
The Hyper System: Knowledge Reformation for

E�cient First-order Hypothetical Reasoning

Helmut Prendinger Mitsuru Ishizuka Tetsu Yamamoto

Department of Information and Communication Engineering
School of Engineering, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
E-mail: fhelmut,ishizuka,tetsug@miv.t.u-tokyo.ac.jp

Abstract. We present the Hyper system that implements a new ap-
proach to knowledge compilation, where function-free �rst-order Horn
theories are transformed to propositional logic. The compilation method
integrates techniques from deductive databases (relevance reasoning) and
theory transformation via unfold/fold transformations, to obtain a com-
pact propositional representation. The transformed theory is more com-
pact than the ground version of the original theory in terms of signi�-
cantly less and mostly shorter clauses. This form of compilation, called
knowledge (base) reformation, is important since the most e�cient rea-
soning methods are de�ned for propositional theories, while knowledge is
most naturally expressed in a �rst-order language. In particular, we will
show that knowledge reformation allows low-order polynomial time infer-
ence to �nd a near-optimal solution in cost-based �rst-order hypothetical
reasoning (or `abduction') problems. We will also present experimental
results that con�rm the e�ectiveness of our compilation method.

Keywords. knowledge representation, knowledge compilation, knowledge-based
systems, abduction

The Hyper System: Knowledge Reformation

for E�cient First-order Hypothetical Reasoning

Abstract. We present the Hyper system that implements a new ap-
proach to knowledge compilation, where function-free �rst-order Horn
theories are transformed to propositional logic. The compilation method
integrates techniques from deductive databases (relevance reasoning) and
theory transformation via unfold/fold transformations, to obtain a com-
pact propositional representation. The transformed theory is more com-
pact than the ground version of the original theory in terms of signi�-
cantly less and mostly shorter clauses. This form of compilation, called
knowledge (base) reformation, is important since the most e�cient rea-
soning methods are de�ned for propositional theories, while knowledge is
most naturally expressed in a �rst-order language. In particular, we will
show that knowledge reformation allows low-order polynomial time infer-
ence to �nd a near-optimal solution in cost-based �rst-order hypothetical
reasoning (or `abduction') problems. We will also present experimental
results that con�rm the e�ectiveness of our compilation method.

1 Introduction and Motivation

The need for knowledge reformation derives from two facts about declarative
representations of knowledge. First, representations are designed for a variety of
queries; hence, they will contain information that is not relevant to answering
some particular query or query type (Levy et al. [8], see also the literature on
semantic query optimization [2]). Second, many interesting problems in arti�-
cial intelligence require the representational power of �rst-order theories, but
it is well-known that reasoning with such theories is computationally expensive
(Levesque [7]). On the other hand, considerable progress has been made in de-
veloping e�cient mechanisms for propositional reasoning. For instance, GSAT is
an e�cient procedure for solving propositional satis�ability problems (Selman
and Kautz [14]), and the NBP and SL methods are fast mechanisms for solving
propositional hypothetical (or `abductive') reasoning problems (Ishizuka and co-
workers [9, 5]). Recall that hypothetical reasoning is NP-hard, even for very basic
forms of propositional problems (Eiter and Gottlob [4]). The aim of knowledge
reformation is to preserve the generality and compactness of representing knowl-
edge in �rst-order Horn logic, while at the same time allow for processing a highly
e�cient propositional knowledge base (KB). Knowledge reformation extends ex-
isting work on knowledge compilation (Cadoli and Donini [1]) to the �rst-order
case. Compilation methods preprocess a propositional KB o�-line such the result
can be used to speed up on-line query answering. By contrast, we start with a
�rst-order KB and generate a propositional KB of manageable size.

