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Abstract. Identifying discourse relations in a text is essential for various
tasks in Natural Language Processing, such as automatic text summa-
rization, question-answering, and dialogue generation. The first step of
this process is segmenting a text into elementary units. In this paper,
we present a novel model of discourse segmentation based on sequential
data labeling. Namely, we use Conditional Random Fields to train a dis-
course segmenter on the RST Discourse Treebank, using a set of lexical
and syntactic features. Our system is compared to other statistical and
rule-based segmenters, including one based on Support Vector Machines.
Experimental results indicate that our sequential model outperforms cur-
rent state-of-the-art discourse segmenters, with an F-score of 0.94. This
performance level is close to the human agreement F-score of 0.98.

1 Introduction

Discourse structures have an important role in various computational tasks, such
as creating text summaries [1], performing question-answering [2], generating di-
alogues [3], or improving the processing of clinical guidelines [4]. For example, in
automatic text summarization, if we know that a particular segment of text fur-
ther elaborates an already stated fact, then we can safely ignore the elaborated
segment to create a concise summary of the text. However, despite the wide
uses of discourse parsing, true automatization of these tasks is preconditioned
by the availability of efficient discourse parsers. In the past few years, several
research efforts have aimed at building automatic parsers. In particular, a num-
ber of authors have attempted to create discourse parsers in the framework of
the Rhetorical Structure Theory (RST) [5], one of the most prevalent discourse
theories.

The general problem of automatically annotating a text with a set of discourse
relations can be decomposed into three sub-problems. First, the text is divided
into non-overlaping units, called elementary discourse units (edus). Each dis-
course theory has its own specificities in terms of segmentation guidelines and
size of units. In RST, units are essentially clauses, and a sentence may be seg-
mented in the fashion of Figure 1.

Second, we must select, from a pre-defined set, which discourse relations hold
between consecutive pairs of edus. In previous work on discourse tagging, this
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[The posters were printed on paper]1A [ pre-signed by Mr. Dali,]1B [the attorneys said.]1C

(wsj1331)

Fig. 1. A sentence split into three edus

problem has been modeled as a supervised classification task: a multi-class clas-
sifier is trained to identify the discourse relation holding between two given edus
[6]. Last, we must construct a single discourse tree depicting the way all discourse
relations and edus of the text relate to each-other. This paper focuses on the
first sub-problem, segmenting a given text into a sequence of edus.

The overall accuracy of discourse parsing depends on the initial segmentation
step. Indeed, if the text is wrongly segmented during this first stage, it becomes
unreliable to assign correct discourse relations or build a consistent discourse
tree for the text [7]. Therefore, the discourse segmentation task is of paramount
importance to any discourse parsing algorithm.

As described later in Section 1.1, existing discourse segmentation algorithms
either use a set of hand-coded rules or a supervised classifier. Considering the
heterogenous texts that must be processed by a discourse parser, it is not fea-
sible to write rules to cover every segmentation criteria. Thus, modeling the
discourse segmentation problem as a classification task [8], and training a clas-
sification model from human-annotated data, is an interesting solution to the
problems encountered with rule-based discourse segmentation. In the classifica-
tion approach, given a word and its context in the text, the system determines
whether there is likely an edu boundary. Commonly-used features include punc-
tuation and cue phrases (e.g., but, and, however). However, this method does not
consider prior segmentation decisions as it encounters a new word. Each word
is considered individually by the classifier. Therefore, the decisions made by a
classification approach are locally-motivated. We propose a sequence labeling ap-
proach to discourse segmentation, that finds the globally optimum segmentation
into edus for a given text. In contrast to the classification approach to segmen-
tation, the model proposed in this paper considers its own previous decisions
before it determines whether it should impose a discourse boundary.

1.1 Related Work

In ‘SPADE’ [7], a segmenter based on a probabilistic model is implemented, as
the first step to a sentence-level discourse parser. This classifier is trained on the
RST Discourse Treebank corpus (RST-DT) [9], and then used to differentiate
between edu boundary and non-boundary words. The boundary probability is
calculated by counting occurrences of certain lexico-syntactic patterns in the
training corpus. The segmenter yields an F-score of 0.831 (0.847 when using
perfect parse trees). Although the features used by the authors are very rele-
vant, the model shows its limits when compared to more elaborated probabilistic
approaches.
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A statistical discourse segmenter, based on artificial neural networks, is pre-
sented in [10]. The system is also trained on the RST-DT, and uses syntactic and
lexical information, in particular discourse cues. A multilayer perceptron model
is employed, and bagging is used in order to reduce overfitting. The performance
of the segmenter is comparable to [7], with an F-score of 0.844 (0.860 when using
perfect parse trees).

