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Abstract

Several recent discourse parsers have em-
ployed fully-supervised machine learning ap-
proaches. These methods require human an-
notators to beforehand create an extensive
training corpus, which is a time-consuming
and costly process. On the other hand, un-
labeled data is abundant and cheap to col-
lect. In this paper, we propose a novel
semi-supervised method for discourse rela-
tion classification based on the analysis of co-
occurring features in unlabeled data, which is
then taken into account for extending the fea-
ture vectors given to a classifier. Our exper-
imental results on the RST Discourse Tree-
bank corpus and Penn Discourse Treebank in-
dicate that the proposed method brings a sig-
nificant improvement in classification accu-
racy and macro-average F-score when small
training datasets are used. For instance, with
training sets of c.a. 1000 labeled instances, the
proposed method brings improvements in ac-
curacy and macro-average F-score up to 50%
compared to a baseline classifier. We believe
that the proposed method is a first step towards
detecting low-occurrence relations, which is
useful for domains with a lack of annotated
data.

1 Introduction

Automatic detection of discourse relations in natu-
ral language text is important for numerous tasks in
NLP, such as sentiment analysis (Somasundaran et
al., 2009), text summarization (Marcu, 2000) and di-
alogue generation (Piwek et al., 2007). However,
most of the recent work employing discourse re-
lation classifiers are based on fully-supervised ma-
chine learning approaches (duVerle and Prendinger,

2009; Pitler et al., 2009; Lin et al., 2009). Two
of the main corpora with discourse annotations are
the RST Discourse Treebank (RSTDT) (Carlson et
al., 2001) and the Penn Discourse Treebank (PDTB)
(Prasad et al., 2008a), which are both based on the
Wall Street Journal (WSJ) corpus.

In the RSTDT, annotation is done using 78
fine-grained discourse relations, which are usually
grouped into 18 coarser-grained relations. Each of
these relations has furthermore several possible con-
figurations for its arguments—its ‘nuclearity’ (Mann
and Thompson, 1988). In practice, a classifier
trained on these coarse-grained relations must solve
a 41-class classification problem. Some of the re-
lations corresponding to these classes are relatively
more frequent in the corpus, such as the ELAB-
ORATION[N][S] relation (4441 instances), or the
ATTRIBUTION[S][N] relation (1612 instances).1

However, other relation types occur very rarely,
such as TOPIC-COMMENT[S][N] (2 instances), or
EVALUATION[N][N] (3 instances). A similar phe-
nomenon can be observed in PDTB, in which 15
level-two relations are employed: Some, such as
EXPANSION.CONJUNCTION, occur as often as 8759
times throughout the corpus, whereas the remainder
of the relations, such as EXPANSION.EXCEPTION

and COMPARISON.PRAGMATIC CONCESSION, can
appear as rarely as 17 and 12 times respectively. Al-
though supervised approaches to discourse relation
learning achieve good results on frequent relations,
performance is poor on rare relation types (duVerle
and Prendinger, 2009).

Nonetheless, certain infrequent relation types
might be important for specific tasks. For instance,

1We use the notation [N] and [S] respectively to denote the
nucleus and satellite in a RST discourse relation.
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capturing the RST TOPIC-COMMENT[S][N] and
EVALUATION[N][N] relations can be useful for
sentiment analysis (Pang and Lee, 2008).

Another situation where detection of low-
occurring relations is desirable is the case where we
have only a small training set at our disposal, for in-
stance when there is not enough annotated data for
all the relation types described in a discourse the-
ory. In this case, all the dataset’s relations can be
considered rare, and being able to build an efficient
classifier depends on the capacity to deal with this
lack of annotated data.

Our contributions in this paper are summarized as
follows.

• We propose a semi-supervised method that
exploits the abundant, freely-available unla-
beled data, which is harvested for feature co-
occurrence information, and used as a basis to
extend feature vectors to help classification for
cases where unknown features are found in test
vectors.

• The proposed method is evaluated on the
RSTDT and PDTB corpus, where it signifi-
cantly improves accuracy and macro-average
F-score when small training sets are used. For
instance, when trained on moderately small
datasets with ca. 1000 instances, the proposed
method increases the macro-average F-score
and accuracy up to 50%, compared to a base-
line classifier.

