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Symmetric Multimodality Revisited: Unveiling
Users’ Physiological Activity

Helmut Prendinger and Mitsuru Ishizuka, Member, IEEE

Abstract—In this paper, we describe our own stance on a
research area called “Humatronics,” which aims at establish-
ing a (more) symmetric interaction relationship between humans
and computer systems. In particular, we will advocate a novel
approach to understanding humans that is based on largely in-
voluntary and unconscious physiological information and gaze be-
havior rather than purposeful and conscious actions or behaviors.
“Understanding humans” here refers to users’ states related to
emotion and affect, attention and interest, and possibly even to
their intentions. A key feature of our approach is that it provides
insight into a person’s cognitive-motivational state without relying
on cognitive judgements, such as answers to dedicated queries.
Lifelike interface agents are endowed with synthetic bodies and
faces and can be considered as prime candidates for outbalancing
the asymmetric relationship in current human–computer inter-
action. As example applications, we will report on two recent
studies that utilized lifelike agents as presenters or interaction
partners of users. The resulting interactions can be conceived
as implementing initial steps toward symmetric multimodality in
user interfaces.

Index Terms—User interface human factors.

I. INTRODUCTION AND MOTIVATION

THE NOTION of symmetric multimodality has been in-
troduced for dialogue systems that have all the input

modes, especially of speech, gesture, and facial expression also
available for output [1], and may thus significantly improve the
intuitiveness and naturalness of the interaction between humans
and computers. Similarly, the field of “Humatronics,” to which
this volume is dedicated, aims at balancing the asymmetry of
the relationship between humans and computers.

A salient feature of a dialogue system with symmetric multi-
modality is that it requires the representation and processing of
both the user’s multimodal input and the output of the computer
system. On the input side, multiple modalities have to be
integrated and synchronized, and possibly disambiguated [2].
A person might utter a sentence expressing a joyful experience
with a “happy” facial display. In this case, the combined
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interpretation of speech and facial display leads to a higher
probability of the person being in an affective state of “joy” than
if both modalities were interpreted individually. On the other
hand, a sentence like “That’s wonderful” uttered with a facial
expression indicating disgust might refer to a sarcastic state-
ment. Keeping in mind that the majority of human utterances
is ambiguous (e.g., with respect to their affective meaning), the
face modality in this example allows us to disambiguate the
valence of the utterance, and hence, contributes to the correct
understanding of the user’s affective or emotional state.

A different issue is how a computer can display multiple
modalities on the output (presentation) side. While common
computers typically do not provide rich human-style output
modalities, recent research in the area of lifelike characters (or
embodied conversational agents) advocates the use of virtual
interface agents as communication partners of users [3]. Those
agents are endowed with virtual (graphical) bodies, faces, and
synthetic speech and may thus emulate natural human–human
communication. By implementing synchronized conversational
gestures, facial expression, and speech [4], lifelike characters
allow users to follow social interaction protocols similar to
human conversation (for technologies to implement agent-
based interactions, see our work on multimodal presentation
markup language [5], [6]).

In this paper, we want to focus on interaction modalities
that have hitherto received less attention, but seem highly
promising for giving computers the capability of understanding
humans—a theme at the core of Humatronics research. Specif-
ically, we will discuss human physiological activity such as
biosignals and eye movements. (A good overview of other
modalities such as speech and facial expression can be found
in [7].) A salient feature of physiological information consists
in its unconscious and nondeliberate nature, which makes it
particularly apt to reveal the “true” experience of humans. In
daily interactions, humans do not consciously control, e.g., their
skin conductance level, heart rate, or pupil size. Certainly, in
some situations, such as a biofeedback session [8] or playing
the game “Relax-to-win” [9], humans will try to voluntarily
influence their autonomous nervous system state, but these
situations are rather exceptional in daily life.

Eye gaze, on the other hand, is certainly within deliberate
human control, i.e., humans may decide to look into a particular
direction or attend to a particular object. However, the activity
of the eye and its pupil has been shown to manifest rich
information about a person’s interpretation of (and attitude to)
its environment beyond what is intentionally attended to [10].
A well-known example is visual preference formation when
given two visual stimuli [11]. In this setting, humans will
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eventually direct their focus of attention to the preferred object
depending on their attitude and interest.

We want to contrast our approach to understanding humans
and their intentions to traditional plan recognition, which refers
to the task of inferring the plan or plans of humans from obser-
vations of their voluntary, conscious, or purposeful actions [12].

The remainder of this paper is organized as follows. In
Section II, we will describe two emotion models and will also
address problems in recognizing affective states from phys-
iological information. In Section III, we will briefly discuss
the role of eye movements in focus of attention recognition,
and then, in Section IV, explain the importance of combining
multiple modalities for understanding humans. In Section V,
two example applications will be described that illustrate our
first steps toward realizing interfaces that are (partly) symmet-
ric with respect to involuntary human expressions. Finally, in
Section VI, this paper is rounded off by our conclusions.

