
Using Relational Similarity between Word Pairs for
Latent Relational Search on the Web

Nguyen Tuan Duc, Danushka Bollegala, Mitsuru Ishizuka
The University of Tokyo

{duc, danushka}@mi.ci.i.u-tokyo.ac.jp, ishizuka@i.u-tokyo.ac.jp

Abstract—Latent relational search is a new search paradigm
based on the degree of analogy between two word pairs. A
latent relational search engine is expected to return the word
Paris as an answer to the question mark (?) in the query
{(Japan, Tokyo), (France, ?)} because the relation between
Japan and Tokyo is highly similar to that between France and
Paris. We propose an approach for exploring and indexing
word pairs to efficiently retrieve candidate answers for a latent
relational search query. Representing relations between two
words in a word pair by lexical patterns allows our search
engine to achieve a high MRR and high precision for the
top 1 ranked result. When evaluating with a Web corpus, the
proposed method achieves an MRR of 0.963 and it retrieves
correct answer in the top 1 for 95.0% of queries.

Keywords-latent relational search, relational similarity, ana-
logical search

I. INTRODUCTION

Latent relational search is a new search paradigm inspired
by previous research on analogy [1] and relational similar-
ity [2]. Latent relational search can be used for mapping
knowledge from a well-known domain to an unknown do-
main. For example, an Apple user can search for information
about a music player by Microsoft using the query {(Apple,
iPod), (Microsoft, ?)}, for which the answer is Zune [3].
Therefore, latent relational search can be effectively used
when a user does not know the keywords to search for (e.g.,
the keyword Zune in the above example).
We propose an approach to extract word pairs from a text

corpus (e.g., the Web) and represent relations between words
using lexical patterns to build an index for a latent relational
search engine. Following the previous work on relational
similarity measurement between two word pairs [2], [4], [5],
we rank the search results according to their relational simi-
larities with the query. The proposed method for representing
the relation between the two words in a word pair enables
our search engine to achieve both a high precision and recall.
The remainder of this paper is organized as follows. In the

next section, we describe related work on latent relational
search and relational similarity measurement. We then give
an overview of the search engine in Section III. We describe
the proposed algorithm for word pair extraction and relation
representation to build the index in Section IV. We describe
the proposed method for ranking candidate answers using
a relational similarity measure in Section V. In Section VI,
we present our experimental results. Finally, we conclude
the paper in Section VII.

Figure 1. Overview of the latent relational search engine

II. RELATED WORK
Research on measuring relational similarity between two

word pairs such as [2], [4], [5] suggests a method for ranking
candidate word pairs in latent relational search. Relation
of a pair of words is represented by lexical patterns, i.e.,
the context where the word pair appeared. Using lexical
pattern frequencies as feature vector for a word pair, these
studies achieve a high precision on the task of measuring
semantic similarity between two word pairs. However, these
studies assume that the two word pairs to measure relational
similarity {(A, B), (C, D)} are given so we can retrieve
lexical patterns of each pair.
One implementation of latent relational search is de-

scribed by Kato et al. in [3]. This method represents the
relations between two words in a given word pair by using
the bag-of-words model. It does not requires a local index
for searching (it uses an existing keyword-based Web search
engine to find the answer). However, it does not achieve a
high precision because representing relation with the bag-of-
words model does not allow the relational similarity between
two word pairs to be precisely measured. To achieve a high
precision, the relational similarity between (A, B) and (C, D)
should be measured using a well-defined method such as [2],
[5], in which the relation between C and D is represented
by lexical patterns that are in the same sentence with the
pair (C, D).

III. OVERVIEW OF THE LATENT RELATIONAL SEARCH
ENGINE

The entire latent relational search system is illustrated in
Fig. 1. The input for building the index is a text corpus (such
as a set of crawled web pages). These text documents are
fed to the Extractor, which extracts word pairs and lexical

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.167

196

patterns that represent relation between each pair. For exam-
ple, from the sentence “Steve Jobs is the CEO of Apple”,
the Extractor would extract the pair (Steve Jobs, Apple) and
lexical patterns that represent the relation between “Steve
Jobs” and “Apple” such as “X is the CEO of Y”, “X * CEO
* Y”, . . . (X and Y are variables that represent two entities
in the relation, the wildcard “*” represents zero or more
words). Next, the extracted word pairs and lexical patterns
are input to the Clustering Engine which groups semantically
similar lexical patterns (such as “X is the CEO of Y” and
“Y’s CEO is X”) into a same pattern cluster and groups
different surface forms of an entity into a same word cluster
(e.g., “Steve Jobs”, “Steven Jobs”). When a query such as
{(Steve Jobs, Apple), (?, Microsoft)} is input, the Query
Processor finds a candidate answer set and ranks the answers
as described in the following sections. An answer may be a
single word (“Steve Ballmer”) or a cluster of words (“[Bill
Gates, William Gates, W. H. Gates]”).