In principle, the idea of knowledge reformation can be implemented by a
transformation that instantiates variables in �rst-order theories by constants
(`grounding'). If no non-zero function symbols are allowed, a �nite set of essen-

tially propositional clauses is obtained. This simple-minded approach is obvi-
ously impractical since a huge number of propositional clauses will be produced
(Levesque [7]). Therefore, we suggest to apply theory transformation (Tamaki
and Sato [16]) before actually instantiating the theory. Speci�cally, the principled
application of unfold|de�nition|fold transformation steps eliminates `unnec-
essary' variables, i.e., variables that occur in the body B but not in the head H
of a clause H B. Since the instantiation of a clause C is exponential in the
number of di�erent variables occurring in C, the clauses resulting from trans-
forming C allow for signi�cantly less ground clauses than instantiating C. Let
the original clause (with four di�erent variables) be

C0 : q(X;Y) p1(X;Z1) ^ p2(Z1; Z2)^ p3(Z2; Y)

that yields O(n4) clauses upon instantiation. Transformation replaces C0 by

C1 : q(X;Y) newp(X;Z2) ^ p3(Z2; Y)

C2 : newp(X;Z2) p1(X;Z1) ^ p2(Z1; Z2)

that result in O(2n3) instantiated clauses since both C1 and C2 have three di�er-
ent variables each. The reformation procedure is combined with the Slide-down
and Lift-up (SL) method, an e�cient hypothetical reasoning method (Ishizuka
and Matsuo [5]).

The main contribution of knowledge reformation for the KR community is
twofold. First, propositional theories can be derived automatically from their
�rst-order pendants. Consequently, researchers interested in propositional algo-
rithms may approach problems traditionally formulated in function-free �rst-
order Horn logic without extra e�ort. Second, the resulting propositional theo-
ries have attractive computational properties in terms of small size and shorter
clauses, and can thus be processed very e�ciently. Interestingly, our transforma-
tion procedures may serve a similar function to knowledge object decomposition
described by Debenham [3], who uses decomposition for KB maintenance. Our
reformation procedure can also be used as a translator from �rst-order to propo-
sitional form, which is planned for the TPTP Problem Library (Sutcli�e and
Suttner [15]).

The paper is organized as follows. Section 2 describes the con�guration of the
Hyper system. In Section 3, we show how techniques from relevance reasoning
can be used to rule out parts of a KB that are not related to a set of queries.
Section 4 introduces the transformation procedures by example. In Section 5, we
describe how clauses are actually instantiated, as a by-product of constructing
the so-called query-tree for a query type. Section 5 reports on our experimental
results. In Section 6, we briey discuss and summarize the paper.

2 System Con�guration

Computational e�orts in the Hyper system are divided into an o�-line and an
on-line phase, as illustrated in Fig. 1. Hyper is an acronym for \Hypothetical

O�-line phase.

Input: �rst-order hypothetical reasoning problem.

{ Relevance reasoning. Isolate part of KB relevant to query type p(�X).
{ Theory transformation. Apply unfold/fold transformation steps.
{ Instantiation. Generate ground theory by constructing query-tree.

On-line phase.

Input: propositional hypothetical reasoning problem.

{ Relevance reasoning. Isolate part of KB0 relevant to query p(�ci).
{ Hypothetical reasoning. Apply the SL method to generate a near-optimal solution
to the hypothetical reasoning problem.

Fig. 1. Con�guration of the Hyper system.

reasoning employing reformation". In the o�-line (preprocessing) phase we �rst
isolate the portion of the �rst-order KB that is relevant to answering some query
type [8, 13]. A query type p(�X) is like a ground query such as p(a; b), but with
all constants replaced by variables. Next, the KB is transformed via unfold/fold
transformation steps [16, 12]. Finally, the transformed theory is instantiated as a
by-product of constructing the query-tree [8]. The output of the o�-line phase is
the ground (i.e., propositional) knowledge base KB0 relevant to all instantiations
p(�c1); :::; p(�cn) of the query type that may have a solution with respect to the
hypothetical reasoning problem.

The on-line phase assumes a ground query such as p(�ci) and computes all
propositional clauses relevant to the ground query. Then, the SL method is ap-
plied to actually generate a solution to some (cost-based) hypothetical reasoning
problem.