Rule-based discourse segmenters have also been created: In [11], segmenta-
tion is done by a multi-step algorithm, which uses syntactic information and
discourse cues. An F-score of 0.80 is reported for this system. Then, in [12], it is
argued that using rules has certain advantages over automatic learning methods.
Indeed, the proposed model does not depend on a specific training corpus, and
allows for high-precision segmentation, as it inserts fewer but ‘quality’ bound-
aries. However, in the latter system, segmentation is done in a manner different
from the segmentation guidelines used in the RST-DT corpus. First, the authors
avoid building short edus, in order to avoid relations with lesser informative
content, such as same-unit or elaboration. Then, complement clauses are
not placed in autonomous units. For instance, ‘He said that’ is not considered
an edu. In this paper, we will not enter the discussion of what constitutes the
best segmentation guidelines, and focus instead on the supervised methods for
learning segmentation efficiently from the RST-DT corpus.

We already pointed out that discourse segmentation is necessary in order
to build an automatic discourse parser. It is however interesting to note that
the conception of a discourse relation analyzer is possible without treating the
segmentation problem. In [6], a discourse parser using a multi-class Support Vec-
tor Machines classifier for relation identification, and a greedy bottom-up tree-
building algorithm is described. The algorithm is first evaluated on perfectly-
segmented edus from the RST-DT. Then, in order to create a fully automatic
system, the authors build on top of the discourse segmenter of [7]. When using
perfect segmentation, the discourse parsing pipeline returns a F-score of 0.548,
but this score drops to 0.443 when using SPADE’s segmenter. Here, we clearly
see the critical role of the segmentation component, which can easily act as a
bottleneck, and pull down the performance of the whole system.

Finally, it is worthy to note that the study of discourse segmentation, although
seemingly restricted in its scope, can potentially be beneficial to all applications
in which discourse relations or discourse structures are used.

2 Method

2.1 Outline

We model the problem of discourse segmentation as a sequential labeling task.
Although there have been classifier-based approaches to discourse segmentation
such as neural network-based methods [10], to our knowledge, this is the first
attempt to model discourse segmentation as a sequential labeling problem. To
illustrate the proposed sequential labeling approach, let us consider the exam-
ple sentence shown in Figure 2. Therein, BOS and EOS respectively denote the
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Fig. 2. Some possible segmentation decisions

beginning of the sentence and the end of the sentence. Because edus are not
allowed to cross sentence boundaries, BOS and EOS act as segment boundaries.
There are multiple possible ways in which we can segment the text inside a sen-
tence. These different ways can be represented by a lattice structure, like the
one shown in Figure 2. Then, the problem of segmenting a given sentence into
edus can be seen as searching for the best path connecting BOS to EOS on this
lattice. This best path is the one that maximizes the likelihood – alternatively,
we can consider minimizing a cost function – of the segmentation process. Mod-
eling a sentence as a lattice and then searching for the best path is a technique
used in various related tasks in Natural Language Processing, such as part-of-
speech (POS) tagging, chunking, and named-entity recognition (NER). The best
segmentation path in our example sentence is shown in bold in Figure 2.

In Section 2.2, we introduce Conditional Random Fields [13], the sequential
labeling algorithm that we use to find the best path on the lattice. CRFs have
shown to outperform other sequential labeling algorithms such as Hidden Markov
Models (HMMs) and Maximum Entropy Markov Models (MEMMs), on a wide
range of tasks including POS tagging, chunking and NER [13]. In Section 2.3
we describe how we employ CRFs for the task of discourse segmentation. The
features that we use for training are described in Section 2.4.

2.2 Conditional Random Fields

Conditional Random Fields or Markov Random Fields are undirected graphical
models that express the relationship between some random variables. Each ver-
tex in the undirected graph represents a random variable. Some of those variables
might be observable (e.g., the frequency of a particular word), whereas other vari-
ables cannot be observed (i.e., the POS tag of the word). In Conditional Random
Fields, by definition each random variable must obey the Markov property with
respect to the graph (i.e., each node is independent from the other nodes, when
conditioned upon its Markov blanket). In the general setting where the Condi-
tional Random Field represents an arbitrary undirected graph, each clique in the
graph is assigned with a potential function. However, in the sequence labeling task,
the undirected graph reduces to a linear chain, as the one shown in Figure 2.2. In
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y1 y2 y3

x = x1, . . . , xn

yn−1 yn

Fig. 3. Graphical model of a linear-chain CRF

Figure 2.2, the hidden variables are shown in shaded circles, whereas observed
variables are shown in white. From the Markov assumption, it follows that each
hidden variable only depends on its neighboring nodes.