II. RECOGNIZING AFFECTIVE STATES

Recognizing emotions or affective states from a human’s au-
tonomic nervous system (ANS) activity is a hard and challeng-
ing problem [13]. Emotions are very short lived (at the scale
of some seconds), and ANS activity is always superimposed on
humans’ ongoing internal nervous system activity. Moreover,
humans are typically embedded in complex contexts assuming
attention and orientation, or engaged in social interaction.

In the following, we will discuss two emotion models related
to ANS activity, autonomic specificity of emotions and the
2-D model of the structure of affect.

A. Autonomic Specificity

A crucial problem for the possibility of emotion recogni-
tion from ANS activity relates to the existence of autonomic
specificity for individual emotions [14], [15]. Research in auto-
nomic specificity investigates whether (some) emotions can be
distinguished by their associated pattern of ANS activity, or, in
more popular terms, whether (some) emotions have “autonomic
signatures.”

The seminal early study of Ekman et al. tried to relate six
emotions to ANS activity [16]. For the investigated emotions
(surprise, disgust, sadness, anger, fear, and happiness), four
types of physiological measures were taken, namely: 1) heart
rate; 2) skin temperature (fingers of left hand and right hand);
3) skin resistance; and 4) muscle tension. Two types of emotion-
eliciting conditions have been used, namely: 1) directed facial
action and 2) relived emotion. We first report on the two results
that were independent of the eliciting conditions.

1) There was a larger increase of heart rate with anger
(+8.0 ± 1.8 beats/min) and fear (+8.0 ± 1.6 beats/min),
than with happiness (+2.6 ± 1.0 beats/min). The values
denote means ± standard errors.

2) The decrease of skin temperature was stronger with anger
than with happiness.

A differentiation between emotions based on heart rate
change and skin temperature change could be shown for the di-
rected facial action task. The heart rate changes for anger, fear,

and sadness were significantly greater than the changes for hap-
piness, surprise, and disgust. Concerning skin temperature, the
change (i.e., decrease) related to anger was significantly higher
than that of fear, sadness, happiness, surprise, and disgust.

In the relived emotion task, the experiment demonstrated
decrease of skin resistance as the discriminating factor. The
highest decrease of skin resistance (leading to higher skin
conductance) was shown for sadness, whereas the decrease
of resistance for fear and anger was small. Another finding
of the study was that muscle tension could not be used as a
discriminating factor for the emotions under investigation.

While work on the autonomic specificity provides important
information regarding the impact of certain emotions on ANS
activity, computational models for real-time emotion recogni-
tion are often based on simpler theories.

B. Two-Dimensional (2-D) Model of Emotion

The 2-D emotion model advocated in [17] and [18] claims
that all emotions can be characterized by two bipolar, but
independent, dimensions.

1) Judged valence: pleasant or unpleasant (or: positive or
negative).

2) Arousal: calm or aroused.

Here, named emotions can be conceived as coordinate
points in the arousal–valence space. For example, the emotions
“sadness,” “anger,” and “happiness” can be characterized as
follows: sadness (low arousal and negative valence), anger
(high arousal and negative valence), and happiness (low-
medium arousal and positive valence).

Although the exact region of each (named) emotion is hard
to define, the relative distance between emotions allows to visu-
alize emotions in a very comprehensible way. Our application
described in Section V-A is based on the 2-D model of emotion.

C. Physiological Signals

The relation between the physiological signals and the
dimensions of arousal and valence is based work in psy-
chophysiology [19]. By way of example, we will describe the
functioning, recognition, and impact of five important signals,
namely: 1) galvanic skin response (GSR); 2) electromyography
(EMG); 3) blood volume pulse (BVP); 4) pupillary response;
and 5) eye blinks (EBs) (see also [13]).

1) GSR: The GSR signal is an indicator of skin conduc-
tance. Under certain circumstances, the glands in the skin
produce ionic sweat, which changes the electrical resistance.
By passing small voltage across two electrodes, the conduc-
tance between them can be measured. The electrodes can be
attached to two fingers. Skin conductance increases linearly
with a person’s level of overall arousal. Bechara et al. [20] also
report on interesting results on the relation between anticipatory
skin conductance responses and conscious decision making.

2) EMG: The EMG signal measures muscle activity by
detecting surface voltage that occurs when the tiny muscle
fibers are contracted by means of electrical impulses (lower arm
or masseter muscle). Mean muscle activity has been shown to
correlate with negatively valenced emotions.
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3) BVP: The BVP signal is processed by a method known
as photoplethysmography that shines infrared light onto the
skin and measures how much is reflected, which is an indicator
of blood flow. Since each heartbeat (or pulse) presses blood
through the vessels, BVP can also be used to calculate heart
rate and interbeat intervals. Higher heart rate increases with
negatively valenced emotions, such as anxiety or fear.

