
AN INTERACTIVE 3D AVATAR PLATFORM ON THE OPENSIM SERVER

CONTROLLED WITH IRONPYTHON LANGUAGE

Hiroshi Dohi Mitsuru Ishizuka

Dept. of Information and Communication Engineering,

Graduate School of Information Science and Technology, University of Tokyo, JAPAN

dohi@mi.ci.i.u-tokyo.ac.jp

ABSTRACT

We have developed a new prototype of an interactive

3D avatar interface platform on the OpenSim server. It

is redesigned and implemented using IronPython

programming language. Our previous prototype was

written in C# language, and it was modest to update

scripts for avatar interaction. IronPython is an open-

source implementation of Python language on the

Microsoft .Net framework. We can make use of both

expressive scripting ability of Python and various

functions of OpenMetaverse access library written in C#.

Our scripts for describing dialogue and avatar behavior

are also written in IronPython. It can modify part of

scripts dynamically. The combination of IronPython and

OpenMetaverse library is suitable for developing

interactive 3D avatar interface.

1. INTRODUCTION

Avatar interface in 3D virtual space is becoming

popular. A user controls his/her own avatar, and

communicates with other avatars (users) in common 3D

virtual world over network connection. It is also called

“3D Internet.” This is real-time and interactive (bi-

directional) communication style like our daily life.

“Second Life” [12] is a famous network service for

providing 3D virtual space with avatars that uses high

quality computer graphics. According to the report

released by Linden Lab. [16], the Second Life economy

remained stable and Q3 2011 web merchandise sales

volume grew 30% as compared with Q3 2010. Money

supply (Linden $) is equivalent to 29.3M US$.

About 2007, all sorts of companies had entered into

Second Life for seeking new business opportunities.

They compete to open the Second Life branch of their

companies on 3D virtual world, but they shortly closed

the branch and withdrew from Second Life quietly. As a

result, Second Life is often considered as a failure for

business platform.

It is important to recognize that 3D avatar interface

has different features from pervasive WWW. It isn’t a

simple extension from 2D to 3D.

OpenSimulator

Server

http Server

WWW

Our Interactive 3D Avatar platform

Contents

provider

(Server)

Users

(Clients)

operator

user

user

Avatar

controller

Contents

provider

(Server)

Users

(Clients)

Web browser

3D viewer

(No operator

24 hours / 7 days)

(assist the operator)

Fig. 1. Interactive 3D Avatar platform

Figure 1 shows WWW and interactive 3D avatar

platform.

In WWW, a user searches necessary information

unilaterally. Once you set up web pages, the WWW

server can accept requests from all over the world 24

hours / 7 days without an operator. Internet technology

has broken down barriers of time and distance. But it is

difficult for 3D avatar interface. It is because the

operator usually controls the avatar manually, and

communicates with the user. It spontaneously arises

“business hour” and “hot spots” in each place.

When we access the web page, there is generally no

way to know how many users are accessing the page at

the same time. The WWW server usually closes its

network connection immediately after it downloads web

data.

In 3D avatar interface, everybody knows easily how

many avatars are in the same virtual world. Nobody

would like to walk through a desolate ghost town even if

it is in the virtual world.

Avatar interface is expected as one of post WWW

media. We have developed a new prototype of an

interactive 3D avatar interface platform on the OpenSim

server. The avatar controller controls the avatar, and it

will assist the operator.

Proceedings of the IIEEJ Image Electronics
　　　　and Visual Computing Workshop 2012
 Kuching, Malaysia, November 21-24, 2012

In our previous prototype [3], we had a plan to use

simple low-level script language for describing avatar

interaction. However, we have found that it requires

more expressive description ability.

We have redesigned our prototype system, and the

new one is implemented with IronPython programming

language [5]. Scripts for describing dialogue and avatar

behavior in 3D virtual space is also written in

IronPython.

2. A 3D VIRTUAL SPACE

2.1. OpenSimulator (OpenSim) server

We have built our new prototype system on the

OpenSimulator (OpenSim) server [10].

OpenSim is an open source 3D application server.

The source code of OpenSim is more than 500k lines

(September 2012).

It has client compatibility with Second Life protocol.

It means that we can access the server with a free

Second Life official viewer that has already been

distributed widely for the Second Life server.

In Second Life, a large number of servers are

connected to each other in a network and it forms huge

3D virtual space. It is called “grid mode.”

OpenSim supports “standalone mode” too in

addition to grid mode.

In standalone mode, it runs single server process on

a local computer. We can get independent 3D virtual

space. Network connection is available.

A computer-controlled avatar is often prohibited in

the virtual world of game. (Currently Second Life

doesn’t prohibit the computer-controlled avatar unless it

put extra load on the server.) We don’t have such

restrictions in standalone mode.