IV. WORD PAIR EXTRACTION AND RELATION
REPRESENTATION

A. Extracting word pairs
To extract named entities of interest, we use a Named

Entity Recognizer (NER) to tag the input sentences1. From
a tagged sentence, we extract all named entity pairs that
maintain the order of two entities in the original sentence.
Note that, we do not know the relation types in advance.
We blindly extract all pairs that might hold some relations
and then use several filters to obtain informative pairs as
describe later. We can also index all types of word pairs by
using a POS-tagger a long with a Named Entity Recognizer.

B. Representing semantic relation by lexical patterns
Following previous work [2], [4], [5], we also use lexical

patterns to represent semantic relation between two words of
a word pair that appeared in the same sentence. The relation
between two words in a word pair is therefore represented
by a vector of lexical pattern frequencies. To extract lexical
patterns that might represent semantic relation between two
words C and D in a sentence S, we consider the following
sub-string of S:

b1b2...bkCw1w2...wmDa1a2...ap
That is, the sub-string contains of k words before C, the
word C, the gap between C and D, the word D and
p words after D. To eliminate the differences between
inflected forms of a word, we use a word stemmer2 for
stemming all words in the above sub-sequence. We then
generate all n-grams (n ≤ 7) from the above sub-sequence.
We omit all n-grams which contain only bi or contain
only ai (e.g., b1b2b3 or a3a4a5). For n-grams which con-
tain only wi (i.e, wiwi+1...wj), we change them into the
1We use the Stanford Named Entity Recognizer available at

http://nlp.stanford.edu/software/CRF-NER.shtml
2We use the Porter Stemmer in the NLTK toolkit:

http://nltk.googlecode.com/svn/trunk/doc/api/nltk.stem.porter-module.html

form “X ∗ wiwi+1...wj ∗ Y ”. Similarly, for n-grams which
do not contain Y (e.g, bkXw1w2), we change them into
bkXw1w2∗Y . And finally, for n-grams which do not contain
X , we append “X∗” before them: X ∗ wiwi+1...wmY a1.
Only n-grams with at least one content word (i.e., not stop
word and not the variable X or Y) are selected.
Comparing to pattern extraction algorithms in previous

research [2], [4], [5], the proposed algorithm is adapted to
improve the recall of relational search. First, we eliminate
the differences between inflected forms of a word by stem-
ming the input sequence. Second, we allow sub-sequences
that neither contain X nor Y . This makes the probability
that two entity pairs have common lexical patterns higher
because we do not need a complete match between the
sequences in the gap of each pair. For example, consider the
two sentences: “Obama is the 44th and current president of
the U.S” and “Sarkozy is the current president of France”. If
we allow the pattern “current president of” (i.e., we generate
the pattern “X * current president of * Y”) then we have
a common pattern between two pairs (Obama, U.S) and
(Sarkozy, France).
We denoteP(wp) as the set of all lexical patterns with which
the word pair wp appeared:

P(wp) = {p1, p2, . . . , pn} (1)

We denoteW(p) as the set of all word pairs with which the
pattern p appeared:

W(p) = {wp1, wp2, . . . , wpm} (2)

We denote the frequency of co-occurrence of the word pair
wpi with the pattern pj in a same sentence as f(wpi, pj).
The word pair frequency vector Φ(p) of a lexical pattern p
is then defined as:

Φ(p) = (f(wp1, p), f(wp2, p), . . . , f(wpm, p))T (3)

Similarly, the pattern frequency vector of a word pair wp is
defined as:

Ψ(wp) = (f(wp, p1), f(wp, p2), . . . , f(wp, pn))
T (4)

C. Pattern clustering
Even when lexical patterns are stemmed, two similar word

pairs often share only a small number of identical lexical
patterns because a relation can be expressed in several ways
in natural language (e.g., “X acquired Y” and “X bought
Y” are semantically similar). To recognize semantically
similar patterns p and q, we first define a similarity measure
between the two lexical patterns using their word pair
frequency vectors Φ(p) and Φ(q). Then we use a sequential
pattern clustering algorithm as described in [2] to group
similar patterns into a same cluster. For each pattern, the
algorithm finds the cluster whose centroid has maximum
cosine similarity with the pattern. If this similarity is above
a pattern clustering similarity threshold θ then the pattern
is added to the cluster, otherwise, the pattern forms a new

