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This paper investigates the methodological foundations of a new research field
called chance discovery, which aims to detect future opportunities and risks.
By drawing on concepts from cybernetics and system theory, it is argued that
chance discovery best applies to open systems that are equipped with reg-
ulatory and anticipatory mechanisms. Non-determinism, freedom (entropy)
and open systems property are motivated as basic assumptions underlying
chance discovery. The prediction-explanation asymmetry and evaluation of
chance discovery models are discussed a fundamental problems of this field.

1.1 Introduction

Several researchers within the Knowledge Discovery in Databases (KDD)
community (e.g., Ohsawa [1.9]) questioned whether the methods of this re-
search field are able to find what they call ‘chances’. Chances refer to phenom-
ena that might have a (high) impact to the scientific (and human) society or
an enterprise in the future. High impact is intended to have two complemen-
tary readings: on the one hand it refers to opportunities, i.e., the possibility
to bring about desirable effects; on the other it refers to risks, i.e., possible
threats to an enterprise or society. The notion of chance discovery has been
coined to cover both aspects. Finding future features is seen in contrast to
prediction (e.g., in KDD), the scientific activity to derive phenomena that
appear at some future time point. By contrast, chance discovery explicitly
integrates human initiative into the discovery process.

Procedurally, chance discovery can be seen as a two-step activity. The
first step involves a actual discovery of a certain phenomenon. The second
step suggests actions taken as a consequence of a designated phenomenon
(chance), which is often called (chance) management and involves supportive
measures in the case of opportunities as well as preventive measures in the
case of risks.

Although there might be some interesting interactions with the proba-
bilistic notion of chance, this reading is not intended in chance discovery.
Likewise, chance discovery is not concerned with discovery by chance, such
as the discovery and isolation of penicillin by Alexander Fleming.
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We will discuss the following topics. In the following section, the notion of
open system is explicated in terms of cybernetics and system theory, and the
possibility of prediction is discussed for both nature and open systems. The
next section discusses chance discovery in open systems. In particular, the
notion of ‘anticipation’ is introduced as a mechanism for chance discovery
and exemplified by examples. After that, we explicate notions underlying
the possibility of chance discovery: uncertainty and freedom. In the following
section, chance discovery is contrasted with KDD. Finally, we briefly discuss
and conclude the paper.

1.2 Nature vs. Open Systems

To clarify the application field of chance discovery, we draw a broad dis-
tinction about the object of investigation: nature vs. open systems [1.12].
Whereas nature is governed by natural laws, open systems are typically mod-
eled abstractly by cybernetics [1.1] and system theory [1.16]. Examples of
open systems include ‘living’ systems such as human beings, scientific com-
munities and companies, and artificial (or technical) systems, e.g., cars and
power plants. Both kinds can be described by the following system-theoretical
(S1− 2) and cybernetical (C1− 2) features (Schurz [1.12]):

S1 Open systems are physical ensembles placed into an environment signifi-
cantly larger than themselves. There is a continuous exchange of energy
between system and environment. The environment may satisfy the sys-
tem’s ‘needs’ (see C1) or ‘destroy’ the system (see C2).

S2 Open systems preserve a relative identity through time, called their dis-
sipative state.

C1 The identity in time is abstractly governed by ideal states (or norm
states) which the system tries to approximate, given its actual state.

C2 Regulatory mechanisms compensate disturbing influences of the envi-
ronment, i.e., they continuously try to counteract influences that move
the system apart from its ideal state. If the external influences exceed a
‘manageable’ range, the system is destroyed.

For our present discussion, the regulatory mechanisms of open systems are
of central concern since they can actively interfere with the evolution of the
system, by bringing about (an approximation of) the ideal state, or avoid
the destruction of the system. Later, we will introduce a new kind of mech-
anism, called ‘anticipation’, that has the potential to significantly influence
the systems evolution and most closely corresponds to our notion of chance
discovery.

1.2.1 Prediction in the Natural Sciences

Nature is governed by the laws of physics, e.g., Newton’s second axiom (the
total force law). Obviously, in the physics domain there is no way to influence
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the natural laws. So even if we predict a phenomenon of high impact to
society, such as a giant meteorite approaching the earth at high speed, all we
can do is to evacuate the area the meteorite is predicted to hit.

Since it is not possible to change the course of nature, chance discovery
here means to take appropriate (supportive, preventive) measures to minimize
damage or maximize benefit.