2 Related Work

Since the release in 2001 of the RSTDT corpus,
several fully-supervised discourse parsers have been
built in the RST framework. In the recent work of
duVerle and Prendinger (2009), a discourse parser
based on Support Vector Machines (SVM) (Vapnik,
1995) is proposed. SVMs are employed to train two
classifiers: One, binary, for determining the pres-
ence of a relation, and another, multi-class, for deter-
mining the relation label between related text spans.
For the discourse relation classifier, shallow lexical,
syntactic and structural features, including ‘domi-
nance sets’ (Soricut and Marcu, 2003) are used. For
relation classification, they report an accuracy of
0.668, and an F-score of 0.509 for the creation of
the full discourse tree.

The unsupervised method of Marcu and Echihabi
(2002) was the first that tried to detect implicit rela-
tions (i.e. relations not accompanied by a cue phrase,
such as ‘however’, ‘but’), using word pairs extracted
from two spans of text. Their method attempts to
capture the difference of polarity in words. For ex-
ample, the word pair (sell, hold) indicates a CON-
TRAST relation.

Discourse relation classifiers have also been
trained using PDTB. Pitler et al. (2008) performed a
corpus study of the PDTB, and found that ‘explicit’
relations can be most of the times distinguished by
their discourse connectives. Their discourse relation
classifier reported an accuracy of 0.93 for explicit
relations and in overall an accuracy of 0.744 for all
relations in PDTB.

Lin et al. (2009) studied the problem of detecting
implicit relations in PDTB. Their relational classi-
fier is trained using features extracted from depen-
dency paths, contextual information, word pairs and
production rules in parse trees. They reported for
their classifier an accuracy of 0.402, which is an im-
provement of 14.1% over the previous state-of-the-
art for implicit relation classification in PDTB. For
the same task, Pitler et al. (2009) also used word
pairs, as well as several other types of features such
as verb classes, modality, context, and lexical fea-
tures.

In text classification, similarity measures have
been employed in kernel methods, where they have
been shown to improve accuracy over ‘bag-of-
words’ approaches. In Siolas and d’Alché-Buc
(2000), a semantic proximity measure based on
WordNet (Fellbaum, 1998) is defined, as a basis to
create a proximity matrix for all terms of the prob-
lem. This matrix is then used to smooth the vectorial
data, and the resulting ‘semantic’ metric is incorpo-
rated into a SVM kernel, resulting in a significant
increase of accuracy and F-score over a baseline.

Cristianini et al. (2002) have used a lexical sim-
ilarity measure derived from Latent Semantic In-
dexing (Deerwester et al., 1990), where the seman-
tic similarity between two terms is inferred from
the analysis of their co-occurrence patterns: Terms
that co-occur often in the same documents are con-
sidered as related. In this work, the statistical co-
occurrence information is extracted by the means of
singular value decomposition. The authors observe
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substantial improvements in performance for some
datasets, while little effect is obtained for others.

Semantic kernels have also been shown to be effi-
cient for text classification tasks, in the case in of un-
balanced and sparse datasets. In Basili et al. (2006),
a ‘conceptual density’ metric based on WordNet is
introduced, and employed in a SVM kernel. Using
this metric results in improved accuracy of 10% for
text classification in poor training conditions. How-
ever, the authors observe that when the number of
training documents is increased, the improvement
produced by the semantic kernel is lower.

Bloehdorn et al. (2006) compare the performance
of different semantic kernels, based on several mea-
sures of semantic relatedness in WordNet. For each
measure, the authors note a performance increase
when little training data is available, or when the
feature representations are very sparse. However,
for our task, classification of discourse relations, we
employ not only words but also other types of fea-
tures such as parse tree production rules, and thus
cannot compute semantic kernels using WordNet.

In this paper, we are not aiming at defining
novel features for improving performance in RST or
PDTB relation classification. Instead we incorporate
numerous features that have been shown to be useful
for discourse relation learning and explore the pos-
sibilities of using unlabeled data for this task. One
of our goals is to improve classification accuracy for
rare discourse relations.