On the other hand, OpenSim is yet alpha version.

The stability of the OpenSim server is modest. Both bug

fixes and adding new features are made in parallel, and

the source code is modified almost everyday. It may

occasionally require some patches.

2.2. Scene update

OpenSim uses a server-client model. Many avatars

(users) share common 3D virtual space. Each avatar can

have arbitrary viewpoint.

When a user logins to the OpenSim server, an avatar

emerges in 3D space. One client viewer corresponds to

one avatar. Each viewer has the template of the basic

3D avatar model, and receives visual parameter packets

from the server for updating the scene. Then each

viewer generates the scene image from own viewpoint

at the client-side.

OpenSim

Server

Viewer-A

Viewer-B

Viewer-C

Generate image-A

Generate image-B

Generate image-C

Avatar-A moves…

Update 3D scene data

Fig. 2. Packet transfer for scene update

Figure 2 shows packet transfer for scene update.

We can’t expect that the avatar actions be

synchronized on all viewers. The exact timing

specification may be meaningless. For example, when

the user moves the avatar position on the viewer-A, its

information packet is sent to the OpenSim server. Next,

the server sends back new avatar position information to

all clients one by one. It is not a broadcast packet from

the server. All clients didn’t get information

simultaneously. Then, each client viewer generates and

updates the scene image independently. The complexity

of the scene image and graphics performance is

different on each viewer.

2.3. Avatar control without manual operation

There are mainly two ways to control avatars and

objects without manual operation.

1. Embedded scripting language

2. Original client software

Second Life has embedded scripting language,

called “LSL (Linden Scripting Language)”. LSL script

is attached to a prim (primitive object) on 3D space, not

to the avatar directly. It is run by event-driven. There

are more than 300 functions.

In the OpenSim server, it supports “OSSL (OpenSim

Scripting Language)” in addition to the LSL.

The embedded scripting language is easy to use,

however the code size is restricted. Some LSL functions

delay script execution when they are called. It is

convenient to add a little event-driven feature, but it is

not suitable for describing complex dialogue and avatar

behavior.

 Another method is creating original client software

that controls the avatar without manual operation. It

needs to connect the server with Second Life protocol.

The client is not necessarily a viewer. We chose this

method. OpenMetaverse access library [9] is useful for

creating own original client. It is open source, and the

source code is about 340k lines (September 2012).

Avatar Manager

OpenSimulator

Server

Event handler
• Message event

•Avatar event

•Timer event

Environment

Manager

O
p

en
M

et
a
v
e
rs

e

L
ib

ra
r
y
(C

#
)

Local Database

Avatar controller (client)

Script for

Interaction
AIML

Word

Dictionary

Knowledge

Base

Communication

Logs

Fig. 3 System configuration

3. A DESIGN AND IMPLEMENTATION

Our avatar controller is one of client application for the

OpenSim server. (Figure 1) It doesn’t have viewer

function.

We assume that the avatar is in contents-provider

side. The avatar acts as an assistant or a guide for the

user. In Second Life / OpenSim, the avatar must have

own land for any activities since it is not allowed to put

any private objects in public space nor change in public

terrain.

Figure 3 shows our new prototype system

configuration.

3.1. IronPython

Our new prototype system is written in IronPython

programming language [5].

(Original) Python is one of famous scripting

languages (e.g. Ruby, Perl, and PHP etc). Some large

application programs that handle big data (e.g. the

Google App Engine and the Facebook etc.) use it. It is

also used for system configuration scripts on some

Linux distribution, Fedora and Ubuntu.

IronPython is an implementation of Python language

on the Microsoft .Net framework. Microsoft had

maintained IronPython, but it moved to open-source

community in 2010.

The salient feature of IronPython is that it can

access .Net library directly. That is, we can make use of

both expressive scripting ability of Python and various

functions of OpenMetaverse library written in C#.

3.2. System Configuration

The avatar controller consists of five modules. Because

of the expressive scripting ability of IronPython, most

of avatar control functions move to both the event

handler module and the scripts for interaction module in

our new prototype.

Avatar Manager The avatar manager has interface to

OpenMetaverse library. It defines basic avatar

behavior. It encapsulates and hides the raw function

of OpenMetaverse library API from scripts.

Event Handler When any changes in 3D virtual world

(e.g. the avatar speaks or moves) are informed to all

clients, the event handler invokes an appropriate

script.

Scripts for Interaction It is script pool for interaction.

The scripts are also written in IronPython.

Environment Manager The environment manager

manages avatars and objects in 3D virtual world. In

addition to OpenMetaverse channel, it has another

direct access channel to the local database of the

OpenSim server. It can get properties of the object

using SQL commands.