1.2.2 Prediction in Open Systems

Open systems are characterized by system laws. Schurz [1.12] argued that
we are theoretically unable to determine the exact numerical values corre-
sponding to system laws, because the systems are open and hence described
by nonlinear differential equations. In the extreme case, if external influences
exceed the manageable (or critical) range of the system, nonlinear dynamics
becomes effective and leads to chaotic behavior. Due to the sensitivity of
open systems to external influences, prediction is a difficult matter. Below
we will argue that in open systems, the activity of regulatory mechanisms is
of major importance, rather than prediction.

1.3 Chance Discovery in Open Systems

1.3.1 Enterprise Example

Let us first give an illustrative example. Enterprises (companies) can be
viewed as open systems that consist of subsystems (branches, sections, and
individuals), and operate in an environment, the so-called ‘economic market’.
This environment typically satisfies the companies ‘needs’, e.g., customers de-
mand the company’s products. Under unfortunate circumstances, the com-
pany may run into the risk of being ‘destroyed’, e.g., by the appearance of
a strong competitor (cf. S1). In spite of that, companies preserve identity
through time (cf. S2). A company constantly tries to approximate an ideal
state where, for instance, increasing profits are made and the economic situa-
tion of the company is stable. This is achieved by the company’s subsystems
that perform certain functions, including good production and distribution,
and marketing (cf. C1). A company is typically confronted with a multitude
of ‘disturbing’ influences in the form of, e.g., cheaper and better products of
other companies and changing customer needs. At this point, the regulatory
mechanisms of the company come into force, e.g., to lower production costs
by increasing the efficiency of the production cycle. It is well-known that
companies go bankrupt when a critical range is exceeded (cf. C2).

1.3.2 The Limits of Regulatory Mechanisms

Regulatory mechanisms are the system’s means to approximate the system’s
ideal state. Those mechanisms are mainly active to compensate disturbing
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influences by reacting to them. Although regulatory mechanisms are usually
able to guarantee the identity of an open system, they come into force only if
confronted with ‘threats’ from the environment. For instance, if a company’s
sales decrease, the CEO might decide to shrink the company, thereby making
a number of people unemployed.

In the next section we will argue that in addition to regulatory mecha-
nisms, open systems need mechanisms of anticipation to cope with the com-
plexities and influences of the environment.

1.3.3 Chance Discovery as Anticipation

In a recent report to the Club of Rome, Botkin et al. [1.2] introduce the term
“anticipation” as a key feature of innovative learning that emphasizes human
initiative. It is described as follows [1.2, p. 25]:

[...] anticipation is not limited to simply encouraging desirable trends
and averting potentially catastrophic ones: it is also the “inventing”
or creating of new alternatives where none existed before.

Anticipation is contrasted to prediction, since the former focuses on the cre-
ation of possible and desirable futures, and plans to bring them about. The
notion of anticipation shares the intuition of Alan Kay’s phrase “The best
way to predict the future is to invent the future”.

Promotion In philosophy of science, the term “self-fulfilling prophecy” de-
scribes situations such as the following. Newspapers write articles about the
morbidity of a bank institute. As a consequence, many customers of this in-
stitute withdraw their money and other commitments. In effect, the bank
institute gets into serious trouble. A recent ‘real’ example is the success of
the so-called New Economy (internet and telecommunication related shares).
Since many people believed in its success, it became a great success (at least
for some time).

Chance discovery as anticipation in this context means the promotion
of a trend desired by New Economy companies. As a result of promotion,
the desired trend could be effected. Similar forms of promotion are daily
practice in companies: certain products are advertised with the hope that
they actually trigger a desire in customers. The detection of ‘latent’ customer
desires will be briefly discussed in the next section.

Collaboration In business there is a lot of talk about ‘mergers’. Collabo-
rations are also seen in scientific research programs. We will briefly describe
the field of Quantum Computation.

Deutsch [1.3] is reported to be the first to explicitly ask whether it is possi-
ble to compute more efficiently on a quantum computer. For a long time, this
possible collaboration of quantum theory (physics) and artificial intelligence
(computer science) remained a curiosity. However, there are already some
indications of ‘killer applications’ for quantum theory. For instance, Spector
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et al. [1.13] report on problems that take polynomial time on a quantum
computer but exponential time on a classical computer.