3 Relevance Reasoning

In this section we will introduce procedures that (i) partition a Horn theory
into (independent) subtheories, and (ii) remove clauses from a subtheory that
cannot contribute to the solution of any query, also called strongly (proof-based)
irrelevant clauses (Levy et al. [8], Schurz [13]).

We consider �rst-order Horn theories T , i.e., sets of clauses C of the form
\q(�Xn+1) p1(�X1)^:::^pn(�Xn)" where q(�Xn+1); p1(�X1); :::; pn(�Xn) are atomic
formulas, and �Xi denotes the sequence of variables Xi;1; :::; Xi;mi

. The atom
q(�Xn+1) is called the head of the clause, denoted by hd(C), the conjunction
p1(�X1) ^ ::: ^ pn(�Xn) is called the body of the clause, denoted by bd(C). The
variables occurring in a clause are implicitly universally quanti�ed. A clause
(theory) containing no variables is called ground (or simply propositional). A
clause C is called function-free if it does not contain non-zero function symbols
(i.e., constants are allowed). Let V(hd(C)) denote the set of variables occurring
in the head of a clause C, and V(bd(C)) the set of variables occurring in the

clause body. A clause C is range-restricted if V(hd(C)) � V(bd(C)). All clauses
considered here are Horn, function-free, and range-restricted. Moreover, we im-
pose the restriction that theories are acyclic, i.e., the corresponding directed
graph contains no cycles.

In the �rst phase of the reformation process, the �rst-order theory T is factor-
ized as follows: (i) if T is tree-structured, it can be partitioned into independent
subtheories; (ii) if T is acyclic, a subtheory is generated for each query type
p(�X). A tree-structured theory T is split into disjoint subtheories T1; :::; Tn such
that no clause C in a given subtheory Ti resolves with some clause D from a
di�erent subtheory Tj . This means that the search space for a given atomic
query type p(�X) can be restricted to a single subtheory Ti. In the more general
case of acyclic theories, factorizing is performed by means of an algorithm that
computes all clauses that are `reachable' from a query type. Informally, a clause
C is reachable from a query type p(�X) if there exists some path from p(�X) to
the head of C. Observe that theory factorizing can be done in polynomial time.

This concludes the �rst reformation phase. The procedures introduced so far
already signi�cantly reduce the number of clauses that have to be considered
when answering a ground query. It is important to note that for acyclic T ,
factorizing can be done by only considering the query types p(�X), and with
tree-structured T , even independent of a query type.

4 Theory Transformation via Variable Elimination

The motivation for applying unfold/fold transformations [16, 12] is to reduce the
complexity of a theory as measured by the number of possible ground instanti-
ations of clauses. Since a clause C is exponential in the number n of di�erent
variables occurring in C, we try to minimize n. Theory transformation is an
equivalence-preserving form of transformation [16].

Theory transformation proceeds by successively applying unfold (optional),
de�nition, and fold rules, in that order, to the theory. More speci�cally, the ap-
plication of transformation rules eliminates unnecessary variables, i.e., variables
that occur in the body bd(C) but not in the head hd(C) of a clause C. One
algorithm described in Proietti and Pettorossi [12] eliminates all unnecessary
variables, but the algorithm is not guaranteed to halt. We will suggest terminat-
ing procedures that eliminate a su�cient number of unnecessary variables. In
particular, we introduce a novel set of procedures that automatize the de�nition
rule for a broad class of clause bodies. There is a lot of technical detail involved
in describing the procedures (see Prendinger and Ishizuka [10]). For brevity, we
only show the result of performing de�nition and folding steps. For de�nitions
of unfolding, de�nition and folding rules, see Tamaki and Sato [16].

We start with some terminology to distinguish di�erent kinds of clause bod-
ies. The distinction is intended to cover a broad range of possible clause bodies.
The most central notion is that of a block of a clause body [12].