4) Pupillary Response: Naturally, the diameter of the pupil
is sensitive to the amount of light falling on the eye. It is
also known that the aperture of the pupil constricts and dilates
through the control of the ANS activity exerted on the muscle
of the iris. There exists extensive literature on how pupil
size is affected by human emotional and cognitive processes
[21]. Specifically, increase in pupil size is a good indicator
of novelty, interest, and positive evaluation, but also cognitive
load, whereas decrease in pupil size indicates increased fa-
tigue, and possibly negative stimuli (“perceptual avoidance”).
Researchers even observed a continuous decrease in pupil
size between the beginning and end of a single experimental
session.

While those findings relate pupil dilation to the valence
dimension, recent results (for auditory emotional stimulation)
demonstrated that pupil size is significantly larger for both
positive and negative stimuli, as opposed to neutral ones [22],
which suggests that pupil dilation might also be correlated with
the arousal. A recent study also investigated the relation of
pupil size to specific affect-related states, such as confusion
and surprise [23].

5) EBs: Spontaneous EBs moist the eyeball and, thus, keep
the cornea healthy. EBs occur throughout the day, with an
average of 15–20 times/min for a relaxed person. From a physi-
ological point of view, only two to four blinks are necessary for
an adult. For example, while reading, the blink rate can drop to
three blinks per minute.

From a psychological perspective, blink frequency reflects
negative affective states, such as nervousness, stress, and fa-
tigue. For example, EB magnitudes were shown to be larger
and latencies faster during negative as opposed to positive
imagery. Moreover, higher arousal resulted in larger magnitude
and shorter latency of EBs.

Other physiological signals, including electrocardiogram,
electroencephalogram, as well as event-related brain potentials,
are often considered as having too intrusive measurement meth-
ods to be of practical use for human–computer interaction.
Those and further signals are extensively discussed in [19].

D. Problems in Emotion Recognition From ANS Activity

The psychophysiological literature discusses a number of
problems related to the (real-time) assessment of a person’s
physiological information [14]. Most important among them
are the “Baseline Problem,” the “Timing of Data Assessment
Problem,” and the “Intensity of Emotion Problem” that will be
discussed in the subsequent sections.

1) Baseline Problem: This problem refers to the difficulty
of finding a condition against which physiological change can
be compared—commonly referred to as the “baseline.” An
obvious choice is a “resting” period where the subject can

be assumed to experience no particular emotion. However,
as Levenson [14, p. 24] notes, emotion “is rarely superim-
posed upon a prior state of ‘rest.’ Instead, emotion occurs
most typically when the organism is in some prior activation.”
Consequently, Levenson suggests to adopt a baseline procedure
that generates a moderate level of ANS activity. This procedure
is a global baseline method, i.e., the baseline is taken once and
used to normalize biosignal values of whole interaction period.
A global baseline guarantees some independence of subjects’
individual ANS activity levels as well as independence of
situational factors, such as room temperature.

Note, however, that in a more general setting, e.g., when
using information about human physiology in a pervasive or
ubiquitous computing environment [24], the assumption of a
“relaxation” period is impractical as users cannot be expected
to provide a baseline measurement before entering the envi-
ronment. Levenson [14] also pointed out the possibility of
methodological problems with global baselines and motivated
the recording of local baseline as an alternative approach.
A local baseline method for the skin conductance signal is
described in Healey [25]. She developed an automatic startle
detection algorithm that establishes a local baseline at the onset
level of the (second) response where the first derivative exceeds
a certain threshold (to distinguish high from low arousal), and
then finds the local maximum following that point (a peak).

The main (methodological) rationale for a assuming a local
baseline is that although biometric signals are “center seeking”
(homeostatic), there might be slight shifts in the center point
over time (recall also the remark in Section II-C4). In our
interactive gaming system study described in Section V-A,
results from applying both baseline methods were analyzed.

2) Timing of Data Assessment Problem: This problem
refers to the temporal dimension of emotion elicitation, in-
cluding onset (indicating how fast an emotion is elicited) and
duration (apex and offset) of emotions. Levenson [14] suggests
0.5–4 s as an approximation for the duration of emotions, which
locates them durationwise between (orienting) reflexes (i.e., an
organism’s response to novelty) and moods.