In academics, possibilities for collaborations are ubiquitous, and some-
times realized, e.g., in genome analysis, artificial intelligence and biology col-
laborate. What might chance discovery as anticipation mean here? In partic-
ular, how can we anticipate the success of a certain kind of collaboration? We
cannot provide a working methodology here. In the case of quantum com-
putation, the chance was ‘discovered’ by Feynman [1.5] who observed that
classical systems cannot effectively model quantum mechanical systems. This
observation suggests that computers based on the laws of quantum mechanics
(instead of classical physics) could be used to efficiently model quantum me-
chanical systems, and possibly even solve classical problems such as database
search in a highly efficient way.

Given that Quantum Computation will indeed be successful, how could we
have known 10 years ago? One method would be to track the history of ‘con-
jectures’ (ideas, observations) formulated by various insightful researchers,
and evaluate their feasibility in the light of current knowledge in possibly
quite different research areas. The availability of huge amounts of informa-
tion on the Web might facilitate such an endeavor.

1.4 Chance Discovery, Uncertainty, Freedom

One of the tacit assumptions underlying chance discovery is that the future
is uncertain, and hence there is freedom to change is course of action. For
the sake of argument, assume the opposite, i.e., the world history evolves de-
terministically. Obviously, under this artificial assumption, chance discovery
(in our sense) is not possible as there are no choices.

1.4.1 Freedom

Following [1.15], we propose entropy as the measurement of freedom. Specif-
ically, the measurement of freedom is phenomenologically rather than proce-
durally oriented. The freedom of a set A of alternatives is measured by the
entropy H of the actual chosen proportions, i.e.,

H(A) = −
∑

i∈A

pilogpi

where log is to the base 2, pi ≥ 0 and if pi = 0 then 0 log 0 = 0. Accord-
ingly, we may say that chances exist if there are (almost) evenly distributed
alternatives. Consider the following situations (A) and (B).

(A) There are three sellers with (approximately) 30% market share.
(B) There are two sellers, one has 75%, the other has 25% market share.
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Situation (A) has more freedom than situation (B), since a market with
one dominant provider has low entropy. The more interesting notion here is
freedom of successive states for a number of time periods. For instance, a
market with 100% customer loyalty is not free.

1.4.2 Explaining versus Predicting

Let us recall the aforementioned open system situation, that features a high
degree of uncertainty, and formulate it as a problem for chance discovery and
chance management (CD&CM). In the following, M stands for a CD&CM
model (or theory).

– Assume as given a model M that explains why a particular phenomenon
X turned out to be a chance (opportunity or risk), as observed by its high
(positive or negative) impact.

– Given a phenomenon of type X, can we employ M to predict high impact
under comparable circumstances?

Of course, the notions of phenomenon of type and comparable warrant further
explication. In order to clarify the problem, consider the case of simple un-
stable or chaotic systems that support explanations without predictive value.
Assume an ideal ball exactly on top of another ideal ball. Here, we cannot
predict in which direction the ball will roll down, but after it rolled down,
we can explain it by an unmeasureably small disturbance in the direction in
which the ball rolled down [1.11].

Thus, the ‘explanation vs. prediction’ problem raises the fundamental
question about which systems support the predictive use of chance discovery
results. Straightforward answers seem to be ruled out by the fact that human
initiative is essential to take opportunities or avoid risks, and the complexity
of systems such as the web or financial markets.

As a more realistic example, consider Ogawa’s [1.7] ILE (Information of
Liability and Equity) measure that identifies risk factors that eventually lead
to bankruptcy. Specifically, ILE explains bankruptcy. The crucial question,
however, as in science is whether ILE can predict bankruptcy. If ILE has
predictive value, the impact of preventive measures can be proven. Given the
theoretical result about the infeasibility of prediction in open system, we are
left with a probabilistic notion of prediction.

1.5 Scientific Evaluation of Theories

A basic question about scientific theories is how they can be evaluated. Fol-
lowing Popper [1.10], a theory is corraborated (or validated) if it predicts a
phenomenon that is actually observed, while it is falsified when a phenomenon
is observed that contradicts the observation. Note that a theory can never be
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verified by a finite set of observations. The situation for CD&CD models is
complicated for the following reason.

Triple-theory Problem Whether the discovery of a potential chance turns
into a positive result is dependent on three factors:

1. The designated phenomenon was a ‘real’ chance, i.e., chance discovery is
successful.

2. The chosen measures were appropriate, i.e., chance management was suc-
cessful.

3. The predictions about the world for the associated time span of CD&CD
were sufficiently accurate.

The triple-theory problem refers to the practical problem that in order to
validate (or falsify) a CD&CMmodel, three sub-theories have to be successful.
If all of them are successful, observed by the positive result, the model is
corraborated. However, in the case of a negative result, we cannot simply say
that the designated phenomenon was no chance, because we either did not
choose appropriate (supportive or preventive) measures to bring about the
positive outcome or our predictions about the boundary conditions for the
positive outcome have been false.