3 Method

Given a set of unlabeled instances U and labeled in-
stances L, our objective is to learn an n-class rela-
tion classifier H such that for a given test instance
x return its correct relation type H(x). In the case
of discourse relation learning we are interested in
the situation where |U | >> |L|. Here, we use the
notation |A| to denote the number of elements in a
set A. A fundamental problem that one encounters
when trying to learn a classifier for a large number
of relations with small training dataset is that most
of the features that appear in the test instances ei-
ther never occur in training instances or appear a
small number of times. Therefore, the classifica-
tion algorithm does not have sufficient information
to correctly predict the relation type of the given test

instance. We propose a method that first computes
the co-occurrence between features using unlabeled
data and use that information to extend the feature
vectors during training and testing, thereby reducing
the sparseness in test feature vectors. In Section 3.1,
we introduce the concept of feature co-occurrence
matrix and describe how it is computed using unla-
beled data. A method to extend feature vectors dur-
ing training and testing is presented in Section 3.2.
We defer the details on exact features used in the
method to Section 3.3. It is noteworthy that the
proposed method does not depend or assume a par-
ticular multi-class classification algorithm. Conse-
quently, it can be used with any multi-class classifi-
cation algorithm to learn a discourse relation classi-
fier.

3.1 Feature Co-occurrence Matrix

We represent an instance using a d dimensional fea-
ture vector f = [f1, . . . , fd]T, where fi ∈ R. We
define a feature co-occurrence matrix, C such that
the (i, j)-th element of C, C(i,j) ∈ [0, 1] denotes
the degree of co-occurrence between the two fea-
tures fi and fj . If both fi and fj appear in a fea-
ture vector then we define them to be co-occurring.
The number of different feature vectors in which fi
and fj co-occur is denoted by the function h(fi, fj).
From our definition of co-occurrence it follows that
h(fi, fj) = h(fj , fi). Importantly, feature co-
occurrences can be calculated only using unlabeled
data.

Feature co-occurrence matrices can be computed
using any co-occurrence measure. For the current
task we use the χ2-measure (Plackett, 1983) as the
preferred co-occurrence measure because of its sim-
plicity. χ2-measure between two features fi and fj
is defined as follows,

χ2
i,j =

2∑
k=1

2∑
l=1

(Oi,jk,l − E
i,j
k,l)

2

Ei,jk,l
. (1)

Therein,Oi,j andEi,j are the 2×2 matrices contain-
ing respectively observed frequencies and expected
frequencies, which are respectively computed using
C as,

Oi,j =
(

h(fi, fj) Zi − h(fi, fj)
Zj − h(fi, fj) Zs − Zi − Zj

)
, (2)
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and

Ei,j =

(
Zi·Zj

Zs

Zi·(Zs−Zj)
Zs

Zj ·(Zs−Zi)
Zs

(Zs−Zi)·(Zs−Zj)
Zs

)
. (3)

Here, Zi =
∑

k 6=i h(fi, fk), and Zs =
∑n

i=1 Zi.
Finally, we create the feature co-occurrence ma-

trix C, such that, for all pairs of features (fi, fj),

C(i,j) =
{
χ̂2
i,j if χ2

i,j > c

0 otherwise
. (4)

Here χ̂2
i,j =

χ2
i,j−χ2

min

χ2
max−χ2

min
∈ [0, 1], and c is the critical

value, which, for a confidence level of 0.05 and one
degree of freedom, can be set to 3.84. KeepingC(i,j)

in the range [0, 1] makes it convenient to filter out
low-relevance co-occurrences at the feature vector
extension step of Section 3.2.

In discourse relation learning, the feature space
can be extremely large. For example, with word
pair features (discussed later in Section 3.3), any
two words that appear in two adjoining discourse
units can form a feature. Because the number of
elements in the feature co-occurrence matrix is pro-
portional to the square of the feature space’s dimen-
sion, computing co-occurrences for all pairs of fea-
tures can be computationally costly. Moreover, stor-
ing a large matrix in memory for further computa-
tions can be problematic. To reduce the dimension-
ality and improve the sparseness in the feature co-
occurrence matrix, we use entropy-based feature se-
lection (Manning and Schütze, 1999). The negative
entropy, E(fi), of a feature fi is defined as follows,

E(fi) = −
∑
j 6=i

p(i, j) · log (p (i, j)) . (5)

Here, p(i, j) is the probability that feature fi co-
occurs with feature fj , and is given by p(i, j) =
h(fi, fj)/Zi.

