
AN INTERACTIVE PRESENTATION SYSTEM IN A 3D VIRTUAL WORLD
USING AN OPENSIMULATOR SERVER

Hiroshi Dohi 1 Mitsuru Ishizuka 2

1 Dept. Information and Communication Engineering, Graduate School of Information Science and

Technology, University of Tokyo
2 Dept. Creative Informatics, Graduate School of Information Science and Technology,

 University of Tokyo
dohi@mi.ci.i.u-tokyo.ac.jp

ABSTRACT

We have developed a prototype of an interactive
presentation system with avatars in a 3D virtual world.
A 3D avatar can have a presentation to other avatars by
simple chat and a variety of actions using various
images / 3D objects. In a 3D virtual world, each user
has own 3D avatar figure, and can watch the scene from
arbitrary own viewpoint. The avatar controller joins
(login) to the server as one of client software, and
controls the avatar instead of a human. And the avatar
can change its behavior depending on the user’s avatar
behavior and body direction. We make use of an open
source 3D application server, the OpenSimulator
(OpenSim). It is effective to built up the 3D avatar
presentation environment, although we sometimes
encounter various problems / bugs at present.

1. INTRODUCTION

A 3D virtual world is rapidly becoming popular.
Especially, Linden Lab’s Second Life [11] has gathered
up more than 15 million registered users all over the
world. It simulates our real life in the 3D virtual world.
Some researches become to make use of Second Life
[3][5].

In the 3D virtual world, each user operates own
avatar manually. Hence, it spontaneously arises
“business hour” and “hot spots” in each place. As a
result, it causes many desolate towns, e.g., shops with
no clerk and empty streets. WWW servers can always
accept any requests, and return much information
automatically. Thus it will become important to create
an autonomous avatar that acts as a shop assistant and a
secretary for 24 hours [2][12].

We have developed a prototype of an interactive
presentation system with 3D avatars. As a 3D
environment platform, we make use of an open source
3D application server, OpenSimulator [10], and its
access library, OpenMetaverse library [9].

2. OPENSIMULATOR

2.1. A 3D avatar interface system

In avatar interface systems, an avatar is classified
broadly into two categories. One is a 2D avatar, and
another is a 3D avatar.

The 2D avatar is an animated character. It can
express anything if it is possible to draw. Microsoft
developed an excellent 2D avatar interface system,
called the Microsoft Agent (MS Agent) [7], and
distributed it with speech libraries without charge. It
had been also included in the old version of the
Microsoft Office software. It is high quality and easy-
to-use software, and makes a strong impact to other
avatar interface systems. (Microsoft has decided to
discontinue development of Microsoft Agent
technologies.)

The 3D avatar is a 3D CG character. It uses, in
general, a deformable 3D wire-frame model and applies
texture mapping or rendering techniques to it. In
previous times, some 3D avatar interface systems had
been developed, and only a few systems survive [4].
One reason is that it is difficult to make attractive 3D
avatars and fascinating 3D environments. Most 2D
avatar interface systems are built on the MS Agent
technologies. The 3D avatar interface systems missed
common high-level platform technologies, like the MS
Agent for 2D avatars.

2.2. OpenSimulator server vs. Second Life server

Second Life gives us the fascinating 3D virtual world
with high quality graphics, and it has already gathered
huge number of users. Linden Lab has distributed the
free official viewer, and all users can enter the 3D world
at no fee.

OpenSimulator is also a platform for operating a
3D virtual world. It can be used to create the virtual
environment that can be accessed through a variety of
clients, on multiple protocols. The OpenSimulator is not
just another implementation of the Second Life server,

Proceedings of the IIEEJ Image Electronics
and Visual Computing Workshop 2010

Nice, France, March 5-7, 2010

although it can be used to simulate a virtual
environment similar to Second Life.

Table 1: Second Life vs. OpenSim

 Second Life OpenSimulator
System type:
 Commercial Open source

Source code No Open
Extendability No Yes

Expenses:
Land Paid Free
Upload data Paid Free

Server:
Standalone mode No Yes
Grid mode Yes Yes
Second Life

 protocol
Yes Yes

System stability:
 Good Poor

Table 1 shows a comparison of Second Life and the

OpenSimulator.

(1) System type
Second Life is basically a commercial system. Linden
Lab has contributed a great deal to open source
community, and has opened the source codes of an
official viewer. Ones of the servers are not open
because they include accounting and authentication
systems.