The generalization to environments that process an ongoing
stream of autonomic activity rather than a specified segment of
the interaction may pose additional challenges for determining
the occurrence of emotions correctly. As pointed out in [14],
when measuring at the wrong time the emotion might be missed
or, different emotions might be conflated when too long periods
are measured. While the ANS is sometimes considered as a
slowly reacting system, latency of onset for autonomic activity
related to emotions can be very short, e.g., with surprise. On the
other hand, an emotion like “anger” may build up over time and
blur the actual “start” of the anger emotion.

3) Intensity of Emotion Problem: This problem concerns
the question how the intensity of an emotion is reflected in the
physiological data. While at a low level of emotional intensity
no informative ANS activity occurs, a very high intensity
level may destroy the pattern of ANS activity associated with
an emotion [14]. In practice, emotions with little autonomic
activity (“relaxed happiness”) or moderate intensity levels seem
to occur most frequently. It has to be said that to date, issues in
emotion intensity remain largely unsolved [14].
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III. RECOGNIZING FOCUS OF ATTENTION

Eye movement data have been analyzed for two main
purposes [10].

1) Diagnostic Use: Eye movement data provide evidence
of the user’s focus of attention and can be investigated,
e.g., to evaluate the usability of interfaces [26].

2) Interactive Use: Here, the computer system responds to
the observed eye movements and can thus be seen as an
input modality, like a pointing device [27].

When eye movements are relatively steady for a short period
of time (250–300 ms), they are called fixations, whereas rapid
shifts from one area to another are called saccades [28]. During
a saccade, no visual processing takes place. If a cluster of gaze
points has less than six entries, it is categorized as part of a
saccade [26] (assuming a minimum duration of 100 ms for a
fixation at 60 Hz).

Although gaze point and focus of attention are not necessar-
ily always identical, a user’s eye movement data provide rich
evidence of the user’s visual and (overt) attentional processes,
since eyes naturally fixate upon visual areas that are surprising,
salient, or of interest to a person [29].

Of particular importance to human–computer applications
such as educational systems and product presentations is to de-
tect what a person is interested in or what a person’s preference
is when multiple stimuli are presented. Here, recent work in
neuroscience that investigated gaze-based preference decisions
shows promising results. In a task involving attractiveness com-
parisons, the so-called “gaze cascade effect” was observed [11],
which refers to a gaze pattern where subjects gradually increase
the duration of gaze at one stimulus (the more attractive one),
thereby decreasing time to inspect the other (less attractive one).

This finding might also contribute to understanding what a
person is (truly) interested in. However, “interest” is a very
complex concept that is presumably better handled by combin-
ing multiple inputs—the topic of Section IV.

IV. COMBINING MULTIPLE MODALITIES

Multiple input modalities are combined for two main pur-
poses, namely: 1) to increase the likelihood of correct clas-
sification regarding a single cognitive-motivational state, such
as emotion and 2) in order to detect (cognitive-motivational)
states that can be considered as emerging from different such
states, including interest (confusion and boredom) estimation
from emotion recognition and attention detection. We are aware
that our distinction is not unequivocal from the viewpoint
of measurement. For example, Andreassi [19] discusses both
emotion-related ANS activity and eye movements as part of
psychophysiology.

A. Emotion Recognition by Multiple Modalities

A natural approach to achieving higher accuracy in recog-
nizing a person’s affective state is to combine multiple input
modalities. For instance, Huang et al. [30] combined speech
and facial features to infer a person’s emotional state. For the
same purpose, Kim et al. [2] used speech and biosignals.

While all of the reported combination methods succeed in
providing higher recognition accuracy for emotion detection,
they are based on offline methods, typically machine-learning
techniques. However, in order to implement human–computer
interfaces that are sensitive to, e.g., the user’s affective state,
multiple modalities have to be processed in real time. When
interpreted, the system may trigger, e.g., an appropriate em-
pathic response [31]. Obviously, this poses several challenges
regarding the synchronization of different input modalities.
For one, different signals have different latencies (onset) and
durations (apex and offset), as described in Section II-D2, and
second, different emotions (let alone moods) span over different
periods of time (e.g., surprise versus “growing” frustration).

Once these problems are resolved to a sufficient extent,
however, combined modalities may prove useful (at least) along
two dimensions.

1) Increased Accuracy: The probability of classifying an
emotion correctly may be higher if supported by the
recognition results of multiple input modalities, rather
than by considering the result of each modality in
isolation.

2) Disambiguation: The consideration of multiple modali-
ties may allow us to handle more complex conversational
expressions, e.g., situations where modalities are “con-
flictive” in that they support incompatible assumptions
with respect to a person’s affective state (see also [2]).

For an example where disambiguation is required, consider
a person that is observed to be highly confused (calculated
from ANS activity) while communicating understanding by
means of a head-nod upon direct verbal inquiry regarding his
or her comprehension by an interlocutor. A disambiguation
module might weight each modality and possibly consult other
available sources regarding the person’s cognitive state.