If a particular feature fi co-occurs with many
other features, then its negative entropy E(fi) de-
creases. Because we are interested in identifying
salient co-occurrences between features, we can ig-
nore the features that tend to co-occur with many
other features. Consequently, we sort the features in
the descending order of their entropy, and select the
top rankedN number of features to build the feature

co-occurrence matrix. This feature selection proce-
dure can efficiently reduce the dimensions of the fea-
ture co-occurrence matrix to N × N . Because the
feature co-occurrence matrix is symmetric, we must
only store the elements for the upper (or lower) tri-
angular portion of it.

3.2 Feature Vector Extension
Once the feature co-occurrence matrix is computed
using unlabeled data as described in Section 3.1, we
can use it to extend a feature vector during train-
ing and testing. The proposed feature vector exten-
sion method is inspired by query expansion in the
field of Information Retrieval (Salton and Buckley,
1983; Fang, 2008). One of the reasons that a clas-
sifier might perform poorly on a test instance is that
there are features in the test instance that were not
observed during training. We call FU = {fi} the
set of features that were not observed by the clas-
sifier during training (i.e. occurring in test data but
not in training data). For each of those features, we
use the feature co-occurrence matrix to find the set
of co-occurring features, Fc(fi).

Let us denote the feature vector corresponding to
a training or test instance x by fx. We use the su-
perscript notation, f ix to denote the i-th feature in fx.
Moreover, the total number of features of fx is indi-
cated by d(x). For a feature f ix in fx, we define n(i)
number of expansion features, f (i,1)

x , . . . , f
(i,n(i))
x as

follows. First, we require that each expansion fea-
ture f (i,j)

x belongs to Fc(fi). Second, the value of
f

(i,j)
x is set to f ix · C(i,j). The expansion features

for each feature f ix are then appended to the orig-
inal feature vector fx to create an extended feature
vector, f ′x, where,

f ′x = (f1
x , . . . , f

d(x)
x , (6)

f (i,1)
x , . . . , f (i,n(i))

x , . . . ,

f (d(x),1)
x , . . . , f (d(x),n(d(x))

x ).

In total, doing so augments the original vector’s size
by
∑

fi∈U |Fc(fi)|. All training and test instances
are extended in this fashion.

Note that because this process can potentially in-
crease the dimension too much, it is possible to re-
tain only candidate co-occurring features of Fc(fi)
possessing a co-occurrence value C(i,j) above a cer-
tain threshold. In the experiments of Section 4 how-
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ever, we experienced dimension increase of 10000 at
most, which did not require us to use thresholding.

3.3 Features

We use three types of features: Word pairs, produc-
tion rules from the parse tree, as well as features en-
coding the lexico-syntactic context at the border be-
tween two units of text (Soricut and Marcu, 2003).
Our word pairs are lemmatized using the Wordnet-
based lemmatizer of NLTK (Loper and Bird, 2002).

Figure 1 shows the parse tree for a sentence com-
posed of two discourse units, which serve as argu-
ments of a discourse relation we want to generate a
feature vector from. Lexical heads have been calcu-
lated using the projection rules of Magerman (1995),
and annotated between brackets. Surrounded by
dots is, for each argument, the minimal set of sub-
parse trees containing strictly all the words of the
argument.

We first extract all possible lemmatized word-
pairs from the two arguments, such as (Mr., when),
(decline, ask) or (comment, sale). Next, we extract
from left and right argument separately, all produc-
tion rules from the sub-parse trees, such as NP 7→
NNP NNP, NNP 7→ “Sherry” or TO 7→ “to”.

Finally, we encode in our features three nodes of
the parse tree, which capture the local context at the
connection point between the two arguments: The
first node, which we call Nw, is the highest ances-
tor of the first argument’s last word w, and is such
that Nw’s right-sibling is the ancestor of the second
argument’s first word. Nw’s right-sibling node is
called Nr. Finally, we call Np the parent of Nw and
Nr. For each node, we encode in the feature vec-
tor its part-of-speech (POS) and lexical head. For
instance, in Figure 1, we have Nw = S(comment),
Nr = SBAR(when), and Np = VP(declined). In the
PDTB, certain discourse relations have disjoint ar-
guments. In this case, as well as in the case where
the two arguments belong to different sentences, the
nodes Nw, Nr, Np cannot be defined, and their cor-
responding features are given the value zero.

