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Abstract

We present an approach to knowledge compilation that transforms a
function-free first-order Horn knowledge base to propositional logic.
This form of compilation is important since the most efficient rea-
soning methods are defined for propositional logic, while knowledge
is most conveniently expressed within a first-order language. To ob-
tain compact propositional representations, we employ techniques from
(ir)relevance reasoning as well as theory transformation via unfold/fold
transformations. Application areas include diagnosis, planning, and vi-
sion. Preliminary experiments with a hypothetical reasoner indicate
that our method may yield significant speedups.

∗This paper is an improved and significantly extended version of Prendinger and
Ishizuka [22].
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1 Introduction

The need for knowledge base (KB) reformation derives from two facts about
declarative representations of knowledge. First, representations are designed
for variety of queries; hence, they will likely contain information that is not
relevant to answering some particular query or query type. Second, many in-
teresting problems in artificial intelligence require the representational power
and compactness of first-order theories, but it is well-known that reasoning
with such theories is computationally expensive (e.g. Papadimitriou [18]).
On the other hand, considerable progress has been made in developing ef-
ficient mechanisms for propositional reasoning. For instance, GSAT is an
efficient procedure for solving propositional satisfiability problems (e.g. Sel-
man and Kautz [26]); NBP is a fast mechanism for solving propositional
hypothetical (or abductive) reasoning problems (Ohsawa and Ishizuka [17]).
The aim of KB reformation is to preserve the generality and compactness
of representing knowledge in first-order Horn logic, while at the same time
allow for processing a highly efficient propositional KB.

KB reformation extends existing work on knowledge compilation (Cadoli
and Donini [2], Williams and Nayak [29]) to the first-order case. Compilation
methods preprocess a propositional KB off-line such that the result can
be used to speed up on-line query answering. By contrast, we start with
a function-free and non-recursive first-order Horn theory and generate a
propositional Horn theory of manageable size (which might then be further
preprocessed by propositional compilation methods).

For the case of Horn theories without function symbols, a naive approach
would suggest to apply all possible instantiations of constants for variables
and output a (finite) set of clauses that contains no variables. These clauses
can then be treated like propositional clauses. This approach is certainly
infeasible since the resulting set might be prohibitively large. Therefore, our
idea is to ‘reform’ the original first-order theory before instantiation. The
problem of economically instantiating clauses will be called the ‘instantiation
problem’. In order to obtain a knowledge base of practical size, we operate
both on the level of clauses and the level of instantiations (of clauses). In
particular, we use methods from the following fields:

• Relevance reasoning. Methods from this area are used to reduce
the number of clauses considered to answer some instance of a query
type (Levy et al. [13], Schurz [25]). Moreover, relevance reasoning is
employed to instantiate the theory.

• Theory transformation. A principled application of unfold/fold
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rules allows to reduce the number of possible instantiations of a clause.
More specifically, theory transformation eliminates ‘unnecessary’ vari-
ables, i.e., variables that occur in the body B but not in the head H of
a clause H ← B (Tamaki and Sato [28], Proietti and Pettorossi [24]).

Our approach is clearly inspired by the success of the ‘planning as sat-
isfiability’ approach of Kautz and Selman [10], where first-order planning
problems are ‘encoded’ as propositional satisfiability problems. To obtain
an efficient propositional representation, the encoding exploits specific as-
sumptions about the planning domain. By contrast, we propose a general
theory for representing first-order Horn theories in propositional logic, i.e.,
we propose methods to transform any first-order Horn theory to a propo-
sitional one, thus encompassing problems different from planning, such as
diagnosis or vision.

The advantages of our KB reformation framework are as follows. First,
our framework is applicable to a wide range of first-order Horn theories.
Second, the propositional theories resulting from KB reformation have at-
tractive computational properties such as small size and shorter clauses.
Third, the propositional theories can be derived automatically from their
first-order pendants. Consequently, researchers interested in propositional
algorithms may approach problems traditionally formulated in first-order
Horn logic with little extra effort.

The main contribution of this paper is an effective compilation method
transforming first-order Horn theories to propositional Horn theories, based
on the structure-sensitive application of relevance reasoning in conjunction
with a novel set of variable elimination procedures.

The paper is organized as follows. In Section 2, we show how techniques
from relevance reasoning can be used to rule out parts of a knowledge base
that are not related to a set of queries. Section 3 offers a solution to the
instantiation problem, by means of procedures that eliminate unnecessary
variables from clauses. In Section 4, we describe how clauses are actually
instantiated, as a by-product of constructing the so-called query-tree for a
query type. Section 5 reports on our preliminary experimental results. In
Section 6, we discuss the paper and related work, and in Section 7, we give
some conclusions.

2 Relevance Reasoning

In this section, we will introduce procedures that first partition a Horn
theory into (possibly independent) subtheories, and then remove clauses
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from a subtheory that cannot contribute to the solution of any query, also
called strongly (proof-based) irrelevant clauses (e.g. Levy et al. [13], Schurz
[25]). The resulting theories significantly reduce the search space for logical
reasoners.

2.1 Preliminaries

We start with some general definitions from logic programming (e.g. Lloyd
[14]). We consider first-order Horn theories T , i.e., sets of clauses C of the
form

q(X̄n+1)← p1(X̄1) ∧ ... ∧ pn(X̄n)

where q(X̄n+1), p1(X̄1), ..., pn(X̄n) are atomic formulas, and X̄i denotes the
sequence of variables Xi,1, ..., Xi,mi . If n > 0 then C is called a rule (or
non-unit clause), else (n = 0) C is called a fact (or unit clause). The atom
q(X̄n+1) is called the head of the clause, denoted by hd(C), the conjunction
p1(X̄1)∧ ...∧pn(X̄n) is called the body of the clause, denoted by bd(C). The
variables occurring in a clause are implicitly universally quantified. A clause
(theory) containing no variables is called ground (or simply propositional).
If the head of a clause C does not occur elsewhere in the body of some clause
in T , C is called a definition clause.

Horn clauses considered are subject to the following restrictions.