197

Figure 2. The index for the search engine. Each entity cluster is represented
by an ellipse, each lexical pattern cluster is represented by a rectangle.

singleton cluster itself. To filter out patterns that are specific
to a word pair and to reduce the time for pattern clustering,
we execute the pattern clustering algorithm only for patterns
which appeared above 10 times in the database.
We also use the same clustering algorithm for clustering

entities. Therefore, we group semantically similar entities
into a same entity cluster.
After pattern clustering and entity clustering steps, we

can build an index that contains information about entity
clusters, lexical pattern clusters and relations between these
entity clusters as shown in Fig. 2. For example, in Fig. 2,
Steve Jobs is linked to Apple by two lexical pattern clusters:
“X co-found Y” and “X, CEO of Y”.

V. RANKING SEARCH RESULTS USING RELATIONAL
SIMILARITY

A. Retrieving candidate answers
A candidate answer pair for the query {(A, B), (C, ?)} is

the pair c = (C,X) that appears above five times and (C,X)
has at least one common pattern which appears above ten
times with the input pair. Therefore, the candidate answer
set � is:
� =

⋃

p∈P(s)∧freq(p)≥10

{wp ∈ W(p)|(wp[0] = C) ∧ freq(wp) ≥ 5} (5)

B. Ranking the result set
To filter out inappropriate answers and to rank the result

list, we calculate the relational similarity between two word
pairs s (s = (A,B)) and c (c = (C,X)) using their
lexical pattern frequency vectors Ψ(s) and Ψ(c). We define
the relational similarity relsim(s, c) between s and c using
a modified version of cosine similarity of their pattern
frequency vectors by considering two patterns that are in
a same cluster as identical.
The good candidate list Γ is obtained by filtering out all
candidates with relational similarity smaller than a similarity
threshold σ:

Γ = {c ∈ �|relsim(s, c) ≥ σ} (6)

Moreover, for the input query {(A, B), (C, ?)}, we repeat
the candidate retrieval process for the reversed query {(B,

����

��

����

��

����

��

����

� ��� ��� ��� ��	 ��� ��
 ��� ���

F-
sc

or
e

Pattern clustering similarity threshold

Figure 3. Average F-score of three relation categories (Person - Birthplace,
Company - Headquarters, CEO - Company) while varying the pattern
clustering similarity threshold θ (at σ = 0.05)

A), (?, C)}. If s′ = (B,A) and c′ = (X,C) then the score
of a candidate c for the input pair s is defined as

χ(s, c) = relsim(s, c) +
1

2
relsim(s′, c′) (7)

We set the weight of the relational similarity of the reversed
word pair (relsim(s′, c′)) to 1/2 because we prefer that
the candidate appears in the original query rather than the
reversed query.
Finally, we use the information about entity clusters to

merge all candidates which are semantically identical (or
similar) into a candidate cluster. The candidate cluster set
Γ′ is therefore Γ′ = Merged(Γ). The score (for ranking) of
a candidate cluster K = {c1, c2, . . . , ck} is defined as

score(s,K) =
1

k

k∑

i=1

χ(s, ci) (8)

The final result list is obtained by sorting Γ′ in order of the
clusters’ scores from high to low.

VI. EVALUATION
A. Parameter tuning
To determine the appropriate value of the pattern clus-

tering similarity threshold θ, we evaluate our system us-
ing 12000 documents containing four types of relations:
Person - Birthplace (e.g., Einstein - Germany), Company
- Headquarters (Microsoft - Redmond) , CEO - Company
(Steve Jobs - Apple) and Acquirer - Acquiree (Google -
Youtube). From those text documents, the system extracted
113742 word pairs and 2069121 lexical patterns. To avoid
noisy word pairs and lexical patterns, our system considers
only word pairs with frequency above five for searching
and patterns with frequency above ten for pattern clustering.
Consequently, the system only considers 4103 word pairs for
searching and 27568 patterns for clustering.
We vary the lexical pattern clustering similarity threshold

θ and evaluate the system using four query sets which
correspond to four relation types above. We measure the
precision, recall and F-score at each value of θ.
For queries with single correct result, such as

{(Personi,Birthplacei), (Personj , ?)} (i �= j), we

198

Table I
PERFORMANCE OF THE SEARCH ENGINE FOR EACH RELATION

CATEGORY (AT θ = 0.4, σ = 0.05)