Besides such cases of “deceptive” behavior, which are con-
scious, we may also have to consider unconscious forms of
conflicts, e.g., when a person believes to be in a relaxed state,
whereas ANS activity indicates the opposite, such as high
arousal or stress.

B. Interest Detection

Our intended concept of interest denotes a state of “deep”
(and possibly lasting) concern for a visually presented object,
by contrast to an accidental glance.

In the setting of a puzzle-solving interaction, Kapoor et al.
[32] investigated facial expressions and posture data for interest
detection. Zeng et al. [33] used facial and speech features.
Recently, Koshizen et al. [34] advocated an approach to es-
timating user interest (and satisfaction) that is based on both
physiological signals and eye movements. In order to achieve
high accuracy of estimating interest, gaze duration time is com-
bined with skin potential level-based arousal detection. Here,
arousal data allow for more precise segregation into interest and
noninterest regions in 2-D space by using a learning scheme
called “cross-modal computation.”

Although research on interest estimation is still in its infancy,
even a straightforward integration of affect and attention can be
highly beneficial for improving human–computer interaction.
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The recognition of a mental person’s state in an affect–attention
space can reveal to which interface object a user is attending to
when experiencing a particular emotion. In this way, a computer
system may respond more sensitively to the user’s current
interaction state.

V. APPLICATIONS

In this section, we will briefly report on two recent studies
that we conducted with the aim of demonstrating the utility and
effect of employing multimodal lifelike characters as interface
objects. In the affective gaming application, a 3-D character
capable of facial emotions, “affective noise” (e.g., grumbling),
and gestural behavior [35] plays a card game against a user
whose emotions are detected through biosignals and taken
into account in the agent’s response. In the virtual apartment
presentation application, a 2-D character with deictic face/hand
gestures and (synthetic) speech guides the user through an
online apartment. Users’ focus of attention is recorded in order
to estimate the utility of the agent’s gestures.

Those applications can be considered as initial steps toward
realizing and understanding symmetric multimodality between
humans and computers.

A. Interactive Gaming

We measured the user’s emotion derived from skin conduc-
tance and EMG (based on the model described in Section II-B)
in the interactive card game called “Skip-Bo” [36]. As Skip-Bo
is a competitive game, the impact of two types of “empathy”
on the user was implemented. Empathy can be characterized as
an other-oriented emotional response or cognitive act of taking
another person’s perspective.

• Negative Empathy: The agent will display, e.g., gloating
joy if the user is recognized to be negatively aroused.

• Positive Empathy: The agent displays happiness if the user
is detected to be in happy or relaxed affective state.

In both cases, the agent will also display self-centered
emotions, such as being happy about its own successful game
move. As control conditions, the agent will either display only
self-centered emotions or no emotions at all.

In one type of analysis, we focused on game situations
(10-s segments) where emotional reactions in the human player
were likely to occur, i.e., whenever either of the players (user
or agent) was able to play at least two pay-off pile cards in a
row (which are moves toward winning the game). The results
for skin conductance are shown in Fig. 1 (an extensive report
on the results is given in [37]).

The results of this study indicated that the absence of nega-
tive empathy is conceived as arousing or stressful. For both the
“User” and “Agent” winning move situations, we found a sig-
nificant difference between the negative empathic condition and
the positive empathic condition. Further findings included that
negative emphatic behavior induces negatively valenced user
emotions (derived from EMG), suggesting a certain reciprocity
in the user’s response [37].

As a complementary analysis, we also investigated the local
baseline method discussed in Section II-D1. Fig. 2 depicts a

Fig. 1. Average values of normalized skin conductance data within dedicated
segments of the interaction in the four conditions, namely: 1) nonemotional;
2) self-centered emotional; 3) negative empathic; and 4) positive empathic.
“Agent” refers to situations where the agent performs a winning move. “User”
refers to winning move situations of the user.

Fig. 2. Agent expresses “joy” to user. (Upper part) Skin conductance signal
at 20 samples/s (samples at x-axis); values in microsiemens (y-axis). (Lower
part) Starting point and the ending point of crossing startle threshold.

10-s segment where the agent character expresses “joy” to
a subject.

A major finding of the study was that both local and global
baselines led to a similar outcome regarding the detection of a
user’s arousal when the agent displayed some particular (joy,
fear, and sadness). This is practically important since, in most
real-world applications, a global baseline is hard to obtain.

B. Virtual Apartment Presentation

We tracked users’ focus of attention while they watched the
presentation of an apartment. Views of each room of the apart-
ment were shown during the presentation, including pictures
of some parts of the room and close-up pictures. Besides the
1) Agent and Speech version, where a lifelike character presents
the apartment (see Fig. 3), we also prepared 2) Text Box and
Speech, and 3) Voice (only) versions in order to compare the
effect of the agent to other multimedia presentation methods.
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Fig. 3. Lifelike animated agent presents the living room of the apartment by
a deictic hand gesture.