4 Experiments

The proposed method is independent of any partic-
ular classification algorithm. Because our goal is
strictly to evaluate the relative benefit of employing

the proposed method, and not the absolute perfor-
mance when used with a specific classification algo-
rithm, we select a logistic regression classifier, for its
simplicity. We use the multi-class logistic regression
(maximum entropy model) implemented in the Clas-
sias toolkit (Okazaki, 2009). Regularization param-
eters are set to their default value of one and are fixed
throughout the experiments described in the paper.

To create our unlabeled dataset, we use sentences
extracted from the English Wikipedia2, as they are
freely available and relatively easy to collect. For
further extraction of syntactic features, these sen-
tences are automatically parsed using the Stanford
parser (Klein and Manning, 2003). Then, they are
segmented into elementary discourse units (EDUs)
using our sequential discourse segmenter (Hernault
et al., 2010). The relatively high performance of
this RST segmenter, which has an F-score of 0.95
compared to that of 0.98 between human annota-
tors (Soricut and Marcu, 2003), is acceptable for this
task. We collect and parse 100000 sentences from
random Wikipedia articles. As there is no segmen-
tation tool for the PDTB framework, we assume that
co-occurrence information taken from EDUs created
using a RST segmenter is also useful for extending
feature vectors of PDTB relations. Unless other-
wise noted, the experiments presented in the rest of
this paper are done using those 100000 unlabeled in-
stances.

In the unlabeled data, any two consecutive dis-
course units might not always be connected by a dis-
course relation. Therefore, we introduce an artificial
NONE relation in the training set, in order to facil-
itate this. Instances of the NONE relation are gen-
erated randomly by pairing consecutive discourse
units which are not connected by a discourse relation
in the training data. NONE is also learnt as a separate
discourse relation class by the multi-class classifica-
tion algorithm. This enables us to detect discourse
units between which there exist no discourse rela-
tion, thereby improving the classification accuracy
for other relation types.

We follow the common practice in discourse re-
search for partitioning the discourse corpora into
training and test set. For the RST classifier, the
dedicated training and test sets of the RSTDT are

2http://en.wikipedia.org
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NP (Sherry)

S (declined)

VP (declined)
NNP NNP

declined

VBD (declined)

Mr. Sherry to

VP (comment)

comment when asked about the sales

TO VP

SBAR (when)

WHADVP (when)

WRB

S (asked)

VP (asked)

VBN PP (about)

IN NP (sales)
DT NNS

.

. (.)

Argument 1 Argument 2

VB

S (comment)

Figure 1: Two arguments of a discourse relation, and the minimum set of subtrees that contain them—lexical heads
are indicated between brackets.

employed. For the PDTB classifier, we conform to
the guidelines of Prasad et al. (2008b, 5): The por-
tion of the corpus corresponding to sections 2–21
of the WSJ is used for training the classifier, while
the portion corresponding to WSJ section 23 is used
for testing. In order to extract syntactic features, all
training and test data are furthermore aligned with
their corresponding parse trees in the Penn Treebank
(Marcus et al., 1993).

Because in the PDTB an instance can be
annotated with several discourse relations
simultaneously—called ‘senses’ in Prasad et
al. (2008b)—for each instance with n senses in
the corpus, we create n identical feature vectors,
each being labeled by one of the instance’s senses.
However, in the RST framework, only one relation
is allowed to hold between two EDUs. Conse-
quently, each instance from the RSTDT is labeled
with a single discourse relation, from which a
single feature vector is created. For RSTDT, we
extract 25078 training vectors and 1633 test vectors.
For PDTB we extract 49748 training vectors and
1688 test vectors. There are 41 classes (relation
types) in the RSTDT relation classification task,
and 29 classes in the PDTB task. For the PDTB,
we selected level-two relations, because they have
better expressivity and are not too fine-grained.
We experimentally set the entropy-based feature
selection parameter to N = 5000. With large N
values, we must store and process large feature
co-occurrence matrices. For example, doubling
the number of selected features, N to 10000 did

not improve the classification accuracy, although
it required 4GB of memory to store the feature
co-occurrence matrix.

Figure 2 shows the number of features that occur
in test data but not in labeled training data, against
the number of training instances. It can be seen from
Figure 2 that, with less training data available to the
classifier, we can potentially obtain more informa-
tion regarding features by looking at unlabeled data.
However, when the training dataset’s size increases,
the number of features that only appear in test data
decreases rapidly. This inverse relation between the
training dataset size and the number of features that
only appear in test data can be observed in both
RSTDT and PDTB datasets. For a training set of
100 instances, there are 23580 unseen features in
the case of RSTDT, and 27757 in the case of PDTB.
The number of unseen features is halved for a train-
ing set of 1800 instances in the case of RSTDT, and
for a training set of 1300 instances in the case of
PDTB. Finally, when selecting all available training
data, we count only 1365 unseen test features in the
case of RSTDT, and 87 in the case of PDTB.