• Function-free. A clause C is function-free if it does not contain non-
zero arity function symbols. On the other hand, zero-arity function
symbols (constants) are allowed.

• Range-restricted. Let V(hd(C)) denote the set of variables occurring
in the head of a clause C, and V(bd(C)) the set of variables occurring
in the clause body. A clause C is range-restricted if V(hd(C)) ⊆
V(bd(C)). For instance, p(X) ← q(X) is range-restricted, whereas
p(X,Y )← q(X) is not.

All clauses considered here are Horn, function-free, and range-restricted.
The Herbrand base TB of a theory T is the set of all ground instances of

atoms formed by predicates and constants in T (a new constant is invented
if T does not contain any constants). We impose the following restriction
on theories.

• Acyclic [1]. A theory T is acyclic if there is an assignment of a positive
integer to each element in the Herbrand base TB of T such that for
every clause CB in TB, the number assigned to the atom in hd(CB) is
greater than the number of assigned to each atom in bd(CB).
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More conspicuously, a theory T is acyclic if the (disjunct) directed graphs
corresponding to TB contain no cycles. Observe that if all clauses in a the-
ory T are function-free and T is acyclic, then there cannot be recursive
definitions in T . In general, however, acyclicity does not preclude recursive
definitions (see Apt and Bezem [1]). An interesting subclass of acyclic the-
ories are tree-structured theories. A theory T is called tree-structured if the
directed graph corresponding to T consists of subtrees T1, ..., Tn, i.e., each Ti

has only one top node and there exists only one (directed) path from every
node in Ti to the top node.

2.2 Theory Factorizing

The idea of theory factorizing is to remove all clauses that cannot contribute
to answering some query type p(X̄). We define factorizing w.r.t. query types
p(X̄) rather than particular instantiations of queries such as p(a) or p(b).
Consequently, we only consider the predicate symbols occurring in a clause,
and sometimes write query types p(X̄) simply as p. Note that we have to
assume that every distinct predicate symbol has a unique arity; for instance,
p(X) and p(X,Y ) do not refer to the same relation.

The theory factorizing procedure comes in two versions, depending on
the topology (structure) of the knowledge base.

Acyclic theories. If the theory is acyclic, factorizing is performed by
means of an algorithm that computes all clauses that are ‘reachable’ from a
query type p. The following definition relies on the standard conception of
queries as clauses of the form ← p.

Definition 2.1
Let C be a set of clauses and p an atom occurring in the body of a clause C
of C. The set of atoms reachable from p is defined inductively as follows:

1. p is reachable from p if p occurs in the head of a clause C ′ ∈ C where
C 6= C ′.

2. Let q ← p1 ∧ ...∧ pn be a clause C of C and q an atom reachable from
p. Then any atom pi (1 ≤ i ≤ n) occurring as head in a clause C ′ ∈ C
is reachable from p if C 6= C ′. The atom q is called an ancestor of
each atom pi. Each pi is a successor of q.

The notion of reachability can be extended to non-unit clauses (rules) as
follows. A non-unit clause C is reachable from an atom p if the the head of C
is reachable from p. The set of clauses reachable from p is denoted by Tp. It
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function factorize(T ) return a partition P of T
Input theory T and P = {{Q}}, where Q is an atomic query type.

• { for each C ∈ T
where C resolves with D1, ...,Dk ∈ P

– if k = 0 then P = P ∪ {{C}};
– if k ≥ 1 then P = (P\{D1, ...,Dk}) ∪ {D1 ∪ ... ∪ Dk ∪ {C}};
– T = T\{C};

• return P }

Figure 1: Theory Factorizing Procedure.

is well known that the reachability problem is polynomial (e.g. Papadimitriou
[18]).

Tree-structured theories. If the theory T is tree-structured, T can be
split into disjoint subtheories T1, ..., Tn such that no clause C in a given
subtheory Ti resolves with some clause D from a subtheory Tj , if i 6= j.
This means that the search space for a given atomic query type p(X̄) that
is admissible in Ti can be restricted to a single subtheory Ti. A query type
p(X̄) is called admissible in Ti if it resolves with some clause in Ti. A
polynomial algorithm for theory factorizing is given in Fig. 1.

Basically, the factorizing procedure does the following: (i) if a clause
C does not resolve with any independent subset of the already generated
partition, then {C} is added as a new element of the partition; (ii) if a clause
C resolves with independent subsets D1, ...,Dk ∈ P, then those subsets and
C form a new element of the partition while the old elements D1, ...,Dk get
cancelled. The procedure halts when all clauses of the original clause set T
are processed.

Example 2.1
Let the original theory T be as follows, with query type p(X,Y ):

(r1) p(X,Y )← q(X,Y ).
(r2) p(X,Y )← r(X,Y ).
(r3) q(X,Y )← q1(X,Z) ∧ h 1(Z, Y ).
(r4) r(X,Y )← h 2(X,Y ).
(r5) r(X,Y )← h 3(X,Y ).
(r6) s(X,Y )← s1(X,Y ).
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(r7) t(X,Y )← h 4(X,Y ).
(f1) s1(a, b).

In the resulting partition of T , the arguments of predicates are removed.
Since clauses in the theory are indexed, the original clauses can be restored
any time.

T1 = {← p; p← q; p← r; q ← q1 ∧ h 1; r ← h 2; r ← h 3}
T2 = {s← s1; s1}
T3 = {t← h 4}

For query type p, the independent subtheories T2 and T3 are strongly irrele-
vant. In the case of an atomic query type p, at most one subtheory, which is
denoted by Tp, is relevant to p. If the query type is non-atomic, for instance,
p∧q, two subtheories have to be considered unless p and q resolve with some
clauses in the same subtheory.

The following theorem summarizes the effect of theory factorizing. It
can be easily derived from Th. 7 in Schurz [25].

Theorem 2.1
Let T be a first-order Horn theory, and p(X̄) an admissible query type in T .

• If T is acyclic, then any instance of p(X̄) can be answered by only
considering the set Tp. The clauses in T\Tp are strongly irrelevant to
any instance of p(X̄) w.r.t. T .