OpenMetaverse library Second Life protocol is very

complex. We use OpenMetaverse library in order to

control avatars. It is open source, and written in C#.

3.3. Event-handler

Our avatar operations are basically event driven. We

handle three types of events.

1. Message events

2. Avatar events

3. Timer events

In this paper, we call the avatar that is controlled

manually by the user “guest (avatar)”, and the

computer-controlled avatar is called “cast (avatar).”

3.3.1. Message events

When the guest speaks something (chat-typing), it

invokes an appropriate reply script. The script is an

IronPython function with two parameters, the guest

name “name” and its message text “mesg” in this

example.

This is a very simple example.

def simple_reply(name, mesg):
 if “hello” == mesg.lower():
 cast.say(“Hi, %s” % (name))

The “%s” above will be replaced with the guest

name. For examples, the guest “miv” says (types)

“Hello”, the cast will reply “Hi, miv”.

In practice, we don’t usually use the simple “==”

operator but more sophisticated way. Regular

expressions are available for complex string matching.

It is easy to write random selection method.

3.3.2 Avatar events

When the guest moves, for example, avatar-event-

handler is invoked with two parameters, position and

direction. It calculates distance between the guest and

the cast. Avatar direction is also recorded. Both distance

and direction give much information.

If the guest approaches to the cast, we find that the

guest may want to have communication with the cast.

On the contrary, if the guest walks away from the cast,

the rest of the presentation will be canceled immediately.

The guest may get bored with the conversation or

find another interesting thing, if the guest looks another

direction during chat.

If the guest approaches too close to the cast, the cast

will shout and step back.

3.3.3. Timer Event

The cast responds to guest behavior. If the guest is near

the cast and has no action, the cast may not be able to

act properly.

Timer event is raised at regular time intervals. The

cast begins action independent of the guest behavior

when the cast doesn’t receive any event in a little while.

3.4. Script for Interaction

The script pool has 4 sub module / databases.

• AIML

• Word dictionary

• Knowledge base

• Communication logs

AIML (Artificial Intelligence Markup Language) [1]

is an XML dialect for creating natural language

software agents. Most AIML interpreters are released as

open source software. When the message text doesn’t

match any dialogue scripts, it will pass to the AIML

module. It will return the plausible reply text. Its

performance depends on the data set.

Others (Word dictionary, Knowledge base, and

Communication logs) are simple text databases that are

helpful to generate reply text.

Fig. 4. Snapshot of our prototype system

Figure 4 shows a snapshot of our prototype system.

We replicated our lab room in the 3D virtual world.

This virtual room is made about 100 primitive (cube)

objects with textures in total, including surrounding

walls, glass windows, some bookracks, cabinets, more

than 20 desks with partitions, and so on. There are two

avatars in the room. One is a computer-controlled avatar.

4. DISCUSSION

4.1. Scripting in IronPython

Our previous prototype system is written in C#

programming language. It is because related software,

both the OpenSimulator server and OpenMetaverse

access library, are implemented in C#. It was modest to

modify and update dialogue scripts.

IronPython is powerful script language, and it unites

Python and Microsoft .Net.

In our new prototype, scripts for interaction are also

written in IronPython. That is, scripts are part of our

system. It can simplify the script parser. Scripts can

make use of just the same control flow and data

structure of Python directly.

Besides, IronPython supports an interactive console

with fully dynamic compilation. Hence we can modify

and update part of script code dynamically while our

software is running.

Both natural language processing and superior

behavior control are indispensable elements for

developing the autonomous avatar.

Python is often used for natural language processing,

and it has already made many useful tools and support

libraries. We can make use of such effective resources

too.

Some agent interface systems (e.g. MPML3D

[11][14], VHML [7] etc.) adopt XML-based scripting

language. And some languages for making interactive

application (e.g. AIML[1], VoiceXML[17]) also use

XML style format. We think that XML-based scripting

language is not necessarily easy to write scripts for non-

computer science professionals. In practice, avatar

interaction doesn’t usually run according to script. It

requires computer-programming knowledge to handle

flexible control flow and complex regular expressions in

any way.

XML-based language may be sometimes inefficient

to describe dialogue. AIML is developed for the

A.L.I.C.E. (Artificial Linguistic Internet Computer

Entity) system, which won the annual Loebner Prize

Competition in Artificial Intelligence three times.

However, AIML has weak pattern matching ability. It

doesn’t permit more than one matching pattern per each

basic block <category> even if the reply is the same. It

may often accumulate huge numbers of simple pattern.

It is not easy to maintain the AIML data set.