From a methodological point of view, the triple-theory problem puts se-
rious doubts whether we might be able to evaluate CD&CM models scientif-
ically. Due to the very nature of the open systems, reproducibility of results
is infeasible.

1.6 Chance Discovery vs. KDD

Fayyad et al. [1.4] characterize Knowledge Discovery in Databases (KDD) as

[...] the nontrivial process of identifying valid, novel, potentially use-
ful, and ultimately understandable patterns in data.

The discovery goal in KDD can be divided into a descriptive and a predictive
part. In description the system seeks for patterns (or models) in order to
present them to the user in an intelligible way; in prediction the system finds
patterns so that the future behavior of some entity can be predicted. There
exist a number of established (mostly statistical) data mining methods to
achieve those goals, such as classification, regression, clustering, summariza-
tion, dependency modeling, and change and deviation detection [1.4].

Chance discovery may use the knowledge extracted by data mining meth-
ods to detect future features. For instance, by Web usage mining, i.e., the
clustering of Web users based on their browsing activities, potential customer
groups can be identified, and specifically addressed by companies. Here the in-
terplay of data mining—describing correlations between users’ interests—and
chance discovery—actively promoting a possibility—is of crucial importance.
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One may ask whether, e.g., data mining already is a form of chance
discovery. Our answer is “no”. Data mining can summarize or predict trends,
but leaves out the rôle of human interference. Anticipation as a mechanism
of an open system, on the other hand, ‘matches’ a desired (or predicted)
trend with the system’s goals (typically human ‘desires’) and accordingly
takes supportive or preventive measures.

Another way of contrasting Chance Discovery and KDD is as follows.
Whereas KDD tries to detect most likely trends in data, Chance Discovery
aims at finding data that do not match likely patterns but indicate interesting
phenomena not yet exploited and bearing potential of future trends. However,
currently there exist no serious analysis to distinguish those high-potential
phenomena from ‘noise’ in data. Basically, this means that exceptions can be
equally informative as highly probable regularities. As an example, consider
the following. Humans that are infected with plasmodium vivax are very
likely to contract malaria. However, some people do not. In KDD terms,
those people are ignored since they do fall under the likely case (contracting
malaria). It turned out that it is due to a special genetic constellation that
some people have a strong protection against malaria. In Chance Discovery
terms, the explanation of those people’s resistance against malaria is a chance
for a significant scientific discovery.

1.7 Discussion and Conclusion

In this paper, we explicate our take on a new research area called ‘Chance Dis-
covery’. The notion of ‘open system’, as characterized in cybernetics and sys-
tem theory, serves as a framework to embed the activity of Chance Discovery.
In particular, anticipation is introduced as a mechanism that may perform
the rôle of detecting chances in open systems. The anticipating mechanism is
explained in the context of promotion in New Economy and collaboration in
the Quantum Computation research programme. Chance Discovery is con-
trasted to KDD and mutually beneficial aspects are explained. We identify
human initiative as a distinguishing feature of Chance Discovery (as opposed
to KDD), e.g., to actively initiate and foster a trend by promotion or to
actively explore the (practical) feasibility of a theoretical conjecture.

Unlike the practical methods for data mining, we only described a method-
ology for Chance Discovery. A method for Chance Discovery might analyze
‘success stories’, i.e., cases where features of high impact for the future were
successfully identified and accordingly promoted by human initiative. This
retrospective analysis might be framed and processed by means of KeyGraph
[1.8], a smart indexing method originally developed for information retrieval.

Recently, McBurney and Parsons [1.6] proposed principled methods to
discover chances based on dialogue games. In the context of e-commerce
systems, Stolze and Ströbel [1.14] investigate interviews with buyers in order



References 9

to identify their (implicit) needs. We believe that the theoretically founded
methods will have the greatest impact on the field of Chance Discovery.

In this paper, we mainly focussed on the epistemological aspect of chance
discovery. However, the discovery of potential opportunities and risks seems
to be intimately connected to questions about human values, what should be
the case and what should not be the case. Obviously, there are no opportu-
nities or risks per se, they are only given with respect to certain values and
associated goals of humans. To give drastic example, the detection of a future
earthquake is not only a high risk for people living in a particular region, it is
also an opportunity for certain organizations to take advantage of the chaos
following the earthquake.
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