• Suppose T is tree-structured and P = {T1, ..., Tn} the partition of T .
Then any instance of p(X̄) can be answered by considering exactly one
independent subtheory Ti ∈ P. All theories Tj with i 6= j are strongly
irrelevant to any instance of p(X̄) w.r.t. T .

Theory factorizing provides necessary conditions for strong irrelevance, i.e.,
given a query type p(X̄), when a clause C is removed from T then C is
strongly irrelevant to p(X̄) w.r.t. T . In general, those procedures do not
give sufficient conditions for strong irrelevance: after factorizing, the theory
may still contain strongly irrelevant clauses. This is a consequence of ignor-
ing particular instantiations of atoms. To see this, consider the following
example.

Example 2.2
Assume the theory T = {p(X) ← q(X); q(b)}, and the query is p(a). The
clauses in T are not part of any proof of p(a), although both clauses are
output by factorizing. In fact, there exists no proof for p(a).
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function simplify(T ) return simplified theory T ′

Input initial theory T 0, ng(T 0) = {q1, ..., qn}.

• { repeat

{ for every q ∈ ng(T i)

∗ delete all clauses C1, ..., Cm with q in the body and
∗ delete all clauses D1, ..., Dl reachable from clauses
C1, ..., Cm;
∗ T i+1 = T i\{C1, ..., Cm, D1, ...,Dl};

• until ng(T k) = ∅ for some k > 0 };

• return T k }

Figure 2: Theory Simplification Procedure.

2.3 Theory Simplification

A given (independent) theory may still contain strongly irrelevant clauses
after factorizing. This is the case when a clause C contains an atom in
bd(C) that does not resolve with the head of any other clause. C is called a
failing clause. Essentially, theory simplification removes failing clauses from
a theory.

Assume we are given a theory T . The predicate symbols in T , P(T ),
can be divided into (i) goal predicates, i.e., predicate symbols that occur
in the head of some clause in T (and possibly in the body of some clause),
and (ii) non-goal predicates, that is, predicate symbols that only occur in
the body of some clause in T . The set of goal predicate symbols is de-
noted by g(T ) and the set non-goal predicate symbols is denoted by ng(T ).
Note that g(T ) ∩ ng(T ) = ∅ and g(T ) ∪ ng(T ) = P(T ). For generality,
we also allow for assumable predicates H ⊆ g(T ). Atoms with assumable
predicates denote hypotheses that may contribute to the proof of a query,
if assumed as hypotheses. Because of their importance for hypothetical rea-
soning (e.g. Ohsawa and Ishizuka [17]), we want to consider them in the
simplification procedure.

Simplification means that clauses C containing an atom p ∈ ng(T ) can
be deleted from the theory T , producing the simplified theory T ′. The
simplification process is repeated until no failing clauses are detected. The
theory simplification algorithm is presented in Fig. 2.
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Theory simplification is best explained by continuing Example 2.1.

Example 2.3
Let T1 be our initial theory

T1 = {← p; p← q; p← r; q ← q1 ∧ h 1; r ← h 2; r ← h 3}

where strings starting with “h ” denote hypotheses. Here, g(T1) = {p, q, r,
h 1, h 2, h 3} and ng(T1) = {q1}. Since q1 does not resolve with any clause,
the clause q ← q1 ∧ h 1 can be deleted from T1, resulting in T ′1 where
ng(T ′1) = {q}. After the clause p← q is deleted, the remaining theory is

T ′′1 = {← p; p← r; r ← h 2; r ← h 3}

where ng(T ′′) = ∅. As each simplification step reduces the number of clauses
in the (finite) theory, the simplification procedure will eventually halt.

The following theorem extends Th. 7 in Schurz [25].

Theorem 2.2
Let T be a first-order Horn theory, C a clause in T , and p(X̄) an admissible
query type in T . If C is removed by theory simplification, then C is strongly
irrelevant to any instance of p(X̄) w.r.t. T .

Similar to theory factorizing, theory simplification provides necessary
but not sufficient conditions for strong irrelevance (see Example 2.2 for an
example).

This concludes the first reformation phase. Although the procedures in-
troduced so far reduce the number of clauses that have to be considered when
answering a query instance, they do not target the instantiation problem.
In the next section, we will propose a solution to the instantiation problem.
After that, we will return to issues of relevance again. Below, we discuss
some practical implications of KB reformation by relevance reasoning.

2.4 Practical Implications of Relevance Reasoning

It is well known that a major factor of slowing down reasoning mechanisms
for artificial intelligence is that parts of the knowledge base irrelevant to
the query are explored (Levy et al. [13], Darwiche [4]). We consider the
application field of model-based diagnosis (e.g. de Kleer et al. [6]).

If the system description (behavioral model) is tree-structured, the di-
agnostic task is decomposable and allows for highly efficient diagnosis pro-
cedures (see Stumptner and Wotawa [27]). From a KB reformation point of
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view, tree-structured systems are advantageous since the theory factorizing
procedure has to be applied only once. On the other hand, if the system
description is acyclic, factorizing has to be invoked 2n − 1 times, where n
is the number of possible observations (manifestations) about the system
behavior. In other words, we have to determine the relevant portion of the
system for each possible subset of the set of atomic observations (excluding
the case where no observation is made). In practice, however, it is often
sufficient to compute the relevant portion of the model for observation sets
of small cardinality.

The factorizing procedure developed for tree-structured theories can also
be applied to acyclic theories, although factorizing via the reachability al-
gorithm generally yields smaller subtheories. To see this, observe that ac-
cording to the reachability algorithm, only successors p of a query type q
enter the subtheory, whereas a partition generated by theory factorizing also
contains the ancestors r of successors p of the query type q, where r does not
contribute to a proof of the query in question. For instance, let the theory
be T = {s1 ← s0; s2 ← s0; s0}, with query s1. The reachability procedure
generates the set {← s1; s1 ← s0; s0}, whereas theory factorizing yields T as
the single subtheory because s0 and s2 ← s0 resolve.