Data set Precision Recall F-score
Birthplace 98.89 98.89 98.89
Headquarters 90.59 85.56 88.00
CEO-comp. 95.56 95.56 95.56
Acquirer - Acquiree 81.34 - -
Average 91.60 93.34 94.15

only evaluate the top 1 ranked result. For Acquirer -
Acquiree relation, we evaluate the system with queries of
type {(Acquireri,Acquireei), (Acquirerj , ?)} (i �= j). Note
that these queries have multiple correct answers (correct
answers are in the set of companies that were acquired by
Acquirerj). Recall for this query set can not be calculated
because we only evaluate the top 10 answers of each query.
Fig. 3 shows the average F-score of three test sets that

we can calculate recall (Person - Birthplace, Company -
Headquarters and CEO - Company). When θ is 0.4, we
obtained the maximum value of the average F-score. The
shape of the graph does not change when we vary the
value of the similarity threshold σ in the range [0.03, 0.2].
However, with σ = 0.05, we obtain the best average F-score
(when σ is above 0.2, the recall is very small and the F-score
drastically decreases).

B. Average precision, recall and F-score
We fix the parameter θ and σ at the values that gave

the best performance in the parameter tuning phase (we
set θ to 0.4 and σ to 0.05) and use a completely different
corpus (containing 6000 documents referring to the same
four relation types but with different instances) to evaluate
the performance of the proposed system. We use the new
corpus because we want to verify the parameter tuning
process and prevent the bias to the corpus that is used for
parameter tunning.
Table I shows the average performance of the proposed

method for each type of queries. For queries with single
correct answer (ranked at top 1) we achieve high precision
and recall. For queries with multiple answers, we also
achieve precision of 81.34% for the top 10 ranked results.

C. Comparison with previous method
It is difficult to make a fair comparison between the

proposed method with the method by Kato et al. [3] because
of the differences between the languages that are used in
the experiments (English vs. Japanese) and the relation
categories. However, we still gain some meaningful informa-
tion from the comparison because there are some common
relation types between our data and the data described in [3]
(for example, the CEO-Company, Acquisition relation, . . .).
Table II shows the comparison between the performance

of the proposed method with the method of Kato et al. [3].
The data for comparison are the average performance of
our system and the results that are described in [3] (the
comparison uses only single correct answer queries). The

Table II
COMPARISON BETWEEN THE PROPOSED METHOD WITH THE PREVIOUS
METHOD(@N IS THE PERCENTAGE OF QUERIES WHERE THE CORRECT

ANSWER IS IN THE TOP N RESULTS).

Method MRR @1 @5 @10 @20
Kato et al. [3] 0.545 43.3 68.3 72.3 76.0
Proposed method 0.963 95.0 97.8 97.8 97.8

MRR of the proposed method is 76.7% better than of the
previous method (0.963 compared to 0.545). Moreover, the
proposed method also outperforms the previous method in
the percentage of queries with correct answer in the top 1.
We obtain a high performance because the proposed

lexical pattern extraction algorithm works well. Word pairs
with similar semantic relation might have slightly different
lexical patterns in the gaps between two words in the pairs
(e.g., “Barrack Obama is the 44th and current president of
the U.S” and “Nicolas Sarkozy is the current president of
France”). In this situation, the method in [3] gives a very
small (if not 0) relational similarity because it considers
only the exact lexical pattern in the gap between two words.
On the other hand, the proposed lexical pattern extraction
algorithm gives a high relational similarity for these pairs
because it generates many patterns that are matched in two
pairs (e.g., X * president * Y, X * president of * Y, X *
current president * Y, X * current president of * Y).
The proposed system requires less than 10 seconds for

processing a query. This query processing time can not be
achieved in the previous work [3] because it needs to query
a keyword-based Web search engine many times.

VII. CONCLUSION
We have presented an approach for extracting and rep-

resenting relations between two entities for latent relational
search. The proposed relation representation method enables
our search engine to achieve a high performance because it
works well even when the lexical patterns between word
pairs are not identical. When evaluating with a Web corpus,
the proposed method achieves a high precision and MRR
while requiring a small query processing time.

REFERENCES
[1] T. Veale, “The analogical thesaurus,” in Proc. of the Innovative

Applications of Artificial Intelligence. AAAI Press, 2003, pp.
137–142.

[2] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Measuring the
similarity between implicit semantic relations from the web,”
in Proc. of WWW’09. ACM, 2009, pp. 651–660.

[3] M. P. Kato, H. Ohshima, S. Oyama, and K. Tanaka, “Query by
analogical example: relational search using web search engine
indices,” in Proc. of CIKM’09, 2009, pp. 27–36.

[4] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Measuring the
similarity between implicit semantic relations using web search
engines,” in Proc. of WSDM’09. ACM, 2009, pp. 104–113.

[5] P. D. Turney, “Similarity of semantic relations,” Computational
Linguistics, vol. 32, no. 3, pp. 379–416, 2006.

199