Block. Given a clause C and a set B of atoms in bd(C). We de�ne a binary
relation R over B such that: given two atoms B1 and B2 in B, R(B1; B2) if

and only if V(B1) \ V(B2) 6= ;. We let R� denote the reexive and transitive
closure of R over bd(C). By partbd(C) we denote the partition of the body of
C into blocks w.r.t. R�. Note that each variable occurs in at most one block of
partbd(C). For instance, let C be the clause

q(X;Y; Z) p1(X;X1) ^ p2(Y; Y 1) ^ p3(X1; Z)

Here partbd(C) has two blocks, fp1(X;X1); p3(X1; Z)g and fp2(Y; Y 1)g. Con-
sider a clause

C0 : q(X;Y) p1(X;Z1; Z2)^ p2(Z1) ^ p3(Z2; Y)

where the clause body forms a single block. The new clause

C1 : newp(X;Z2) p1(X;Z1; Z2) ^ p2(Z1)

is generated by the de�nition rule (newp=2 a fresh predicate symbol), and then
folded with C0. By folding C1 with C0, we obtain

C2 : q(X;Y) newp(X;Z2) ^ p3(Z2; Y)

The transformed theory consists of the two clauses C1 and C2, that allow for
signi�cantly less instantiations than the originial theory (C0).

A block can have a variety of syntactical forms.

Chain. An example for a chain was given in the introductory section. We will
revisit a chain example in the section on experiments.

Isolated blockpart. Consider the clause

C0 : q(X;Y) p1(X;Z) ^ p2(Z; Y) ^ p3(Z;Z1)

The variable Z1 in bd(C) is called `isolated' (occurs only once in C0), and
p3(Z;Z1) is thus an isolated blockpart. The de�nition rule for isolated blochparts
generates the clause

C1 : newp(Z) p3(Z;Z1)

which is folded with C0 to produce

C2 : q(X;Y) p1(X;Z) ^ p2(Z; Y) ^ newp(Z)

The theory transformation procedure is described in Prendinger and Ishizuka
[10] (see also Proietti and Pettorossi [12]). The transformation procedure per-
forms unfolding|de�nition|folding cycles until none of the procedures is ap-
plicable. The procedure signi�cantly extends the algorithm in [12]. Except for a
special instance of clause bodies with isolated blockparts, their algorithm did not
eliminate any unnecessary variables. Observe that after applying theory trans-
formation, we obtain slightly more �rst-order clauses, but they yield signi�cantly
fewer instantiations.

5 Theory Instantiation

In the last phase of the reformation process, the theory is instantiated. By em-
ploying the query-tree method (Levy et al. [8]), we obtain exactly the set of
ground clauses relevant to a query type. A query-tree (QT) is a compact repre-
sentation of a search tree for �rst-order Horn theories in the form of an AND-OR
tree with goal-nodes and rule-nodes. Since we do not allow recursion in clauses,
our construction of the QT is simpler than the original one in [8]. On the other
hand, we allow that some leaves of the query-tree are uninstantiated. Those are
typically hypotheses that may be assumed in order to prove a query.

The query-tree algorithm consists of two successive phases. In the bottom-
up phase, the instantiations of the base atoms (denoting facts and hypotheses)
are propagated upwards to the query type. Instantiations are conceived as con-
straints on the arguments of predicates. Then, in the top-down phase, the con-
straint generated for the query type is `pushed down' along the branches of the
QT. Thereby, the constraints of nodes (of predicates) in the QT might be fur-
ther constrained, which possibly leads to pruning parts of the tree constructed
bottom-up. In e�ect, we obtain exactly the set of ground clauses relevant to a
query type together with all instantiations of the query type that have a solu-
tion with respect to the theory if certain hypotheses can be consistently assumed
(Prendinger and Ishizuka [11]). The complexity of building the QT is linear in
the number of rules and possibly exponential in the arity of predicates.

6 Empirical Evaluation

The impact of the savings gained by knowledge reformation is tested by means
of the Slide-down and Lift-up (SL) mechanism (Ishizuka and Matsuo [5]), an e�-
cient propositional hypothetical reasoning method for computing a near-optimal
solution close to the optimal solution (e.g., diagnosis). In short, the SL method
uses a linear programming technique (the simplex method) to determine an ini-
tial search point, and a non-linear programming technique to �nd a near-optimal
0-1 solution. The inference speed of the SL method is low-order polynomial, ap-
proximately O(n1:85), where n is the number of propositional variables in the
problem formulation. The SL method runs on a SGI ONYX workstation (200
MHz CPU � 2, 512 MB memory). The theory factorizing, variable elimination,
and instantiation procedures are implemented in C and run on the same machine.