Results were distilled from applying both spatial (cumu-
lative) and spatio-temporal analysis methods [38]. Spatial
analysis counts the gaze points that fall within certain screen
areas and hypothesizes users’ attentional focus. Our findings
of the cumulative analysis include, e.g., that users are looking
mostly at the character’s face, which suggests that users interact
socially with agents. While a spatial analysis can indicate
where attention is spent, it cannot reveal how users traverse
the interface when watching a presentation. In order to address
those more complex aspects of character-based interfaces, we
also performed a spatio-temporal analysis.

Here, we briefly summarize our experimental findings
(see [38] for an extensive discussion).

• The agent’s referential (hand or facial) gestures may direct
the user’s focus of attention to the intended reference
object better than a text box or only voice.

• If the uttered sentence contains a trigger word—a
word that has a corresponding semantically related
visualization—an agent using gestures helps users to lo-
cate the (visual) reference object effectively [39]. By con-
trast, directional support by a text box or voice often shows
considerable latency.

• Users often redirect their attention back and forth between
the animated agent and the reference object, similar to
human–human communication.

The results of this study demonstrate that lifelike characters
technology is an effective means of providing navigational aid
to a user. A natural extension of this work is to let the interface
agents recognize the user’s gaze behavior through eye-tracking
technology. In this way, the agent may “perceive” the user’s
interest state and respond to the user appropriately, e.g., by
redirecting the user’s focus of attention.

VI. CONCLUSION

This paper has described our approach to Humatronics, a
research field that is concerned with finding new ways to
achieve a symmetric relationship between humans and com-
puters, with the overall goal of improving the interaction with

and accessibility of computational devices. We started out with
“revisiting” the symmetric multimodality idea outlined in [1],
where all input modes (speech, gesture, and facial expression)
are also available for output, as exemplified in the SmartKom
system. While input modes in this system are mostly meant
to purposefully direct and maintain a mixed-initiative dialogue
with an animated agent, we put the emphasis on processing
input signals that are (largely) involuntary and unconscious. In
this way, we hope to gain better insight into a user’s cognitive-
motivational state, and hence, be able to better understand the
user, complementary to what is voluntarily expressed.

Physiological signals and eye movements have been shown
to be valuable indexes for a person’s cognitive-motivational
state related to affect, attention, and interest. An important
question is whether those signals also allow us to detect a
person’s intention. The “standard” approach to intention recog-
nition is to infer a person’s plan or goal from purposeful actions,
e.g., moving objects or pressing buttons [12]. By contrast, a
“physiological computing” approach would infer a person’s
intention from involuntary bodily activity related to emotion
and interest. A person’s current affective state such as frus-
tration or anger certainly has an impact on what the person is
likely to do next. Likewise, a person’s way of (eye) scanning
a working area (e.g., a computer screen) might be a good
indicator of subsequent actions. The development of principled
approaches to physiology-based intention recognition seems to
be a promising future line of research.

The applications presented in this paper can be considered
as first steps toward symmetric multimodal systems. While
symmetry on the level of human features (rather than methods)
is partly realized for emotions, i.e., recognizing human emo-
tions [13] and expressing agent emotions [3], [6], the area of
expressing attention by an agent is largely unexplored. Highly
promising work can be found in [40], which proposes a gaze
model for an animated agent in order to provide feedback,
conversational control, and subtle signaling of interest and
engagement. We are currently in the process of developing
solutions to the issues sketched in this concluding section.

REFERENCES

[1] W. Wahlster, “Towards symmetric multimodality: Fusion and fission of
speech, gesture and facial expression,” in Proc. 26th German Conf. Artif.
Intell., 2003, pp. 1–18.

[2] J. Kim, E. André, M. Rehm, T. Vogt, and J. Wagner, “Integrating in-
formation from speech and physiological signals to achieve emotional
sensitivity,” in Proc. 9th Eur. Conf. Speech Commun. and Technol., 2005,
pp. 809–812.

[3] H. Prendinger and M. Ishizuka, Eds., Life-Like Characters. Tools,
Affective Functions, and Applications, ser. Cognitive Technologies,
Berlin, Germany: Springer-Verlag, 2004.

[4] C. Pelachaud and M. Bilvi, “Computational model of believable conver-
sational agents,” in Communication in Multiagent Systems: Background,
Current Trends, and Future, vol. LNCS 2650. New York: Springer-
Verlag, 2003, pp. 300–317.

[5] H. Prendinger, S. Descamps, and M. Ishizuka, “MPML: A markup lan-
guage for controlling the behavior of life-like characters,” J. Vis. Lang.
Comput., vol. 15, no. 2, pp. 183–203, 2004.