The practical value of theory simplification consists in its ability to detect
unspecified context conditions in a system description. A situation where a
subquery does not resolve with a fact indicates that some input to a device
has not been declared in the description.

In Prendinger and Ishizuka [23, 21], KB reformation by relevance rea-
soning is proposed as a compilation step preceding the actual diagnosis.
Empirical results indicate the potential of relevance reasoning for efficient
diagnosis.

3 Theory Transformation

The motivation for theory transformation by applying unfold/fold trans-
formations is to reduce the complexity of a first-order Horn theory as mea-
sured by the number of possible ground instantiations of clauses. Unfold/fold
transformations were originally introduced by Tamaki and Sato [28] to en-
hance the efficiency of logic programs. Kawamura and Kanamori [11] show
the equivalence-preserving nature of the transformation rules. A precise
definition of the transformation rules is given in the Appendix.

We will propose theory transformation to solve the ‘instantiation prob-
lem’, i.e., the problem that simple-minded instantiation of variables by con-
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stants yields a propositional theory of impractical size. Since the instan-
tiation of a clause C is exponential in the number of different variables
occurring in C, we try to minimize that number. Consider the clause C0

with four different variables (X, Y , Z1, and Z2)

C0 : q(X,Y )← p1(X,Z1) ∧ p2(Z1, Z2) ∧ p3(Z2, Y )

that yields O(n4) clauses upon instantiation. Theory transformation re-
places C0 by

C1 : q(X,Y )← newp(X,Z2) ∧ p3(Z2, Y )
C2 : newp(X,Z2)← p1(X,Z1) ∧ p2(Z1, Z2)

that result in O(2n3) instantiated clauses. Here, C2 is introduced by the
definition rule and then folded with C0, yielding C1. To demonstrate the
instantiation problem by means of a concrete example, assume that each of
the variables X, Y , Z1, and Z2 can be instantiated to any of five constants.
Then there exist 5 × 5 × 5 × 5 = 625 possibilities to instantiate C0, and
125 possibilities for each of C1 and C2. Hence the original theory T =
{C0} allows for 625 propositional clauses, whereas the reformed theory T ′ =
{C1, C2} has only 250 instantiations.

More specifically, we will eliminate unnecessary variables, i.e., variables
that occur in the body bd(C) but not in the head hd(C) of a clause C.
According to this definition, the variables Z1 and Z2 in C0 are unnecessary.

Definition 3.1
A first-order Horn theory T is called optimally reduced if no clause in T
contains unnecessary variables.

Obviously, the aim of theory transformation (as motivated here) will be to
generate optimally reduced theories. Indeed, one algorithm described in
Proietti and Pettorossi [24] eliminates all unnecessary variables as a result
of the sequential application of unfolding, definition and folding steps. Un-
fortunately, the algorithm only terminates for very specific theories. More
precisely, the procedures halt for theories that can be split into nonascending
and tree-like theories (see Proietti and Pettorossi [24] for an explanation of
this rather intriguing property). The non-halting property undercuts every
attempt to develop algorithmic transformation procedures. We will propose
procedures that halt on every theory, but do not necessarily eliminate all
unnecessary variables.
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3.1 Definitions

We start with some terminology to distinguish different kinds of clause bod-
ies. The distinction is intended to cover a broad range of syntactically
possible clause bodies. The most central notion is that of a block of a clause
body, which we borrow from Proietti and Pettorossi [24].

Definition 3.2 (block)
Given a clause C and a set B of atoms in bd(C). We define a binary relation
R over B such that: given two atoms B1 and B2 in B, R(B1, B2) if and only
if V(B1) ∩ V(B2) 6= ∅. We let R∗ denote the reflexive and transitive closure
of R over bd(C). By partbd(C) we denote the partition of the body of C
into blocks w.r.t. R∗. Note that each (distinct) variable occurs in at most
one block of partbd(C).

For instance, let C be the clause

q(X,Y, Z)← p1(X,X1) ∧ p2(Y, Y 1) ∧ p3(X1, Z)

Here partbd(C) has two blocks, {p1(X,X1), p3(X1, Z)} and {p2(Y, Y 1)}.

Definition 3.3 (faithful variant)
A block Bl1 in the body of a clause C1 is called a faithful variant of a
block Bl2 in the body of a clause C2 if and only if there exists a renaming
substitution θ such that:

• Bl1 = Bl2θ (Bl1 is a variant of Bl2), and

• for all X in V(Bl2), X is an existential variable in C2 if and only if
Xθ is an existential variable in C1.

A block can have a variety of syntactical forms. For clause bodies that
contain blocks or fall under one of the following definitions, we will later
propose procedures that eliminate unnecessary variables.

Definition 3.4 (chain)
Given a clause C and a partition partbd(C). Let Bl be a block in partbd(C)
with k atoms where all atoms in the block can be grouped such that

• for all adjacent Ai, Aj , we have R(Ai, Aj);

• the first and the last atom in the (reordered) block contain at least
one variable occurring in hd(C);
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• no other atom contains a variable occurring in hd(C);

• the variables in R(Ai, Aj) are distinct.

• all variables in each R(Ai, Aj) are distinct from the variables in hd(C).

Then Bl = {〈A1, ..., Ak〉} is called a chain.

Reconsider clause C0,

C0 : q(X,Y )← p1(X,Z1) ∧ p2(Z1, Z2) ∧ p3(Z2, Y )

where the bd(C0) is a single block that forms a chain. The atoms p1(X,Z1)
and p3(Z2, Y ) are called opening and closing atoms, respectively. Assume
a chain where A1 is the opening atom and Ak is the closing atom. Variables
such that X /∈ (V(A1) ∩ V(A2)) ∪ (V(Ak−1) ∩ V(Ak)) are called embracing
variables of A1 and Ak. Let 〈p1(X,Z1), p2(Z1, Z2), p3(Z2, Y )〉 be a chain.
Here X and Y are the embracing variables.

