (bottom-left), OpenSimulator (top-left), and the Second 
Life viewer (right). In the Second Life viewer, there are two large displays behind the cast 
avatar, and their images are changed along the presentation. 

The argument “$guest” is a variable. The environment manager binds guest avatar 
information to “$guest” at the execution time. The cast avatar cannot know who 
comes in advance. The environment changes as time goes on. This binding may 
change dynamically. 

The “$guest” has information of one avatar at most, however it has multiple mean-
ings. In case of “Turnto / Moveto” instructions, “$guest” means the location of the 
guest avatar. It is replaced with the guest avatar name in “Say” instruction. 

The “Display” instruction displays an image [img1] on an object [screen1]. It 
is actually a texture mapping to the object. The words “img1” and “screen1” are 
just names of a texture image and a primitive object, respectively. Because of the 
restriction of the Second Life server, the image should be uploaded beforehand. 

The “screen1” is mapped to the object on the 3D world at the execution time of the 
script. The script doesn’t know the shape of the “screen1”. When the object is box-
type, it looks like a projector screen or a large display. If it is cylinder-type, it may 
look like an advertisement pillar.  



188 H. Dohi and M. Ishizuka 

4   Discussion 

4.1   Life-Like Agent Interface System on the Second Life World 

Lasting World. The life-like agent interface system on the Second Life world is 
different from conventional one in several respects. One of the remarkable differences 
is that the Second Life world is lasting beyond the server down.  

A conventional life-like agent interface system, in general, starts with the new 
(empty) state every time. The first task is to set up the environment using an initialize 
script, e.g. avatar’s start position, avatar’s appearance, background, lighting, small 
objects around avatars, etc. It can replicate avatar interaction since it “resets” the 
environment at every startup time.  

In the Second Life world, once an object is created and put on the world, it remains 
there until someone deletes it explicitly. The OpenSimulator server has a link with a 
database engine, and restores the previous environment data from the database at the 
startup time. It can take over the environment even if the server restarts. 

In addition, someone (avatars) might be changing the world, e.g. put on a new ob-
ject or take away an old one, while your avatar is logged off. It may cause some prob-
lems for avatar interaction that the avatar cannot assume the environment exactly. 
Therefore, the script should be environment-independent. 

All objects, e.g. prim (primitive object), avatar, texture, etc, have own Universally 
Unique Identifier (UUID) in the Second Life world. Many of the OpenMetaverse 
libraries APIs use UUID directly in order to identify objects. This is, however, incon-
venient and frustrating to write a script because UUID consists of a 16-byte number 
(32 hexadecimal digits). 

In our script, we use a name instead of UUID. Both the OpenSimulator server and 
the OpenMetaverse library use UUID. If the script includes UUID, it cannot be  
reusable. The copied object has another UUID different from original one. 

The environment manager has an inventory list on the world, and resolves the 
name and UUID. The name is not necessarily unique in the 3D world since the owner 
of the object can give arbitrarily one. If some objects have the same name on the in-
ventory list, the system chooses one object randomly. If it cannot find the named 
object, the script will be ignored. 

Avatar Information. In the Second Life world, we can get various types of avatar 
information from the server, e.g. avatar’s location and direction, etc. It seems slightly 
tricky; however it is useful information to establish natural communication. While it 
is easy for a human to watch the avatar’s behavior, the avatar cannot get any informa-
tion from the scene image. 

In a conventional interface system, it assumes that a user takes a seat in front of a 
computer display. The avatar waits a start cue from the user for the interaction, e.g. 
clicking a mouse, or typing a keyboard. It usually has no way to know that the user 
gets up and walks away. Once the avatar starts a presentation, it will carry out until 
the end even if nobody watches it. 

In our system, the cast avatar is controlled by event-driven. All avatars can walk 
around freely in the world. Its communication starts in three ways as follows.  
 



 A Life-Like Agent Interface System with Second Life Avatars 189 

1. The guest avatar talks to the cast avatar. 
2. The cast avatar searches the guest avatar explicitly.  
3. The guest avatar is approaching to the cast avatar. 

In case 1, the guest avatar initiates the communication. This is an ordinary way. When 
the guest avatar talks to the cast avatar through a chat channel, it raises a “chat” event. 
And it invokes the chat-event-handler with both the guest name and text strings. The 
cast avatar turns to the guest avatar, and then replies. 

In case 2, in contrast, the cast avatar initiates the communication. First, the cast 
avatar searches the guest avatar explicitly. If it finds the guest avatar, the cast avatar 
talks to the guest avatar. If the guest avatar is far away, the cast avatar may step  
forward to before talking to. 

If both avatars don’t initiate the communication and the guest avatar is approaching 
to the cast avatar within a predefined distance, the event manager raises an  
“avatar location” event once. This is case 3, in which the event invokes the avatar-
location-event-handler with the location, the distance, and the direction of the guest 
avatar. 