[6] M. Ishizuka and H. Prendinger, “Describing and generating multimodal
contents featuring affective lifelike agents with MPML,” New Gener.
Comput., vol. 24, no. 2, pp. 97–128, Jan. 2006.

[7] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias,
W. Fellenz, and J. Taylor, “Emotion recognition in human-computer



698 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 2, APRIL 2007

interaction,” IEEE Signal Process. Mag., vol. 18, no. 1, pp. 32–80,
Jan. 2001.

[8] J. Allanson, “Electrophysiologically interactive computer systems,”
Computer, vol. 35, no. 3, pp. 60–65, Mar. 2002.

[9] D. Bersak, G. McDarby, N. Augenblick, P. McDarby, D. McDonnell,
B. McDonald, and R. Karkun, “Intelligent biofeedback using an im-
mersive competitive environment,” in Proc. Online, Ubicomp Workshop
Designing Ubiquitous Comput. Games, 2001.

[10] A. T. Duchowski, Eye Tracking Methodology: Theory and Practice.
London, U.K.: Springer-Verlag, 2003.

[11] S. Shimojo, C. Simion, E. Shimojo, and C. Scheier, “Gaze bias both
reflects and influences preference,” Nat. Neurosci., vol. 6, no. 12,
pp. 1317–1322, Dec. 2003.

[12] H. Kautz, “A formal theory of plan recognition,” Ph.D. dissertation, Univ.
Rochester, Rochester, NY, 1987.

[13] R. W. Picard, Affective Computing. Cambridge, MA: MIT Press, 1997.
[14] R. W. Levenson, “Emotion and the autonomic nervous system: A prospec-

tus for research on autonomic specificity,” in Social Psychophysiology
and Emotion: Theory and Clinical Applications, H. L. Wagner, Ed.
Hoboken, NJ: Wiley, 1988, pp. 17–42.

[15] ——, “Autonomic specificity and emotion,” in Handbook of Affective
Sciences, R. J. Davidson, K. R. Scherer, and H. H. Goldsmith, Eds.
Oxford, U.K.: Oxford Univ. Press, 2003, pp. 212–224.

[16] P. Ekman, R. W. Levenson, and W. V. Friesen, “Autonomic nervous sys-
tem activity distinguishes among emotions,” Science, vol. 221, no. 4616,
pp. 1208–1210, Sep. 1983.

[17] P. J. Lang, “The emotion probe: Studies of motivation and attention,”
Amer. Psychol., vol. 50, no. 5, pp. 372–385, May 1995.

[18] L. Feldman-Barrett and J. A. Russell, “The structure of current affect:
Controversies and emerging consensus,” Curr. Dir. Psychol. Sci., vol. 8,
no. 1, pp. 10–14, 1999.

[19] J. L. Andreassi, Psychophysiology. Human Behavior & Physiological
Response, 4th ed. Mahwah, NJ: Lawrence Erlbaum Associates, 2000.

[20] A. Bechara, H. Damasio, D. Tranel, and A. R. Damasio, “Deciding advan-
tageously before knowing the advantageous strategy,” Science, vol. 275,
no. 5304, pp. 1293–1295, Feb. 1997.

[21] E. H. Hess, “Pupillometrics: A method of studying mental, emotional
and sensory processes,” in Handbook of Psychophysiology, N. Greenfield
and R. Sternbach, Eds. New York: Holt, Rinehart and Winston, 1972,
pp. 491–531.

[22] T. Partala and V. Surakka, “Pupil size variation as an indication of affective
processing,” Int. J. Human-Comput. Stud., vol. 59, no. 1/2, pp. 185–198,
Jul. 2003.

[23] H. Umemuro and J. Yamashita, “Detection of user’s confusion and
surprise based on pupil dilation,” Jpn. J. Ergonomics, vol. 39, no. 4,
pp. 153–161, 2003.

[24] M. Satyanarayanan, “Pervasive computing: Vision and challenges,” IEEE
Pers. Commun., vol. 8, no. 4, pp. 10–17, Aug. 2001.

[25] J. A. Healey, “Wearable and automotive systems for affect recognition
from physiology,” Ph.D. dissertation, MIT, Cambridge, MA, 2000.

[26] J. H. Goldberg and X. P. Kotval, “Computer interface evaluation using eye
movements: Methods and constructs,” Int. J. Ind. Ergon., vol. 24, no. 6,
pp. 631–645, Oct. 1999.

[27] R. J. K. Jacob, “The use of eye movements in human-computer interaction
techniques: What you look at is what you get,” ACM Trans. Inf. Syst.,
vol. 9, no. 3, pp. 152–169, 1991.