Definition 3.5 (loop)
A loop is a special form of a chain that has the form

q(X)← p1(X,Y1) ∧ ... ∧ pn(Yn−1, X)

Definition 3.6 (isolated blockpart)
Let C be the clause A ← B1 ∧ ... ∧ Bn where bd(C) is a block. Given an
atom Bi in bd(C) such that for some X ⊆ V(Bi): all elements in X occur
only once in bd(C). Then the variables occurring in X are called isolated
variables in bd(C), and Bi an isolated blockpart in bd(C).

Let C be the clause

q(X,Y )← p1(X,Z) ∧ p2(Z, Y ) ∧ p3(Z,Z1)

The variable Z1 in bd(C) is isolated, and p3(Z,Z1) is an isolated blockpart.

3.2 Variable Elimination Procedures

The following procedures automatize the definition rule for clause bodies
defined in the previous subsection. The resulting clauses are then folded
with the original clauses. Thereby we usually obtain slightly more first-
order clauses, but they yield significantly fewer instantiations.
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Procedure 3.1 (block)
Given a clause C with a block Bl in partbd(C), and atoms Bi, Bj in Bl such
that R(Bi, Bj) (see Def. 3.2). If there are at least two unnecessary variables
in Bl, generate a new clause

newp(Y1, ..., Ym)← Bi ∧Bj

where newp/m is a fresh predicate symbol and {Y1, ..., Ym} is defined as
(V(Bi) ∪ V(Bj)) \ (V(Bi)∩V(Bj)), else (only one unnecessary variable) do
nothing. Note that this procedure is non-deterministic, since R(Bi, Bj) is
not uniquely determined.

Let C be the clause

q(X,Y )← p1(X,Z1, Z2) ∧ p2(Z1) ∧ p3(Z2, Y )

where the clause body forms a single block (which is not a chain). The new
clause

newp(X,Z2)← p1(X,Z1, Z2) ∧ p2(Z1)

is generated, and on backtracking, the clause

newp(X,Z1, Y )← p1(X,Z1, Z2) ∧ p3(Z2, Y )

is generated.

Procedure 3.2 (chain)
Given a clause C and a chain 〈A1, ..., Ak〉 (k > 2) of a block in bd(C).
Generate a new clause

newp(X1, ..., Xn)← A1 ∧ ... ∧Ak−1

where newp/n is a fresh predicate symbol and X1, ..., Xn are the embracing
variables of A1, Ak−1. An example will be described below.

Procedure 3.3 (isolated blockpart)
Let C be a clause with p(X1, ..., Xn) (n ≥ 1) an atom in a block Bl in bd(C).
Suppose Ȳ is the set of isolated variables in Bl and X̄ ′ = {X1, ...,Xn}\Ȳ .
Generate a new clause

newp(X̄ ′)← p(X1, ..., Xn).
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As an example, consider the clause

q(X,Y )← p1(X,Z) ∧ p2(Z, Y ) ∧ p3(Z,Z1)

where Z1 in p3(Z,Z1) is isolated. According to the procedure, the new
clause

newp(Z)← p3(Z,Z1)

is generated.
The theory transformation procedure is described in Fig. 3.1 Note that in

the last step after all unfolding—definition—folding cycles, all non-definition
clauses are deleted, i.e., the clauses that have been used for unfolding (and
are not needed any more).

In the next subsection, we will go through the algorithm by means of an
example. The procedure significantly extends the algorithm in Proietti and
Pettorossi [24]). Except for a special instance of clause bodies with isolated
blockparts, their algorithm did not eliminate any unnecessary variables.

To summarize, in the second phase of KB reformation, a theory T is
transformed to an equivalent theory T ′ that allows for significantly fewer
instantiations.

3.3 Example

In this subsection, we describe an example for a subset of the variable elim-
ination procedures in detail. Let the theory Tpath consist of the following
single clause.

(r0) path(X,Y )← link1(X,Z1) ∧ link2(Z1, Z2)∧
link3(Z2, Z3) ∧ link4(Z3, Y )

The predicates link1 – link4 can be assumed as hypotheses. The first step
in the transformation sequence starting from Tpath is an application of the
definition rule. Observe that r0 (trivially) cannot be unfolded with any
clause because it is the only clause in Tpath. Since the body of r0 forms a
chain, we apply Proc. 3.2 and obtain the clause

(r1) newp1(X,Z3)← link1(X,Z1) ∧ link2(Z1, Z2) ∧ link3(Z2, Z3)

Then a folding step is performed, with r0 as the folded clause and r1 as the
folding clause, yielding

(r2) path(X,Y )← newp1(X,Z3) ∧ link4(Z2, Z3)

1Recall that the transformation rules are explained in the Appendix.
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Input theory T and definition clause C.
Output a set T ′ of transformed clauses.
Initially D = {C}, PD = ∅ (PD is the set of already processed definition
clauses), P = ∅ (P is the set of already processed non-definition clauses),
T ′ = ∅.

For each definition clause D ∈ D that n contains unnecessary variables
(n > 0) do {

1. Unfolding step: unfold some atom in the body of D using non-
unit clauses F1, ..., Fn in T and put the resulting clauses into a set
UD = {E1, ..., En};

2. Definition steps: for each clause Ei ∈ UD

for each block Bl ∈ partbd(Ei) where

• Bl contains at least one unnecessary variable, and

• Bl is not a faithful variant of the body of any clause in D∪PD,

do {

• if Bl is a chain, apply Proc. 3.2,

• if Bl contains an isolated blockpart, apply Proc. 3.3,

• else apply Proc. 3.1;

and add the new definition rule to D };

3. Folding steps: for each clause Ei in UD add to T ′ the clause
resulting from Ei as follows:

for every block Bl of partbd(Ei) which is a faithful variant of a body
of a clause G in D ∪ PD, fold Bl in Ei using G.

D = D\{D}, PD = PD ∪ {D}, P = P ∪ {F1, ..., Fn} }
T ′ = T ′\P

Figure 3: Theory Transformation Procedure.

16



# constants # clauses Tpath # clauses Tref

2 32 24
3 243 81
4 1024 192
5 3125 375

Figure 4: Comparison of the size of original and reformed theories.