Log-linear models have been used as potential functions in CRFs for their
convenience in computation. Given an input observation x = (x1, . . . , xn) ∈ Xn,
CRF computes the probability p(y|x) of a possible output y = (y1, . . . , yn) ∈ Yn.
The general formulation of the linear-chain CRF is,

p(y|x) =
1

Z(x)
exp

⎛
⎝

n∑
j=1

m∑
i=1

λifi(yj−1, yj , xj)

⎞
⎠ . (1)

Here, fi(yj−1, yj, x) is a binary-valued feature that returns the value 1 if the
corresponding feature is fired when moving from the hidden state yj−1 to yj ,
after observing x. For example, we can define a feature that encodes the property
previous position is not an edu boundary and the current token is a comma. λi

is the weight associated with feature fi. The linear sum of weights over features
is taken inside the exponential and the normalization constant Z (also known as
the partition function) is set such that the sum of probabilities over all possible
label sequences, Y(x), for x, equals one. The expression of the normalization
constant is,

Z(x) =
∑

y∈Y(x)

exp

⎛
⎝

n∑
j=1

m∑
i=1

λifi(yj−1, yj, xj)

⎞
⎠ . (2)

We can further simplify the notation by introducing the global feature vec-
tor, F (y, x) = {F1(y, x), . . . , Fm(y, x)}, where Fi(y, x) =

∑N
j=1 fi(yj−1, yj , xj).

Moreover, we define the weight vector Λ = {λ1, . . . , λm}. Then, Equation 1 can
be written as,

p(y|x) =
1

Z(x)
exp(Λ · F (y, x)). (3)

Here, · denotes the inner-product between the global feature vector and weight
vector.
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Given a training dataset, T = {(xj , yj)}N
j=1, the weights λi are computed such

that the log-likelihood LΛ of T is maximized. Log-likelihood over the training
dataset can be written as follows,

LΛ =
N∑

j=1

log(P (yj |xj))

=
N∑

j=1

⎛
⎝ ∑

y∈Y(xj)

exp(Λ · (F (yj , xj) − F (y, xj)))

⎞
⎠

=
N∑

j=1

(
Λ · F (yj, xj) − log(Zxj )

)
.

Therefore, to maximize the log-likelihood, we must maximize the difference be-
tween the inner-products of the correct labelling Λ ·F (yj , xj) and all other can-
didate labellings Λ · F (y, xj) for y ∈ Y(xj). In practice, to avoid overfitting the
weights to the training data, the vector Λ is regularized. Two popular choices
for vector regularization are L1 and L2 regularizations. In general, the Lk(x)
regularization of an n-dimensional vector x is defined as,

Lk(x) = k

√√√√
n∑

i=1

xi
k. (4)

The final optimization function H(Λ) with regularization can be written as,

H(Λ) = LΛ − σLk. (5)

Here, σ is a regularization coefficient that determines the overall effect of regular-
ization towards training. This optimization problem can be efficiently solved by
using gradient descent algorithms. We used CRFsuite [14] with L1 regularization,
which implements the orthant-wise limited memory quasi-Newton (OWL-QN)
method. The regularization coefficient is set to its default value of 1.

Because CRFs are discriminative models, they capture many correlated fea-
tures of the input. This property of CRFs is particularly useful, because we can
define as many features as we like, irrespective of whether those features are
mutually independent or not. If a particular feature is not useful, then it will
be assigned a lower weight and will effectively get removed in the final trained
model. In particular, L1 regularization yields sparser models compared to L2,
thereby removing many useless features automatically [15].

Once trained, the CRF can then be used to find the optimal labeling sequence
ŷ for a given input x as,

ŷ = argmax
y∈Y(x)

p(y|x). (6)
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2.3 Application to Discourse Segmentation

In the case of discourse segmentation, the problem is to assign each word in the
input text an observation category c ∈ {C, B}, where B denotes a beginning of
edu, and C a continuation of edu. For example, given the snippet from Figure 1:

The posters were printed on paper pre-signed by Mr. Dali ,
the attorneys said .

The output sequence is the following:

B C C C C C B C C C C B C C C

2.4 Features

We use a combination of syntactic and lexical features: words, POS tags, lexical
heads. In particular, we use the lexico-syntactic features of [7], which were found
to constitute a good indication of the presence of edu boundaries.