In the following experiments, we use macro-
averaged F-scores to evaluate the performance of the
proposed discourse relation classifier on test data.
Macro-averaged F-score is not influenced by the
number of instances that exist in each relation type.
It equally weights the performance on both frequent
relation types and infrequent relation types. Because
we are interested in measuring the overall perfor-
mance of a discourse relation classifier across all re-
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Figure 2: Number of features seen only in the test set, as
a function of the number of training instances used.

lation types we use macro-averaged F-score as the
preferred evaluation metric for this task.

We train a multi-class logistic regression model
without extending the feature vectors as a baseline
method. This baseline is expected to show the ef-
fect of using the proposed feature vector extension
approach for the task of discourse relation learn-
ing. Experimental results on RSTDT and PDTB
datasets are depicted in Figures 3 and 4. From
these figures, we see that the proposed feature ex-
tension method outperforms the baseline for both
RSTDT and PDTB datasets for the full range of
training dataset sizes. However, whereas the differ-
ence of scores between the two methods is obvious
for small amounts of training data, this difference
progressively decreases as we increase the amount
of training data. Specifically, with 100 training in-
stances, the difference between baseline and pro-
posed method is the largest: For RSTDT, the base-
line has a macro-averaged F-score of 0.084, whereas
the the proposed method has a macro-averaged F-
score of 0.189 (ca. 119% increase in F-score). For
PDTB, the baseline has an F-score of 0.016, while
the proposed method has an F-score of 0.089 (459%
increase). The difference of scores between the two
methods then progressively diminishes as the num-
ber of training instances is increased, and fades be-
yond 10000 training instances. The reason for this
behavior is given by Figure 2: For a small number
of training instances, the number of unseen features
in training data is large. In this case, the feature vec-

tor extension process is comprehensive, and score
can be increased by the use of unlabeled data. When
more training data is progressively used, the num-
ber of unseen test features sharply diminishes, which
means feature vector extension becomes more lim-
ited, and the performance of the proposed method
gets progressively closer to the baseline. Note that
we plotted PDTB performance up to 25000 train-
ing instances, as the number of unseen test features
becomes so small past this point that the perfor-
mances of the proposed method and baseline are
identical. Using all PDTB training data (49748 in-
stances), both baseline and proposed method reach a
macro-average F-score of 0.308.
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Figure 3: Macro-average F-score (RSTDT) as a function
of the number of training instances used.
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Figure 4: Macro-average F-score (PDTB) as a function
of the number of training instances used.
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#Tr = 1 #Tr = 2 #Tr = 3 #Tr = 5 #Tr = 7

Relation name B. P.M. B. P.M. B. P.M. B. P.M. B. P.M.

Attribution[N][S] – 0.127 – 0.237 – 0.458 0.038 0.290 0.724 0.773
Attribution[S][N] – 0.597 – 0.449 0.009 0.639 0.250 0.721 0.579 0.623
Background[N][S] – 0.113 – – – 0.036 – 0.095 – 0.089
Cause[N][S] – – – 0.128 – – – 0.034 0.057 0.187
Comparison[N][S] – 0.118 – 0.037 – – 0.133 0.130 0.143 0.031
Condition[N][S] – 0.041 – 0.136 – 0.113 – 0.154 0.242 0.152
Condition[S][N] – – – 0.122 0.133 0.148 0.214 0.233 0.390 0.308
Contrast[N][N] – – – 0.086 – 0.073 0.050 0.111 – 0.109
Contrast[N][S] – 0.071 – – – 0.188 – 0.087 – 0.136
Elaboration[N][S] – 0.134 – 0.126 0.004 0.067 0.004 0.340 – 0.165
Enablement[N][S] – – – 0.462 – 0.579 0.115 0.423 0.419 0.438
Joint[N][N] – 0.030 – 0.015 – – 0.016 0.059 0.015 0.155
Manner-Means[N][S] – – – 0.056 – 0.103 0.345 0.372 0.412 0.383
Summary[N][S] – 0.429 – 0.453 0.080 0.358 – 0.349 0.154 0.471
Temporal[N][S] – 0.158 – – – 0.091 – 0.052 0.204 0.101

Accuracy 0.000 0.110 0.000 0.105 0.004 0.146 0.034 0.222 0.122 0.213
Macro-average F-score 0.000 0.060 0.000 0.069 0.008 0.101 0.038 0.118 0.107 0.134

Table 1: F-scores for RSTDT relations, using a training set containing #Tr instances of each relation. B. indicates
F-score for baseline, P.M. for the proposed method. A boldface indicates the best classifier for each relation.