In hypothetical reasoning (or `abduction'), we are given a knowledge base T ,
hypotheses (or `assumables') H, and a query q. Sometimes the problem formu-
lation contains inconsistency constraints I � T of the form \inc h1(�c1)^ :::^
hn(�cn)" where hi 2 H, �cn a sequence of constant symbols, and the symbol \inc"
denotes the impossible state (falsum). The hypothetical reasoning task consists
in �nding minimal sets H1; :::; Hn (Hi � H) such that (i) T [Hi ` q, and (ii)
T [Hi 6` inc.

The experiments are intended to show the speedup e�ect due to knowledge
reformation (except for factorizing which is not needed here but has been shown

elsewhere [8]). They involve simple theories that are not very interesting in them-
selves but allow us to make easy comparisons by varying relevant parameters,
such as the number of unnecessary variables, and the number of constants in the
problem formulations. We expect the e�ciency gain to be the more signi�cant
the more unnecessary variables are eliminated.

As an example for a chain, let the theory T consist of the clauses

(r1) path(X;Y) link1(X;Z1) ^ link2(Z1; Z2)^
link3(Z2; Z3) ^ link4(Z3; Y)

(r2) inc link1(X;Y) ^ link3(Y;X)

As the set of element hypotheses we take H =
S4

k=1flinkk(ai; aj)=w : i; j 2
f1; :::; ngg. By varying the number of constants n, we obtain theories of di�erent
size. We may also look at theories with a greater (smaller) number of links in
the de�nition of path=2, by varying the number k.

In our experiment, we assume n � 12 and k = 4 and call this instance 4-path
example. For simplicity, we assume a default value w as the cost (or weight)
for all element hypotheses h 2 H, i.e., we are essentially looking for a subset-
minimal solution to the hypothetical reasoning problem [4]. After applying the
reformation procedure, r1 is replaced by

(r01) path(X;Y) newp1(X;Z3) ^ link4(Z3; Y)

(r001) newp1(X;Z3) newp2(X;Z2) ^ link3(Z2; Z3)

(r0001) newp2(X;Z2) link1(X;Z1) ^ link2(Z1; Z2)

The inconsistency constraint (r2) and H remain unchanged.
The impact of knowledge base reformation on problem size and processing

time for the 4-path example is summarized in Fig. 2. Here, `# consts' is the
number of constants occurring in the problem formulation. `# rules' refers to the
number of instantiated (propositional) rules before and after reformation. The
numbers do not include the number of instantiated inconsistency constraints
which is the same for both unreformed and reformed theories. `# atoms' is the
number of atoms (propositional variables) in the problem formulation (including
hypotheses atoms and atoms occurring in inconstistency constraints). The two
columns under `inst.-time (sec)' show the CPU times needed to instantiate the
original and reformed theories, respectively, and the two columns under `sol.-time
(sec)' give the CPU times to �nd a near-optimal solution for an instantiated goal
path(a; b), for the original and reformed theories, respectively. The CPU time
needed to reform the theory via the variable elimination procedures is 0.015
seconds. The relevance reasoning part of the on-line phase is integrated into the
SL method.

Instantiating a clause in the original theory e�ectively means to create a
lookup table with mn entries, where m is the number of constants in the prob-
lem formulation, and n is the number of di�erent variables in the clause. In the
4-path example, for instance, if there are ten constants, we obtain 105 = 100000
propositional clauses corresponding to the �rst-order de�nition of a path (r1),

consts # rules # atoms inst.-time (sec) sol.-time (sec)
unref. ref. unref. ref. unref. ref. unref. ref.