The next definition rule to deal with is r1. Its body has the form of a chain,
hence Proc. 3.2 is applied to generate clause

(r3) newp2(X,Z2)← link1(X,Z1) ∧ link2(Z1, Z2)

A folding step follows, with r1 as the folded clause and r3 as the folding
clause, producing

(r4) newp1(X,Z3)← newp2(X,Z2) ∧ link3(Z2, Z3)

As a result, r0 is equivalently replaced by

(r2) path(X,Y )← newp1(X,Z3) ∧ link4(Z3, Y )
(r4) newp1(X,Z3)← newp2(X,Z2) ∧ link3(Z2, Z3)
(r3) newp2(X,Z2)← link1(X,Z1) ∧ link2(Z1, Z2)

after theory transformation. In Fig. 4, the size of the instantiated theory
Tpath = {r0} is compared to that of the reformed theory Tref = {r2, r3, r4},
for 2 to 5 constants.

3.4 A Note on Recursive Theories

The definition of a chain seems particularly interesting, since it can be used
to encode certain forms of recursive theories, such as

(1) path(X,Y )← link(X,Y )
(2) path(X,Y )← link(X,Z) ∧ path(Z, Y )

If the length of the longest path can be determined, say as n, we may
replace the recursive definition (2) by clauses with chain bodies of the form
link1(X,Z1) ∧ ... ∧ linkm(Zm−1, Y ) for all 1 ≤ m ≤ n. However, the set of
(almost) all initial subsequences of the maximal chain can also be obtained
by Proc. 3.2. In the example above, the newly introduced predicates newp1
and newp2 cover paths of length 3 and 2, respectively. The halting condition
(1) has to be added separately. It has the form path(X,Y ) ← linki(X,Y )
(1 ≤ i ≤ n).
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4 Relevance Reasoning Revisited

In the last phase of the KB reformation process, the theory is actually
instantiated. By employing the query-tree idea of Levy et al. [13], we obtain
exactly the set of ground clauses relevant to a query type, together with
all instantiations of the query type that have a solution w.r.t. the theory.
In our approach, the query tree idea is applied in a novel way, where the
(second phase of the) construction of the query-tree is used to economically
instantiate the theory. Our instantiation procedure extends the intelligent
grounding module (IG) proposed for the Disjunctive Deductive Database
System dlv (Eiter et al. [7]). However, our procedure only applies to non-
disjunctive theories.

4.1 Levy’s Query-Tree

A query-tree is a compact representation of a search tree for first-order
Horn theories (Levy et al. [13]). Most importantly, the query tree encodes
precisely the set of all derivations of a query type p(X̄). In brief, the query-
tree is an AND-OR tree with goal-nodes and rule-nodes (more detail will be
given below). Since we do not allow for recursion in clauses, our construction
of the query tree is simpler than the original one in [13]. On the other hand,
we allow that some leaves of the query-tree are uninstantiated. Those are
typically hypotheses that may be assumed in order to prove a query [17].

Example 4.1
Consider the following theory (the atom with predicate h denotes a hypoth-
esis).

(r1) p(X,Y )← q1(X,Y ) ∧ q2(X,Y ).
(r2) q1(X,Y )← r1(X,Y ) ∧ h(X,Y ).
(r3) q2(X,Y )← r2(X,Y ).
(r4) q2(X,Y )← r3(X,Y ).
(f1) r1(a, b). (f2) r1(a, c).
(f3) r2(a, b). (f4) r2(c, d). (f5) r3(b, d).

The query tree algorithm consists of two phases.

Bottom-up phase. A set of adorned predicates and rules is generated.
An adorned predicate pc is a predicate p with constraint c on its arguments.
The adorned rules are the rules of the theory T with predicates replaced
by adorned predicates. We start with the base predicates of the T . Base
predicates denote relations that have no definition in T , i.e., the predicates
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of facts and hypotheses. For instance, the adorned predicate r1c is obtained
by completion (Clark [3]):

r1(X,Y )↔ (X = a ∧ Y = b) ∨ (X = a ∧ Y = c).

For convenience, the adornment of r1 is written as c(X,Y ) = {〈a, b〉, 〈a, c〉}.
Let U be the set of all constants appearing in T . Then the adornment of the
(uninstantiated) hypothesis h in T is {〈X,Y 〉 : 〈X,Y 〉 ∈ U2}. Given a rule
in T of the form q(X̄n+1)← p1(X̄1)∧ ...∧ pn(X̄n) and an adorned predicate
pci

i for each predicate pi. If c = c1(X̄1) ∧ ... ∧ cn(X̄n) is satisfiable, we add
the adorned rule

qch(X̄n+1)← c ∧ pc1
1 (X̄1) ∧ ... ∧ pcn

n (X̄n)

where qch is the projection of c on the head variables X̄n+1. The bottom-up
phase terminates when no new adornments are generated. In Example 4.1,
the following predicate adornments are generated.

r1{〈a,b〉,〈a,c〉} r2{〈a,b〉,〈c,d〉} r3{〈b,d〉} h{〈a,a〉,〈a,b〉,...}

p{〈a,b〉} q1{〈a,b〉,〈a,c〉} q2{〈a,b〉,〈c,d〉,〈b,d〉}

Top-down phase. Starting with the node of the adorned query type qc,
we construct the query-tree such that each node g of a predicate p has a
label l(g). Initially the goal-node l(g) = qc is created (see Fig. 5). A goal-
node g for a predicate qch can be unified with adorned rules r of the form
qch(X̄n+1)← c∧ pc1

1 (X̄1)∧ ...∧ pcn
n (X̄n). If l(g)∧ c is satisfiable, a rule-node

gr is created as a child of g, with l(gr) = l(g) ∧ c as its label. For every
body atom pci

i in r, the rule-node l(gr) has a child goal-node whose label is
the projection of l(gr) onto X̄i. Since nodes of base predicates and nodes
with unsatisfiable label, denoted by l(⊥), are not expanded, the top-down
construction halts.