Although the distribution of discourse relations
in RSTDT and PDTB is not uniform, it is possi-
ble to study the performance of the proposed method
when all relations are made equally rare. We evalu-
ate performance on artificially-created training sets
containing an equal amount of each discourse rela-
tion. Table 1 contains the F-score for each RSTDT
relation, using training sets containing respectively
one, two, three, five and seven instances of each
relation. For space considerations, only relations
with significant results are shown. We observe that,
when using respectively one and two instances of
each relation, the baseline classifier is unable to de-
tect any relation, and has a macro-average F-score
of zero. Contrastingly, the classifier built with fea-
ture vector extension reaches in those cases an F-
score of 0.06. Furthermore, when employing the
proposed method, certain relations have relatively
high F-scores even with very little labeled data: With
one training instance, ATTRIBUTION[S][N] has an
F-score of 0.597, while SUMMARY[N][S] has an F-
score of 0.429. With three training instances, EN-
ABLEMENT[N][S] has an F-score of 0.579. When

the amount of each relation is increased, the baseline
classifier starts detecting more relations. In all cases,
the proposed method performs better in terms of ac-
curacy and macro-average F-score. With a train-
ing set containing seven instances of each relation,
the baseline’s macro-average F-score is starting to
get closer to the extended classifier’s, with superior
performances for several relations, such as COM-
PARISON[N][S], CONDITION[N][S], and TEMPO-
RAL[N][S]. Still, in this case, the extended classi-
fier’s accuracy is higher than the baseline (0.213 ver-
sus 0.122). Table 2 summarizes the outcome of the
same experiments performed on the PDTB dataset.
The results exhibit a similar trend, despite the base-
line classifier having a relatively high accuracy for
each case.

Using the data from Figures 2, 3 and 4, it is pos-
sible to calculate the relative score change occur-
ring when using the proposed method, as a func-
tion of the number of unseen features found in test
data. This graph is plotted in Figure 5. Besides
macro-average F-score, we additionally plot accu-
racy change. In the top subfigure, representing the
case of RSTDT, we see that, for the lowest amount
of unseen test features, the proposed method does

406



#Tr = 1 #Tr = 2 #Tr = 3 #Tr = 5 #Tr = 7

Relation name B. P.M. B. P.M. B. P.M. B. P.M. B. P.M.

Comparison.Concession[2][1] – 0.056 – – – 0.133 – – – 0.154
Comparison.Contrast[2][1] – – – 0.333 – – – 0.190 0.105 0.368
Contingency.Cause[1][2] – 0.013 – 0.007 – – – 0.026 – 0.013
Contingency.Condition[1][2] – 0.082 – 0.160 – 0.127 0.250 0.253 0.214 0.171
Contingency.Condition[2][1] – – – – – 0.074 – 0.143 0.250 0.296
Contingency.Prag. cond.[1][2] – – – 0.133 – 0.034 – – 0.133 0.043
Contingency.Prag. cond.[2][1] – – – – – – 0.133 0.087 0.154 0.087
Expansion.Conjunction[1][2] 0.326 0.352 0.326 0.351 0.326 0.368 0.332 0.371 0.335 0.384
Expansion.Instantiation[1][2] – – – – – 0.042 – 0.057 – 0.131
Temporal.Asynchronous[1][2] – 0.204 – – – 0.142 0.039 0.148 – 0.035
Temporal.Asynchronous[2][1] – – – – – 0.316 – 0.483 0.143 –
Temporal.Synchrony[1][2] – – – 0.032 – 0.162 0.032 0.103 0.032 0.157
Temporal.Synchrony[2][1] – – – 0.083 – 0.143 0.200 0.308 0.211 0.174