3 243 81 1278 306 0.24 0.18 0.75 0.71

4 1024 192 5232 688 0.57 0.33 1.04 0.70

5 3125 375 15800 1300 2.30 0.50 2.60 0.80

6 7776 648 39132 2196 9.23 0.78 7.41 0.89

7 16807 1029 84378 3430 34.08 1.02 26.62 1.04

8 32768 1536 164288 5056 119.83 1.41 98.67 1.28

9 59049 2187 295812 7128 393.22 1.91 148.48 1.62

10 100000 3000 500700 9700 1327.55 2.70 { 2.08

11 161051 3993 806102 12826 6611.00 3.58 { 2.69

12 248832 5184 1245168 16560 { 4.81 { 3.45

Fig. 2. Results for the 4-path example.

that has �ve di�erent variables. The space-reducing e�ect of knowledge refor-
mation can be seen as decreasing the exponent n. In the given example, the
original clause r1 is transformed to three clauses with three di�erent variables in
each clause, which allow for 3�103 = 3000 propositional clauses. Another prop-
erty of the reformed part of the output theory is that the transformed clauses
are shorter, which has a direct e�ect on the number of atoms in the problem
formulation. The total number of atoms in the respective theories is given in
Fig. 2.

Regarding the time needed to instantiate the �rst-order theories (which is
done o�-line), note that the query-tree method produces a ground theory that
can be used for all instantiations of a particular query type that may have a
solution. So, if all possible ground queries are posed, the actual time needed for
each query is t

mk , where t is the instantiation time, m is the number of con-
stants in the problem formulation, and k is the arity of the query predicate. In
the case of ten constants, for instance, the actual cost for the reformed theory is
2:7
100

= 0:027 seconds for each individual query (if all ground queries are posed).
Although it is unrealistic to assume that all possible queries are posed, we nev-
ertheless expect that compiled theories are reused a su�ciently large number
of times to amortize the cost to instantiate the theory. The last two columns
in Fig. 2 summarize the e�ciency gain resulting from knowledge reformation in
CPU seconds. The total speedup is up to a factor of 153 for nine constants.

To support our hypothesis that performance is crucially dependent on how
many unnecessary variables are eliminated, we performed another experiment
that is analogous to the 4-path example, but has three body atoms in the def-
inition of path=2 instead of four. For this example (where less variables are
eliminated) we measured speedups up to a factor of 14 (for twelve constants).
Figures 3 and 4 summarize the speedup e�ect of the transformation procedures
for blocks and isolated blockparts (using the examples of Section 4). Inference
time here refers to the total time needed to solve a problem, i.e., o�-line and
on-line reasoning for a speci�c goal. For less than six constants, the speedup

10

20

30

40

50

60

70

80

6 7 8 9 10 11 12

inf
ere

nc
e t

im
e (

sec
.)

constants

"block-unref"
"block-ref"

Fig. 3. Block example.

10

20

30

40

50

60

6 7 8 9 10 11 12

inf
ere

nc
e t

im
e (

sec
.)

constants

"isoblock-unref"
"isoblock-ref"

Fig. 4. Isolated blockpart example.

e�ect was negligible. For realistic theories, we expect (i) that our reformation
procedures can be applied to a signi�cantly large portion of the KB, and (ii)
that all of our three transformation procedures are used to a varying extent.

7 Conclusion

In this paper, we address the following problem: given a problem formulation in
�rst-order Horn logic without function symbols, how can we arrive at a compact
propositional representation? In particular, we have presented the Hyper sys-
tem, an e�ective method for cost-based �rst-order hypothetical reasoning prob-
lems, where a KB in the language of function-free �rst-order Horn logic is �rst
compiled into a propositional KB and then an e�cient propositional method is
applied to compute a near-optimal solution. We have shown that o�-line knowl-
edge reformation of �rst-order rules is very e�ective in reducing the number
and length of generated propositional rules. Consequently, the total inference
time for solving cost-based �rst-order hypothetical reasoning problems can be
signi�cantly reduced.