Levy et al. [13] show that the complexity of building the query-tree
is linear in the number of rules and possibly exponential in the arity of
predicates. The following theorem is due to Levy et al. [13].

Theorem 4.1
Let T be a first-order Horn theory, and p(X̄) an admissible query type in T .
Let T be the query-tree generated from the clauses in T .

• A fact p(a1, ..., an) is strongly irrelevant to any instance of q(X̄) w.r.t. T
if and only if there is no node g of p in T such that a1, ..., an satisfies
the label l(g) of g.
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Figure 5: Query-tree for Example 4.1. The label for each goal-node g is
l(g) = {〈a, b〉}. For simplicity, labels of rule-nodes are omitted. Note that
expanding node q2(X,Y ) with rule r4 would result in an inconsistent label.

• A rule r is strongly irrelevant to any instance of q(X̄) w.r.t. T if and
only if r does not appear in T .

Relevance reasoning by Levy’s query-tree provides necessary and sufficient
conditions for strong irrelevance, a fact that will be exploited in the next
subsection.

4.2 Instantiation

In our approach, instantiation of variables to constants will be performed as a
by-product of the top-down construction of the query-tree. More specifically,
if l(gr) is the label of a rule r in the query-tree, the propositional version
of r is obtained by performing all unifications appearing l(gr). Hence the
output for Example 4.1 is the following theory.

(r′1) p(a, b)← q1(a, b) ∧ q2(a, b).
(r′2) q1(a, b)← r1(a, b) ∧ h(a, b).
(r′3) q2(a, b)← r2(a, b).
(f ′1) r1(a, b). (f ′3) r2(a, b).

It is a consequence of the construction of the query-tree that p(a, b) is the
only instance of the query type p(X,Y ) which has a solution (given that
h(a, b) is assumed). As output of the reformation procedure, we obtain
propositional theories indexed with query types.

5 Preliminary Empirical Evaluation

Hypothetical reasoning. The impact of the savings gained by KB ref-
ormation is tested by means of the Networked Bubble Propagation (NBP)
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mechanism [17], an efficient propositional hypothetical reasoning method for
computing near-optimal solutions (e.g. diagnoses). In hypothetical reason-
ing, we are given a knowledge base T , hypotheses H, and a query q. Some-
times the problem formulation contains inconsistency constraints I ⊂ T of
the form “inc← h1(t̄1)∧ ...∧hn(t̄n)” where hi ∈ H, t̄i a sequence of constant
symbols, and the symbol “inc” denotes the impossible state.2 The hypothet-
ical reasoning task consists in finding minimal sets H1, ...,Hn (Hi ⊆ H) such
that (i) T ∪Hi ` q, and (ii) T ∪Hi 6` inc.

It has been shown that hypothetical reasoning can be used for a variety
of evidential reasoning tasks, where some parts of a system are observed and
other (not observable) parts are to be inferred (e.g. Poole [20]). Evidential
reasoning tasks include diagnosis, perception (vision), and planning. In
diagnosis we observe symptoms and want to determine the faulty parts of
the system. In perception (vision) we are given a stream of sensor data and
the task is to find a description (map) of the locations and shapes of the
objects in the scene. Planning starts from a set of goals and searches for a
set of actions that would bring about the goals.

For the experiments we use a Sun Ultra 2 workstation with 320 MB
memory. The KB reformation methods are implemented in Sicstus Prolog,
the NBP method is implemented in C. All reformation procedures except
theory transformation (which requires the user to select atoms for unfolding)
are automatic. Running times exclude the time needed for KB reformation.
For example, the relevant part of a theory consisting of 1000 clauses can be
extracted in about 4 seconds.

Acyclic Horn theories. The first experiment is intended to show the
efficiency gain of theory factorizing and simplification.3 It involves first-
order Horn theories from 40 up to 1000 rules with a fixed percentage of
integrity constraints (about 20%) and few facts. The theory of Ex. # 1 is
systematically expanded to theories of larger size. Fig. 6 shows the inference
time as a function of the number of hypotheses before and after reformation
by relevance reasoning (the same solution sets H are generated). Results
are obtained by averaging over three different query types. The results show
that the reformed theories can be processed more efficiently, usually in excess
of a factor of 3, ranging up to 196 (for a query type where only 2% of the
hypotheses are relevant).

2The reformation procedures discussed in this paper can be straightforwardly extended
to account for integrity constraints.

3The speedup effect of the instantiation procedure was not tested in this experiment.
We have to refer the reader to the experiments in [13].
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Ex. # # hypotheses time (sec)
before ref. after ref. before ref. after ref.

1 13 6 0.02 0.01
2 39 17 0.08 0.04
3 78 33 0.21 0.07
4 156 67 0.63 0.16
5 312 129 2.14 0.46

Figure 6: Comparison for acyclic Horn theories.
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Figure 7: The effect of theory transformation in the path example. Time in
seconds.
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Path example. The second experiment was designed to show the speedup
effect of KB reformation by theory transformation. We take the path ex-
ample from Section 3 together with the inconsistency constraint “inc ←
link1(X,Y ) ∧ link3(Y,X)”. All link-atoms can be assumed as hypotheses.
Fig. 7 shows significant speedups for the reformed theories (which yield the
same solution sets H as the original theories). Note that in this experiment,
the number of hypotheses is constant but (i) the number processed rules is
dramatically reduced, as shown in Fig. 4, and (ii) the reformed rules involve
2 instead of 4 body atoms. Unfortunately, we were not able to obtain results
for unreformed path theories beyond 4 constants (1024 rules), whereas for
reformed theories, we measured 2.7 sec for 7 constants (1029 rules). Ob-
serve that for almost the same number of rules, the reformed theory can be
processed more than twice as fast as the original one (6.32 sec). We suspect
that similar to satisfiability (SAT) problems, the number of propositional
variables in clauses has a major impact on inference time.