Figure 2.4 shows part of the sentence’s syntax tree, in which lexical heads
have also been indicated, using projection rules from [16]. For a word w, we look
at its highest ancestor in the parse tree with a lexical head equal to w, and with
a right-sibling. We call this highest-ancestor node Nw, Np its parent, and Nr its
right-sibling. For instance, when following this process for the word ‘paper’, we
get Nw = NP(paper), Np = NP(paper), Nr = VP(pre-signed).

We define as contextual features at position i in the text, the set composed of
the word wi, its POS, as well as the POS and lexical heads of Nwi, Npi, and Nri.
In the experiments of Section 3, unless stated otherwise, the features for position
i in the text are created by concatenating the contextual features at positions

Fig. 4. Partial lexicalized syntax tree



322 H. Hernault, D. Bollegala, and M. Ishizuka

i − 2, i − 1, and i. These elements are then encoded into feature templates. For
instance, the template encoding the property the current word is ‘paper’ is,

g(x, j) =
{

1 if xj = paper
0 otherwise .

These templates are used as a basis to generate the CRF feature functions de-
fined in Section 2.2. Our working corpus, the RST-DT, contains 385 texts from
the Wall Street Journal (347 for training, 38 as a test subset). After feature
extraction, we obtain 177,633 training vectors and 21,667 test vectors.

3 Experiments

We first implement our CRF-based segmenter, referred to as ‘CRFSeg’ in the
rest of the paper. Three versions of the segmenter are created, using parse trees
from different sources. First, we use trees from the Penn Treebank [17], which
are gold-standard, human-annotated syntax trees. Then, we use trees generated
by Charniak’s syntax parser [18]. Last, we use trees generated by the Stanford
parser [19].

Evaluation is done on the test subset of the RST-DT. We use the metric
commonly agreed by most authors ([7], [12]), i.e., we only evaluate intra-sentence
boundaries. Thus, the score is not artificially boosted by including obvious end-
of-sentence or start-of-sentence boundaries. For instance, the sentence of Figure 1
is made of three edus, but we only take into account two boundaries. The
performance of our segmenter is reported in Table 1.

As expected, using gold-standard parse trees from the Penn Treebank yields
the best results, with an F-score of 0.953. Using syntax parsers instead produces
slightly lower scores, particularly in terms of recall for the B label. However,
the macro-average scores are almost identical for both software, with an F-score

Table 1. Detailed performance of CRFSeg

Trees Label Precision Recall F-score

Penn
B 0.927 0.897 0.912
C 0.992 0.995 0.993

Macro-average 0.960 0.946 0.953

Charniak
B 0.915 0.876 0.895
C 0.990 0.993 0.992

Macro-average 0.952 0.935 0.943

Stanford
B 0.910 0.872 0.890
C 0.990 0.993 0.991

Macro-average 0.950 0.932 0.941
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Table 2. Performance comparison with other segmenters

System Trees Precision Recall F-score

SPADE Penn 0.841 0.854 0.847
NNDS Penn 0.855 0.866 0.860
CRFSeg Penn 0.960 0.946 0.953

SPADE Charniak 0.835 0.827 0.831
NNDS Charniak 0.839 0.848 0.844
CRFSeg Charniak 0.952 0.935 0.943

CRFSeg Stanford 0.950 0.932 0.941

Human agreement – 0.985 0.982 0.983

of 0.943 for Charniak, and 0.941 for Stanford. This suggests that the proposed
method is not constrained by the choice of a specific parser.

Next, we compare the performance of our segmenter to other works. Re-
sults are presented in Table 2. NNDS indicates the Neural-Networks Discourse
Segmenter [10] ; SPADE is the system described in [7]. Here, CRFSeg signifi-
cantly outperforms other discourse segmenters. When using gold-standard trees,
SPADE and NNDS yield respectively F-scores of 0.847 and 0.860, versus 0.953
for CRFSeg. The measure of the human annotator’s agreement for the segmen-
tation task has been calculated in [7], with a F-score of 0.983. Using CRFSeg
with perfect parse trees, we reach 96.9% of this score, while we reach 95.7% of
this score when using the Stanford parser.

We chose not to include in Table 2 the rule-based segmenters of [11] and
[12], for several reasons. First, [11] report their results using a ‘softer’ metric,
in which end-of-sentence boundaries are taken into account. The authors used
Penn Treebank parse trees, and after evaluation on 8 texts of the RST-DT,
obtain a precision of 0.814 and recall of 0.792. With the same parse trees and
metric, but using the 38 texts from the standard test subset, CRFSeg obtains
a precision of 0.973 and recall of 0.969. Finally, the results of [12] cannot be
directly compared to ours, as different segmentation guidelines were used. The
authors report there a precision of 0.890 and recall of 0.860 when using Charniak
parse trees, a precision of 0.820 and recall of 0.860 when using Stanford trees.
Moreover, this score is measured on 3 texts of the RST-DT only, which makes
comparison even more risky.