The OpenSimulator is open source software, and
we can easily get huge source codes and many
documentation. These are very helpful for us to analyze
complex protocols and develop our own avatar control
system. The server is designed to be easily extendable
through loadable modules to build completely custom
configurations.

(2) Expenses
 It needs money (Linden dollars) to do something in the
Second Life world like in our real life, although we can
enter into the Second Life world at no fee.

It is essential to get (buy or rent) own land for any
activities in practice, e.g., events, shops, and my home
etc., since it is not allowed to put any private objects in
public spaces nor change in public terrain. And in order
to keep graphics performance, the size of the own land
restricts the number of total objects put on the land. The
maximum size of each object is a 10m cube. Hence,
when we build a tall building, it requires large land
spaces.

It also requires service charge to upload various
materials like texture image, sound, and animation data
into the virtual world from our real world.

In the OpenSimulator server, we can use a large
land about 16 acres (256 meters square) / server for any

activities without charge. And it doesn’t require any
service charge.

OpenSimulator
Server

(OpenSim)

Linden Lab’s
Official

Second Life
Server

Client Software

??

Linden Lab’s
Official

Client Viewer

Fair

Linden Lab’s
World (grid) Other worlds

Good

OpenMetaverse
library

Figure 1: Virtual world servers and clients

(3) Server
Linden Lab hosts all their Second Life servers. We need
high-speed network connection to enjoy comfortable
virtual life, since many packets are exchanged between
the server and the local client through network.

On the other hand, the OpenSimulator server runs
on a local PC. Hence we don’t need to upload important
data with security risk to the outer server. We can keep
all private data in our laboratory. The server supports
both “standalone” mode and “grid” mode.

In standalone mode, the server runs on a single
local PC. It can accept multiple client connections
through network. If both the server and the client
viewer run on the same PC, it doesn’t necessarily
network connection.

In grid mode, our server on the local PC can join a
virtual world grid through network. Second Life
(Linden world) forms another grid because it is a
commercial system.

Figure 1 shows relationship between 3D virtual
world servers and clients.

Amazingly, the OpenSimulator server has client
compatibility with Second Life protocols. It means that
we can access the server with a Second Life official
viewer. However, the OpenSimulator developer team
doesn’t promise to implement and support all functions
and protocols of the Second Life in the future.

The OpenMetaverse library (its previous name is
libsecondlife) [9] is an open source access library for
3D virtual world. It is used for creating clients and
automatons in Second Life and the OpenSimulator
server.

(4) System stability
At present, unfortunately, the OpenSimulator and the
OpenMetaverse library are not stable to satisfactory
extent yet. Whereas some functions of the Second Life
are not implemented yet, it adds much experimental
extension modules that Second Life doesn’t have. Many
programmers modify and update the huge source codes
every day, then many bugs are fixed and new bugs are
introduced. Therefore, it may require specific
programming skills to make really good use of the
software.

As a result, we chose the OpenSimulator server
and the OpenMetaverse library. This combination may
be very attractive for our research. The source codes are
important and helpful for us. We have sometimes to
apply our own patches in order to avoid the problems /
bugs.

3. SYSTEM CONFIGURATION

Guests
on Internet

Avatar
controller

On Windows XP/Vista
(Standalone)

OpenSimulator
Server

(optional)

Figure 2: System configuration

3.1. Overview

Figure 2 shows our system configuration.
We have built up one of our experimental environments
(the avatar controller, the OpenSimulator server, and the
Second Life viewer) on an ordinary laptop PC
(Windows XP/Vista).

Each guest user logins the server through network
and watches the 3D scene from the arbitrary own
viewpoint.

Our avatar controller is one of client software. It
logins to the server, and then it pretends a human and
controls the avatar. The avatar controller itself doesn’t
have a scene viewer, however other guest users can
watch the avatar figure. Thus, it can run on an old PC
with modest graphics performance. The optional viewer
is used for monitoring the 3D scene if necessary.

3.2. Avatar controller

Avatar
manager

OpenSimulator
Server

Chat engine

Script engine

Environment
manager

O
penM

etaverse
library

database

Avatar controller

Figure 3: Avatar controller

The avatar controller consists of 5 modules.
Figure 3 shows these modules in the avatar controller.