It is important to know the direction of the guest avatar. When the guest avatar 
steps forward and within the distance, the cast avatar says “hi”. But the cast avatar 
says “excuse me,” if the guest avatar steps back. 

The direction also shows avatar’s interest. If the cast avatar talks to but the guest 
avatar looks another direction, the guest avatar has another interest. 

The “avatar location” event is also raised when the guest avatar walks away. Then 
the cast avatar will abort the presentation and say “good-bye”. 

4.2   OpenSimulator vs. Second Life Official Server 

The OpenSimulator is suitable especially for research purpose because it is open source 
and we can get free land. Since it is the private server, we can have any experiences 
without bad influence to others. 

In the Second Life world, having own land is essential for any activities in practice. In 
the official server, it costs to get and maintain own land, although a free membership 
account is available. We cannot build any building on a public space. 

In addition, the official server restricts the number of objects and the size of scripts. 
They depend on the area size of the owned land. If we built a complex building, it 
may require a broad land. 

On the other hand, we have to manage the OpenSimulator server. The number of 
the OpenSimulator source codes files written in C# is more than 1,000, and the num-
ber of the OpenMetaverse library is about 500. Some functions are not implemented 
yet and some bugs remain. The development version is updated every day. Some 
problems are fixed and new experimental functions are added daily, and sometimes 
they bring new bugs. It requires a certain level of skills to fix bugs. 

5   Conclusion 

In this paper, we have described our life-like agent interface system with Second Life 
avatars on the OpenSimulator server. Although now the OpenSimulator currently has 



190 H. Dohi and M. Ishizuka 

some problems, it has many advantages compared with the Second Life official 
server, especially for research purpose. A prototype system is working on a laptop PC 
with Windows Vista. We hope it will be contribute as a test bed for developing an 
autonomous agent on the virtual 3D space. 

References 

1. Daden limited, http://www.daden.co.uk 
2. Dohi, H., Ishizuka, M.: Life-like Agent Interface on a User-tracking Active Display. In: 

Smith, M.J., Salvendy, G., Harris, D., Koubek, R.J. (eds.) Usability Evaluation and Inter-
face Design: Cognitive Engineering, Intelligent Agents and Virtual Reality, vol. 1, pp. 
534–538 (2001) 

3. Friedman, D., Steed, A., Slater, M.: Spatial Social Behavior in Second Life. In: Pelachaud, 
C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS 
(LNAI), vol. 4722, pp. 252–263. Springer, Heidelberg (2007) 

4. Kamel Boulos, M.N., Hetherington, L.: Wheeler. S.: Second Life: an overview of the po-
tential of 3-D virtual worlds in medical and health education. Health Information and Li-
braries Journal 24(4), 233–245 (2007) 

5. libsecondlife www page, http://www.libsecondlife.org 
6. Nagaoka, T., Watanabe, S., Sakurai, K., Kunieda, E., Watanabe, S., Taki, M., Yamanaka, 

Y.: Development of Realistic High-Resolution Whole-Body Voxel Models of Japanese 
Adult Male and Female of Average Height and Weight, and Application of Models to Ra-
dio-Frequency Electromagnetic-Field Dosimetry. Physics in Medicine and Biology 49, 1–
15 (2004) 

7. OpenMetaverse Foundation, http://www.openmetaverse.org 
8. OpenSimulator www page, http://opensimulator.org 
9. Quax, P., Monsieurs, P., Jehaes, T., Lamotte, W.: Using Autonomous Avatars to Simulate 

a Large-Scale Multi-User Networked Virtual Environment. In: International Conference 
on Virtual-Reality Continuum and its Application in Industry (VRCAI 2004), pp. 88–94 
(2004) 

10. Second Life official site, http://secondlife.com 
11. Ullrich, S., Bruegmann, K., Prendinger, H., Ishizuka, M.: Extending MPML3D to Second 

Life. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), 
vol. 5208, pp. 281–288. Springer, Heidelberg (2008) 

12. Ullrich, S., Prendinger, H., Ishizuka, M.: MPML3D: Agent Authoring Language for Vir-
tual Worlds. In: International Conference on Advances in Computer Entertainment Tech-
nology (ACE 2008), pp. 134–137. ACM Press, New York (2008) 


	A Life-Like Agent Interface System with Second Life Avatars on the OpenSimulator Server
	Introduction
	OpenSimulator Server and OpenMetaverse Library
	Life-Like Agent Interface System on 3D Virtual World
	System Configuration
	Implementation
	Environment-Independent Script

	Discussion
	Life-Like Agent Interface System on the Second Life World
	OpenSimulator vs. Second Life Official Server

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