AIML standard description examples:
<category>
<pattern>HELLO</pattern>
<template>Hi, there</template>
</category>

<category>
<pattern>HOWDY</pattern>
<template>
<srai>HELLO</srai>
 (it means the same response with “HELLO”)
</template>
</category>

Python descriptipn examples:
import re # once in a file
m = re.compile(“hello|howdy”, re.IGNORECASE)
if m.search(mesg):

cast.say(“Hi, there”)

IronPython / Python support more complex regular

expressions. They have also interface to useful parser

library and database access library.

4.2. IronPython and OpenMetaverse

The combination of IronPython and OpenMetaverse

library is flexible and effective.

Since IronPython seamlessly integrates with .Net

framework, it can make use of various functions of

OpenMetaverse library without any modification.

The “DevoBot” project [13] uses IronPython and

OpenMetaverse library. It provides a base framework

for writing Second Life bots that are controlled via

commands sent through instant messages. The main

goal of the DevoBot project is to allow extremely rapid

development by providing the ability to modify source

code without having to recompile it. Its IronPython code

is just less than 0.4k lines. It may require the knowledge

about OpenMetaverse library if you want to add original

function.

The “PyOGP” [15] is another open source project to

explore a suite of python based Second Life client

libraries. The code aims to produce an automated

testing framework. “Py-” is a prefix that means Python

library, and “OGP” is an abbreviation of Open Grid

Protocol.

It is written in Python language, not IronPython.

PyOGP has known problems with various environments.

The packages that make up PyOGP have some

dependencies on python modules not included in a

standard install.

5. CONCLUSION

We have presented our new prototype of the interactive

3D avatar interface platform on the OpenSim server.

Our research goal is to create the autonomous avatar in

3D virtual space.

IronPython seamlessly integrates expressive

scripting ability of Python and .Net framework. The

combination of IronPython and OpenMetaverse library

is flexible and especially effective to make 3D avatar

interface in the OpenSim server. Script for avatar

interaction is also written in IronPython, and it is part of

our system. It can make use of valuable resources that

have been developed so far for Python application. It

will reduce the load of development for interactive 3D

avatar interface.

6. REFERENCES

[1] “Artificial Intelligence Markup Language (AIML) Version

1.0.1”, A.L.I.C.E. AI Foundation Working Draft, 8 August

2005 (rev 008), 2005

[2] Daden limited, http://www.daden.co.uk

[3] H. Dohi and M. Ishizuka, “An Interactive Presentation

System in a 3D Virtual World using an OpenSimulator

Server”, Proc. IIEEJ Image Electronics and Visual

Computing Workshop (IEVC-2010), Mar. 2010

[4] D. Friedman, A. Steed, and M. Slater, “Spatial Social

Behavior in Second Life”, International Conference on

Intelligent Virtual Agents 2007 (IVA-2007), LNCS

(LNAI), vol. 4722, pp.252–263, Springer, 2007

[5] “IronPython”, http://ironpython.codeplex.com

[6] P. Maes, “Agents that Reduce Work Overload and

Information Overload”, Communications ACM, pp. 31-40,

1994

[7] A. Marriott, “VHML—Virtual Human Markup

Language,” Proc. Talking Head Technology Workshop, at

OzCHI Conf., 2001

[8] Microsoft Agent, http://msdn.microsoft.com/en-

us/library/ms695784(VS.85).aspx

 (See also, “Microsoft Agent Software Development Kit

and Design tools”, Microsoft Press, 1997)

[9] OpenMetaverse Foundation,

 http://www.openmetaverse.org

[10] OpenSimulator Main Page,

http://opensimulator.org/wiki/Main_Page

[11] H. Prendinger, S. Ullrich, A. Nakasone, and M. Ishizuka,

“MPML3D: Scrripting Agents for the 3D Internet”, IEEE

Trans. Visualization and Computer Graphics, Vol. 17,

No. 5, pp 655-668, May, 2011

[12] Second Life official site, http://secondlife.com

[13] M. Stephen, “devobot – Base framework for libsl bots

written in Python”, http://code.google.com/p/devobot

[14] S. Ullrich, K. Bruegmann, H. Prendinger, and M.

Ishizuka, “Extending MPML3D to Second Life”,

International Conference on Intelligent Virtual Agents

2008 (IVA-2008), LNAI, vol. 5208, pp. 281–288,

Springer 2008

[15] “PyOGP”, http://wiki.secondlife.com/wiki/PyOGP and

http://bitbucket.org/enus_linden/

[16] “The Second Life Economy in Q3 2011”,

http://community.secondlife.com/t5/Featured-News/The-

Second-Life-Economy-in-Q3-2011/ba-p/1166705 , 2011

[17] “Voice Extensible Markup Language (VoiceXML) 2.1”,

W3C Recommendation 19 June 2007,

http://www.w3.org/TR/voicexml21, 2007