3.1 Comparison to a Segmenter Based on Support Vector Machines

To compare the sequential model of discourse segmentation with a classifica-
tion model, we implement a discourse segmenter using Support Vector Machines
(SVM) [8]. SVMs have reported state-of-the-art performances in a wide range of
tasks in NLP. We employ the same training data and features we previously used
with CRFs, and [20] is used for the implementation. We select the RBF kernel,
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Table 3. Comparison of performance, using contextual features at various positions

CRFSeg SVMSeg

Positions Precision Recall F-score Precision Recall F-score

(−3,−2,−1, 0) 0.960 0.949 0.954 0.960 0.952 0.956
(−2,−1, 0) 0.960 0.946 0.953 0.965 0.954 0.959
(−1, 0, 1) 0.941 0.928 0.934 0.943 0.932 0.938
(0, 1, 2) 0.846 0.834 0.840 0.831 0.807 0.819
(−1, 0) 0.938 0.929 0.934 0.940 0.934 0.937
(0, 1) 0.843 0.830 0.836 0.834 0.804 0.819
(0) 0.845 0.827 0.836 0.821 0.801 0.811

and optimal parameters are found using grid search with 5-fold cross-validation.
We dub this segmenter ‘SVMSeg’.

In order to see how SVMSeg and CRFSeg perform under varied settings,
we run several experiments, using contextual features from various positions.
For instance, given the vector of relative positions (−2,−1, 0), we build the
feature vector for text position i as the concatenation of contextual features
from positions i − 2, i − 1, and i. Results of the experiments with perfect parse
trees are shown in Table 3.

The first striking observation is that, when using contextual features located
before the current position, CRFSeg and SVMSeg perform similarly, with a
slightly higher score for SVMSeg. For example, using positions (−2,−1, 0), CRF-
Seg and SVMSeg yield respectively F-scores of 0.953 versus 0.959, which is not
a statistically significant difference. In this case, there is no clear benefit of the
sequential model over a classification approach. It is also interesting to note that
the cases (−3,−2,−1, 0) and (−2,−1, 0) produce identical results, which sug-
gests that context that appears at a distance farther than two words from the
current position is not useful for segmentation.

When using only the context of the current position, (0), CRFSeg outperforms
SVMSeg (respective F-score of 0.836 versus 0.811). Here the CRF model has
the upper-hand, as it is able to remember its past input data and decisions.
However, including contextual features for positions ahead does not improve the
score, which confirms that segmentation does not require the knowledge of future
words and contexts – excepted for the interaction with the immediate next word,
which is already encoded in our features, c.f. Section 2.4.

Finally, we run a head-to-head error comparison of the two models. In this
experiment, we use the results from case (−2,−1, 0). In order to account for all
errors, the metric is changed so that we consider all edu boundaries without
restriction. Results are shown in Table 4.

We measure an error rate of 10−2 for CRFSeg, while SVMSeg has an error
rate of 9.4 · 10−3. However, 30% of the errors made by CRFSeg happen on cases
where SVMSeg is correct, and reciprocally, 20% of errors made by SVMSeg
occur on cases where CRFSeg is correct. A possible extension could then be to
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Table 4. Comparison of errors between CRFSeg and SVMSeg

SVMSeg

OK ¬OK Total

CRFSeg
OK 21393 41 21434

¬OK 70 163 233

Total 21463 204 21667

combine both systems, and create a hybrid segmenter with a lower error rate.
For instance, it is possible to measure, for each input data, the confidence of the
two models, and use only the result of the model with the highest confidence. In
this case, the expected error rate of the hybrid system is 7.5 · 10−3 (163/21667).

4 Conclusion

We have presented a sequential model of discourse segmentation, based on Condi-
tional Random Fields. The proposed model finds the globally optimum sequence
of discourse boundaries, which makes for one of the most efficient supervised dis-
course segmentation methods we are aware of. Using standard automatic syntax
parsers, our system reaches 96% of the human performance level. We also found
that this approach performs comparably to a SVM-based discourse segmenter
using contextual features. We suggested to build a hybrid system combining
both models, in order to further reduce the number of incorrect segmentation
decisions. In this case, we expect an error rate of 7.5 ·10−3. These results validate
that our segmenter is usable in a real-time discourse parsing system, in which
the segmentation step is decisive for the rest of the process.

In the continuation of this work, we are currently exploring the benefits of
sequential approaches for discourse relation labeling and tree construction.
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