1. Avatar manager
It decides and controls avatar’s behavior in
cooperation with other modules.

2. Chat engine
It receives a chat text from other avatars through a
chat channel, and replies it. It supports both English
and Japanese.

3. Script engine
It manages various presentation scripts. In addition
to presentation texts, it controls the avatar’s position,
action, and images displayed on a screen along the
scripts.

4. Environment manager
It has two important roles.
• It tracks the behavior of all avatars in the world.
• It converts object names to UUIDs (Universal

Unique ID).
5. OpenMetaverse library

All modules above access the OpenSimulator server
through this library. The environment manager has
also another communication channel with the server
for the efficiency.

Figure 4: A screen shot of our prototype system

Figure 4 is a screen shot of our prototype system.
There are two avatars. The avatar controller

controls the avatar in front of a screen, and a guest user
controls another one (foreground) manually. In order to
distinguish two avatars, we call the avatar that the
“user” controls manually, the “guest” avatar; and one
that our system controls with software, the “cast” avatar.
Two avatars can communicate through chat channel.
The cast avatar can change the images of screens by
chat or along with the presentation script.

4. DISCUSSION

4.1 User’s avatar behavior and body direction

Many of avatar interface systems, in general, assume
that a single user takes a seat in front of the PC display
over the presentation. Once the user clicks a start button
for the presentation, the avatar proceeds a presentation
till the end of a script, even if the user gets bored and
walks off in the middle. It is because there is no way of
getting the user’s state.

In the 3D virtual world, a user’s avatar behavior
and body direction gives us much information. On the
other hand, in the pervasive 2D avatar system like the
Microsoft Agent and 3D avatar system with fixed
viewpoint, the user can’t have own avatar figure. That is,
the avatar system can’t observe user’s behavior.

The guest avatar can walk freely to anywhere at
any time in the 3D world. When the guest avatar comes
to the cast avatar, we guess that the user may want to
have communication with the cast avatar. If the guest
avatar suddenly turns back and walks away during the
presentation, we know that the user gets bored or has no
interest in the contents of the presentation.

Guest-1 (x, y)

Cast (X, Y)

Body Direction (d)

Body Direction (D)

LookAt

TalkTo

Idle

Figure 5: Avatar position and body direction

When the user logouts the server, the guest avatar
also disappears. If the user keeps login but leaves the
seat, the guest avatar becomes “away” state.

 In our system, the environment manager
periodically accesses the OpenSimulator server and
gathers the position and direction information of all
avatars in the world.

Figure 5 shows avatar position and body direction.

1. If the guest avatar is far away, the cast avatar takes
random idle action and walks around the
presentation stage.

2. When the guest avatar is approaching to the cast
avatar and comes within the predefined distance, the
cast avatar turns the body to the guest avatar. The
user may find out the cast avatar looks at the guest
avatar.

3. If the guest avatar moves closer to, the cast avatar
says to the guest avatar, “hello”, “hi”, “how are you”,
and so on.

4. If the guest avatar moves closer to but steps back,
the cast avatar says, “excuse me”.

5. If the guest avatar ignores the word from the cast
avatar and looks another direction, the user has
another interest.

6. If the guest avatar turns back and walks away, the
cast avatar breaks the presentation, and say, “thank
you” and “good bye”.

4.2. Chat engine

The chat engine receives a chat text from other avatars,
and then replies it.

As the chat engine, we adopt two programs. One is
a simple pattern-matching program with regular
expressions written in C# language, and another is an
AIML (Artificial Intelligence Markup Language)
engine [1]. The AIML is an XML dialect for creating
natural language software agents, and its performance
has been highly appreciated. It is also free software, and

we can get sample implementations written in various
programming languages and some AIML sets (AIML
“brain” files).

In our system, received texts from other avatars are
sent to the pattern-matching program first, and then if
matching is failed it passes to the AIML engine.

AIML works very well for English texts, however,
it is not necessarily efficient for Japanese linguistically.
Since Japanese texts are spelt in several different ways,
the number of matching patterns increases rapidly.
Japanese usually use a mixture of different types of
characters, kanji characters, hiragana and katakana
phonetic scripts, and sometimes the Roman alphabet.
And in Japanese sentences, subjects are often missing.

The AIML set affects the performance of AIML.
Some groups apply AIML to Japanese, however the
public AIML set for Japanese are very few.