The idea to preprocess some part of the input o�-line to improve on-line
e�ciency is employed by many others (Williams and Nayak [17], Cadoli and
Donini [1]). However, those compilation methods are restricted to the proposi-
tional case, i.e., the original KB is expressed in propositional logic. By contrast,
we introduce an e�ective way to produce a compact propositional theory from
a given �rst-order theory. In this respect, our approach shares intuitions with
the `�rst-order planning as (propositional) satis�ability' framework of Kautz and
Selman [6]. One problem, however, applies to both approaches: the presence of
too many constants makes the translation (�rst-order to propositional) infeasi-
ble. This problem was pointed out by Levesque [7] who imagines a knowledge
base with 105 constants.

Although the focus of the present paper is more foundational, a subset of our
compilation techniques has already been shown to be practical for diagnostic
tasks (Prendinger and Ishizuka [11]). In the near future, the Hyper system will
be available as free software.

References

1. Marco Cadoli and Francesco M. Donini. A survey on knowledge compilation. AI
Communications, 10:137{150, 1997.

2. U. S. Charkravarthy, John Grant, and Jack Minker. Foundations of semantic
query optimization for deductive databases. In Jack Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 243{273. Morgan Kaufmann
Publishers, 1988.

3. John Debenham. Knowledge object decomposition. In Proceedings 12th Interna-
tional FLAIRS Conference (FLAIRS-99), pages 203{207, 1999.

4. Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. Jour-
nal of the ACM, 42(1{2):3{42, 1995.

5. Mitsuru Ishizuka and Yutaka Matsuo. SL method for computing a near-optimal so-
lution using linear and non-linear programming in cost-based hypothetical reason-
ing. In Proceedings 5th Paci�c Rim Conference on Arti�cial Intelligence (PRICAI-
98), pages 611{625, 1998.

6. Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In Proceedings 13th National Conference on Arti�cial
Intelligence (AAAI-96), 1996.

7. Hector J. Levesque. A completeness result for reasoning with incomplete �rst-
order knowledge bases. In Proceedings 6th Conference on Principles of Knowledge
Representation and Reasoning (KR-98), pages 14{23, 1998.

8. Alon Y. Levy, Richard E. Fikes, and Yehoshua Sagiv. Speeding up inferences using
relevance reasoning: a formalism and algorithms. Arti�cial Intelligence, 97:83{136,
1997.

9. Yukio Ohsawa and Mitsuru Ishizuka. Networked bubble propagation: a polynomial-
time hypothetical reasoning method for computing near-optimal solutions. Arti�-
cial Intelligence, 91:131{154, 1997.

10. Helmut Prendinger and Mitsuru Ishizuka. Preparing a �rst-order knowledge base
for fast inference. In Proceedings 12th International FLAIRS Conference (FLAIRS-
99), pages 208{121, 1999.

11. Helmut Prendinger and Mitsuru Ishizuka. Qualifying the expressivity/e�ciency
tradeo�: Reformation-based diagnosis. In Proceedings 16th National Conference
on Arti�cial Intelligence (AAAI-99), pages 416{421, 1999.

12. Maurizio Proietti and Alberto Pettorossi. Unfolding|de�nition|folding, in this
order, for avoiding unnecessary variables in logic programs. Theoretical Computer
Science, 142:89{124, 1995.

13. Gerhard Schurz. Relevance in deductive reasoning: A critical overview. In
G. Schurz and M. Ursic, editors, Beyond Classical Logic. Academia Press, St. Au-
gustin, 1999.

14. Bart Selman and Henry Kautz. Domain-independent extensions to GSAT: Solving
large structured satis�ability problems. In Proceedings 13th International Confer-
ence on Arti�cial Intelligence (IJCAI-93), pages 290{295, 1993.

15. G. Sutcli�e and C. B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177{203, 1998.

16. Hisao Tamaki and Taisuke Sato. Unfold/fold transformation of logic programs.
In Proceedings 2nd International Logic Programming Conference, pages 127{138,
1984.

17. Brian C. Williams and P. Pandurang Nayak. A model-based approach to reactive
self-con�guring systems. In Proceedings 13th National Conference on Arti�cial
Intelligence (AAAI-96), pages 971{978, 1996.