Accuracy 0.195 0.201 0.195 0.202 0.195 0.212 0.202 0.214 0.204 0.213
Macro-average F-score 0.015 0.033 0.015 0.054 0.015 0.084 0.045 0.108 0.072 0.100

Table 2: F-scores for PDTB relations.

not bring any change in F-score or accuracy. In-
deed, as the number of unknown features is low,
feature vector extension is very limited, and does
not improve the performance compared to the base-
line. Then, a progressive increase of both accuracy
and macro-average F-score is observed, as the num-
ber of unseen test features is incremented. For in-
stance, for 8500 unseen test features, the macro-
average F-score increase (resp. accuracy increase)
is 25% (resp. 2.5%), while it is 20% (resp. 1%) for
11000 unseen test instances. These values reach a
maximum of 119% macro-average F-score increase,
and 66% accuracy increase, when 23500 features
unseen during training are present in test data. This
situation corresponds in Figures 3 and 4 to the case
of very small training sets. The bottom subfigure
of Figure 2, for the case of PDTB, reveals a sim-
ilar tendency. The macro-average F-score increase
(resp. accuracy increase) is negligible for 1000 un-
seen test features, while this increase is 21% for both
macro-average F-score and accuracy in the case of
9700 unseen test features, and 459% (resp. 630% for
accuracy) when 28000 unseen features are found in
test data. This shows that the proposed method is
useful when large numbers of features are missing
from the training set, which corresponds in practice
to small training sets, with few training instances for
each relation type. For large training sets, most fea-

tures are encountered by the classifier during train-
ing, and feature vector extension does not bring use-
ful information.

We empirically evaluate the effect of using differ-
ent amounts of unlabeled data on the performance of
the proposed method. We use respectively 100 and
10000 labeled training instances, create feature co-
occurrence matrices with different amounts of unla-
beled data, and evaluate the performance in relation
classification. Experimental results for RSTDT are
illustrated in Figure 6 (top). From Figure 6 it appears
clearly that macro-average F-scores improve with
increased number of unlabeled instances. However,
the benefit of using larger amounts of unlabeled data
is more pronounced when only a small number of la-
beled training instances are employed (ca. 100). In
fact, with 100 labeled training instances, the maxi-
mum improvement in F-score is 119% (corresponds
to using all our 100000 unlabeled instances). How-
ever, the maximum improvement in F-score with
10000 labeled training instances is small, only 2.5%
(corresponds to 10000 unlabeled instances).

The effect of using unlabeled data on PDTB rela-
tion classification is illustrated in Figure 6 (bottom).
Similarly, we consecutively set the labeled training
dataset size to 100 and 10000 instances, and plot the
macro-average F-score against the unlabeled dataset
size. As in the RSTDT experiment, the benefit of us-
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Figure 5: Score change as a function of unseen test fea-
tures for RSTDT (top) and PDTB (bottom).

ing unlabeled data is more obvious when the num-
ber of labeled training instances is small. In par-
ticular, with 100 training instances, the maximum
improvement in F-score is 459% (corresponds to
100000 unlabeled instances). However, with 10000
labeled training instances the maximum improve-
ment in F-score is 15% (corresponds to 100 unla-
beled instances). These results confirm that, on the
one hand performance improvement is more promi-
nent for smaller training sets, and that on the other
hand, performance is increased when using larger
amounts of unlabeled data.

5 Conclusion

We presented a semi-supervised method which ex-
ploits the co-occurrence of features in unlabeled
data, to extend feature vectors during training and
testing in a discourse relation classifier. Despite the
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Figure 6: Macro-average F-score for RSTDT (top) and
PDTB (bottom), for 100 and 10000 training instances,
against the number of unlabeled instances.

simplicity of the proposed method, it significantly
improved the macro-average F-score in discourse re-
lation classification for small training datasets, con-
taining low-occurrence relations. We performed an
evaluation on two popular datasets, the RSTDT and
PDTB. We empirically evaluated the benefit of using
a variable amount of unlabeled data for the proposed
method. Although the macro-average F-scores of
the classifiers described are too low to be used di-
rectly as discourse analyzers, the gain in F-score and
accuracy for small labeled datasets are a promising
perspective for improving classification accuracy for
infrequent relation types. In particular, the proposed
method can be employed in existing discourse clas-
sifiers that work well on popular relations, and be
expected to improve the overall accuracy.
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