4.3. Mapping from name to UUID

The environment manager converts the name appeared
in the presentation script to UUID (Universal Unique
ID).

UUID is a 16-byte unique number (32 hexadecimal
digits). All objects in the 3D world, e.g. prim (primitive
object), avatar, texture, etc, have own UUID. The
OpenSimulator server manages all objects using UUID
internally, however it is inconvenient and frustrating for
us to write a presentation script that includes UUID.

For example, in Figure 4, in order to show the
image “whether_map” on the display “left_screen”, our
low level script is simple,

Display whether_map, left_screen

The environment manager converts the name

“whether_map” and “left_screen” to those UUIDs, and
then sends the command to the server.

The name is not unique in the virtual world. If two
objects have the same name, our system chooses one
randomly.

We have prepared a direct access mechanism to the
database of the server. Client software always gets all
information from the OpenSimulator server with
Second Life protocol. In some cases, however, it may
not be efficient because of the packet structure. For
example, UUID-to-name conversion is easy. Since
UUID is unique, the number of the return value is only
one. However, name-to-UUID conversion may take
much time. It retrieves the name properties of all objects
first since many objects may have just the same name.

We can select the data from the database by the
SQL statement, and get result data only. It is tricky way,
but it is efficient and enables to provide fast response to
the user. And it is independent of the server
implementation that is changing fast every day.

5. CONCLUSION

In this paper, we presented our design and

implementation of our interactive presentation system
with 3D avatars. Using the OpenSimulator server for a
3D virtual environment is an attractive approach,
although it is not stable yet. The 3D avatar interface
systems missed common high-level platform
technologies, like the Microsoft Agent for 2D avatars.
The OpenSimulator will encourage making fascinating
3D environments. The 3D avatar interface system
simulates our real life in the 3D virtual world, and then
we can get user’s state by observing the user’s avatar
behavior.

Future work will focus on creating autonomous
agent with human-like behavior and natural
communication ability in the 3D virtual world.

6. REFERENCES

[1] “Artificial Intelligence Markup Language (AIML) Version

1.0.1”, A.L.I.C.E. AI Foundation Working Draft, 8 August
2005 (rev 008), 2005

[2] Daden limited, http://www.daden.co.uk
[3] Friedman, D., Steed, A., Slater, M.: “Spatial Social

Behavior in Second Life”, International Conference on
Intelligent Virtual Agents 2007 (IVA-2007), LNCS (LNAI),
vol. 4722, pp.252–263, Springer, 2007

[4] Hayashi, M., Ueda, H. and Kurihara, T,: “TVML (TV
program Making Language) - Automatic TV Program
Generation from Text-based Script –”, ACM Multimedia'97
State of the Art Demos, 1997

[5] Kamel Boulos, M.N., Hetherington, L., Wheeler. S.:
“Second Life: an overview of the potential of 3-D virtual
worlds in medical and health education”, Health
Information and Libraries Journal, vol. 24, Issue 4, pp.
233–245, 2007

[6] Maes, P.: “Agents that Reduce Work Overload and
Information Overload”, Communications ACM, pp. 31-40,
1994.

[7] Microsoft Agent, http://msdn.microsoft.com/en-
us/library/ms695784(VS.85).aspx

 (See also, “Microsoft Agent Software Development Kit
and Design tools”, Microsoft Press, 1997)

[8] Nagaoka, T., Watanabe, S., Sakurai, K., Kunieda, E.,
Watanabe, S., Taki, M., Yamanaka, Y.: “Development of
Realistic High-Resolution Whole-Body Voxel Models of
Japanese Adult Male and Female of Average Height and
Weight, and Application of Models to Radio-Frequency
Electromagnetic-Field Dosimetry”, Physics in Medicine
and Biology, vol. 49, pp. 1–15, 2004

[9] OpenMetaverse Foundation,
 http://www.openmetaverse.org

[10] OpenSimulator Main Page,
http://opensimulator.org/wiki/Main_Page

[11] Second Life official site, http://secondlife.com
[12] Ullrich, S., Bruegmann, K., Prendinger, H., Ishizuka, M.:

“Extending MPML3D to Second Life”, International
Conference on Intelligent Virtual Agents 2008 (IVA-2008),
LNAI, vol. 5208, pp. 281–288, Sprinter (2008)