[28] D. D. Salvucci and J. H. Goldberg, “Identifying fixations and saccades
in eye-tracking protocols,” in Proc. Eye Tracking Res. and Appl. Symp.,
2000, pp. 71–78.

[29] G. Loftus and N. Mackworth, “Cognitive determinants of fixation location
during picture viewing,” J. Exp. Psychol., Hum. Percept. Perform., vol. 4,
no. 4, pp. 565–572, Nov. 1978.

[30] T. S. Huang, L. S. Chen, H. Tao, T. Miyasato, and R. Nakatsu, “Bimodal
emotion recognition by man and machine,” in Proc. ATR Workshop Vir-
tual Commun. Environments, 1998.

[31] H. Prendinger and M. Ishizuka, “The empathic companion: A character-
based interface that addresses users’ affective states,” Int. J. Appl. Artif.
Intell., vol. 19, no. 3, pp. 267–285, Mar./Apr. 2005.

[32] A. Kapoor, R. W. Picard, and Y. Ivanov, “Probabilistic combination of
multiple modalities to detect interest,” in Proc. Int. Conf. Pattern Recog.,
2005, pp. 969–972.

[33] Z. Zeng, J. Tu, M. Liu, T. Zhang, N. Rizzolo, Z. Zhang, T. S. Huang,
D. Roth, and S. Levinson, “Bimodal HCI-related affect recognition,” in
Proc. 6th ICMI, 2004, pp. 137–143.

[34] T. Koshizen, Y. Hasegawa, H. Tusjino, M. Kon, K. Aihara, and
H. Prendinger, “A learning system for user modeling by combined cog-
nitive and affective modeling for user interest estimation,” in Proc. 7th
ICCM, 2006, pp. 184–189.

[35] S. Kopp, B. Jung, N. Lessmann, and I. Wachsmuth, “Max—A multimodal
assistant in virtual reality construction,” KI Zeitschift (German Magazine
of Artificial Intelligence)—Special Issue on Embodied Conversational
Agents, vol. 4, no. 3, pp. 11–17, 2003.

[36] C. Becker, H. Prendinger, M. Ishizuka, and I. Wachsmuth, “Evaluating
affective feedback of the 3D agent Max in a competitive cards game,”
in Proc. 1st Int. Conf. ACII. Berlin, Germany: Springer-Verlag, 2005,
vol. LNCS 3784, pp. 466–473.

[37] H. Prendinger, C. Becker, and M. Ishizuka, “A study in users’ physiolog-
ical response to an empathic interface agent,” Int. J. Humanoid Robotics,
vol. 3, no. 3, pp. 371–391, Sep. 2006.

[38] H. Prendinger, C. Ma, J. Yingzi, A. Nakasone, and M. Ishizuka, “Un-
derstanding the effect of life-like interface agents through eye users’ eye
movements,” in Proc. 7th ICMI, 2005, pp. 108–115.

[39] R. M. Cooper, “The control of eye fixation by the meaning of spoken
language: A new methodology for the real-time investigation of speech
perception, memory, and language processing,” Cogn. Psychol., vol. 6,
no. 1, pp. 84–107, Jan. 1974.

[40] C. Peters, C. Pelachaud, E. Bevacqua, M. Mancini, and I. Poggi, “A
model of attention and interest using gaze behavior,” in Proc. 5th Int.
Working Conf. IVA. New York: Springer-Verlag, 2005, vol. LNAI 3661,
pp. 229–240.

Helmut Prendinger received the M.A. and Ph.D.
degrees from the University of Salzburg, Salzburg,
Austria.

He is an Associate Professor at the National Insti-
tute of Informatics, Tokyo, Japan. Previously, he was
a Research Associate and a JSPS Postdoctoral Fel-
low at the University of Tokyo. Earlier, he was a Ju-
nior Specialist at the University of California, Irvine.
He is a coeditor (with Mitsuru Ishizuka) of a book
on lifelike characters that appeared in the Cognitive
Technologies series of Springer. His research inter-

ests include artificial intelligence, affective computing, and human–computer
interaction, in which areas he has published more than 75 papers in international
journals and conference proceedings.

Mitsuru Ishizuka (M’78) received the B.S., M.S.,
and Ph.D. degrees in electronic engineering from the
University of Tokyo, Tokyo, Japan.

He is a Professor at the Graduate School of
Information Science and Technology, University of
Tokyo. Previously, he was with the NTT Yokosuka
Laboratory and the Institute of Industrial Science,
University of Tokyo. During 1980–1981, he was a
Visiting Associate Professor at Purdue University.
His research interests include artificial intelligence,
multimodal media with lifelike agents, and intelli-

gent WWW information space.
Prof. Ishizuka is a member of the American Association for Artificial

Intelligence and the Inter Press Service Japan, and the President of the Japanese
Society for Artificial Intelligence.