At this stage of investigation, our experiments (not the results) are not
completely satisfying. First of all, we want to test KB reformation on more
diverse first-order Horn theories, and compare our reformation-based ap-
proach to other first-order hypothetical reasoning methods, e.g., Ng and
Mooney [16]. Secondly, we seek to compare running times with a hypo-
thetical reasoner that has better scaling properties than current NBP, for
instance, the method of Ishizuka and Matsuo [8].

6 Discussion

Our approach to KB reformation might be seen as foundational work re-
lated to the ‘planning as satisfiability’ framework of Kautz and Selman [10],
for the case of hypothetical reasoning with first-order Horn theories. Unlike
the problem-specific encodings of planning problems discussed by Kautz
et al. [9], we simply represent first-order problems in propositional logic.
Our variable elimination procedures share some intuitions with the ‘oper-
ator splitting’ technique in Kautz and Selman [10], where, for instance, a
4-arity predicate move(X,Y, Z, I) is replaced by three 2-arity predicates,
object(X, I), source(Y, I), and destination(Z, I). The purpose of both vari-
able elimination and the ‘operator splitting’ technique is to obtain a small-
sized theory upon instantiation.

Although we think that we discussed the major techniques for equivalent
KB reformation, other methods might be of interest as well. For instance,
Levy [12] proposes theory abstraction as a method to transform a given
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theory to a (computationally) simpler one. The idea of theory abstraction is
to remove some detail from the knowledge base, in particular, some argument
of a predicate, if the argument is irrelevant to answering a given query type.
An argument is said to be irrelevant (relative to a query) if (i) proving the
query requires an arbitrary value for that argument, and (ii) the values for
the argument are not subject to other constraints. Note that in this paper,
clauses rather than predicate arguments were deleted from the knowledge
base. The computational gain (for our present purpose) derives from the
fact that rules containing less variables allow for less ground instantiations.
We are just beginning to understand the merits of theory abstraction and
leave the details for future research.

The proposed KB reformation procedures are guaranteed not to slow
down inference and preserve all solutions, at the cost of a reasonable ef-
fort needed to generate the reformed knowledge base. Regarding relevance
reasoning, Levy et al. [13] report on significant speedups with a deductive
theorem prover. Our results complement those findings for a hypothetical
reasoner. For instance, the effect of theory transformation is quite extreme in
the path example. We realize, however, that in general, theories do not con-
tain many unnecessary variables. Furthermore, we cannot provide guaran-
tees that our variable elimination procedures cover all (or most) conceivable
Horn theories. A prime task for future research is to evaluate the efficiency
gain of KB reformation on more diverse Horn theories. We also plan to in-
vestigate syntactical properties that are computationally attractive and can
be shown to be common to reformed theories. For the K-SAT problem (K
the number of propositional variables in each disjunctive clause), Monasson
et al. [15] show how the value of K affects computing time.

7 Conclusion

In this paper, we address the following problem: given a problem formulation
in function-free first-order Horn logic, how can we obtain a compact propo-
sitional representation? This problem is important since the most efficient
reasoning mechanisms are defined for propositional logic (e.g. [26, 17, 29, 5]).
On the other hand, knowledge is most naturally represented in a first-order
language.

In order to compile first-order theories to propositional theories, we em-
ploy techniques from diverse fields such as deductive databases (relevance
reasoning) and logic programming (theory transformation). The theory fac-
torizing procedures are sensitive to the structure (topology) of the knowl-
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edge base. In the context of unfold/fold transformations, a set of special
procedures is defined to eliminate unnecessary variables from clauses. The
query-tree idea [13] is utilized in a novel way to generate the least number
of instantiations of clauses.

Practical applications of our compilation paradigm include diagnosis,
planning, and vision. Reformation-based diagnosis is discussed in [23].
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A Transformation Rules

Unfold/fold transformations for logic programs are first studied by Tamaki
and Sato [28] (see also Pettorossi and Proietti [19] for a survey paper). The
transformation rules are defined as follows.

Definition A.1 (definition rule)
The definition rule adds a new clause C of the form

newp(X1, ..., Xk)← A1 ∧ ... ∧An

to a given theory where newp/k is a predicate symbol not contained in
the theory and A1, ..., An are built from predicate symbols contained in the
theory. The variables X1, ..., Xk are distinct variable symbols occurring in
A1, ..., An. The clause introduced by the definition rule is called a definition
clause. The introduction of a definition clause is also called a eureka step
and the predicate newp/k a eureka predicate.

Definition A.2 (unfolding rule)
Given a Horn theory Tk, a clause C in Tk, and B an atom in its body;
C1, ..., Cn are clauses in Tk such that the head of each Ci unifies with B,
by unifiers θ1, ..., θn (note that unification is trivial since we do not admit
function symbols). Let C ′i be the result of replacing B in C with the body
of Ci followed by applying θi to the whole clause. Then Tk+1 = (Tk\{C})∪
{C ′1, ..., C ′n}. C is called the unfolded clause and C1, ..., Cn are called the
unfolding clauses. B is called the selected atom.
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The unfolding rule corresponds to applying resolution to clause C with
A as the selected atom and C1, ..., Cn as input clauses.

Definition A.3 (folding rule)
Given a Horn theory Tk, and a clause C in Tk of the form

A← B1 ∧ ... ∧Bn (n > 0)

and a new clause D of the form

F ← E1 ∧ ... ∧ Em (m > 0)

Assume there exists a substitution θ such that

• B1 = E1θ, ..., Bm = Emθ;

• for each variable X occurring only in bd(D), θ substitutes a distinct
variable not appearing in {Fθ,A,B1, ..., Bn}\{B1, ..., Bm};

• D is the only clause whose head is unifiable with Fθ.

Let C ′ be the clause

A← Fθ ∧Bm+1 ∧ ... ∧Bn

Then Tk+1 = (Tk\{C}) ∪ {C ′}. C is called the folded clause and D the
folding clause.

Definition A.4 (transformation sequence)
Given T0 as the initial theory, and Ti+1 the result of applying a transfor-
mation step to Ti (i ≥ 0). A transformation step is an application of either
the definition rule, or the folding rule or the unfolding rule. The sequence
of theories T0, ..., Tn is called the transformation sequence starting from T0.
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