Proc. 10th Canadian Conf. on Al, Banf, pp.176-186 (1994)

A Polynomial-time Hypothetical Reasoning employing
an Approximate Solution Method of 0-1 Integer Programming
for Computing Near-optimal Solution

Mitsuru Ishizuka and Tomoki Okamoto+
Dept. of Information & Communication. Eng.
Faculty of Engineering, University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

*Presently with Tokyo Electric Power Co.

Abstract

A hypothetical reasoning is an important knowledge
system’s framework because of its theoretical basis and its
usefulness for practical problems including diagnosis,
design, etc. One crucial problem with the hypothetical
reasoning is, however, its slow inference speed. In order
to achieve practical or tractable inference speed, we apply
an approximate solution method of 0-1 integer
programming to a weight-based hypothetical reasoning,
where a numerical weight is assigned to each possible
element hypothesis and the optimal solution hypothesis
set with minimal sum of its element hypotheses' weights
is searched. In this method, we regard all described
knowledge as constraints. To narrow down the search
space, we first extract restricted knowledge relevant to the
proof of a given goal. Then, we transform the restricted
knowledge into inequatlities to apply 0-1 integer
programming. While the computational complexity of
the hypothetical reasoning is NP-complete or NP-hard, an
approximate solution method of 0-1 integer programming
allows polynomial inference time for finding a near-
optimal solution hypothesis.

1. Introduction

A hypothetical reasoning is an important framework for
advanced knowledge-based systems because of its
theoretical basis and its usefulness for many practical
problems including diagnosis, design, etc. [Poole 87, 88,
Ishizuka 90, Makino 90]. It is an abductive inference
mechanism for finding consistent solution hypotheses
satisfying given constraints. One crucial problem with
the hypothetical reasoning is its slow inference speed
because a non-menotonic inference is needed due to the
use of hypothetical or defeasible knowledge.

In order to overcome this problem, the authors'
group has developed so far several fast hypothetical
reasoning methods, e.g., 1) fast hypothetical reasoning
using inference-path network [Ito 91, Ishizuka 91] which
includes ATMS mechanism [deKleer 86], 2) fast
hypothetical reasoning for predicate-logic knowledge-base
[Kondo 91] which employs a deductive database
technique, 3) fast hypothetical reasoning using analogy

[Ishizuka 93], and 4) knowledge-base compilation
method [Tsuruta 91, 92]. Since the computational
complexity of the hypothetical reasoning is NP-complete
or NP-hard [Kautz 89, Bylander 89, Stillman 90], we
cannot overcome the wall of exponential inference time
with respect to problem size as long as we use ordinary
inference methods. The above methods 2) and 3), for
example, use analogical reasoning and knowledge-base
compilation, respectively, to overcome this inference
speed limit.

In this paper, we present another efficient
hypothetical reasoning method based on an approximate
solution method of 0-1 integer programming. Here, we
consider a weight-based or cost-based hypothetical
reasoning [Charniak 90], where a numerical weight is
assigned to each possible element hypothesis and an
optimal solution hypothesis set is searched which has the
minimum weight sum of the element hypotheses. This
framework is useful, for example, for finding the most
possible diagnosis or the least expensive design satisfying
given constraints.

We regard the described logical knowledge as
constraints and transform them into inequalities to apply
the 0-1 integer programming method. Before this
application, we find the restricted portion of knowledge
relevant to the proof of a given goal so as to narrow down
the search space. As a result, we show that the
approximate solution method of 0-1 integer programming
is very effective to find a near-optimal solution
hypothesis in polynomial time.

Recently, it is recognized that the combination of
mathematical programming techniques with knowledge-
based processing is useful to achieve an efficient inference
[Hooker 88, Dhar 90, Charniak 92]. However, the use of
an approximate solution method was not considered in
[Chaniak 92}. While its use was considered in [Dhar 901,
a preprocessing of restricting the scope of knowledge
being introduced in this paper had not been incorporated.
Since the computational complexity of 0-1 integer
programming is still NP-complete, it is necessary to
incorporate a preprocessing of reducing the number of
variables for 0-1 integer programming and to apply an
approximate solution method, for achieving an efficient
and tractable inference of the hypothetical reasoning.

179

Probabilistic search methods based on simulated
annealing(SA) [Kirkpatrik 83) or genetic algorithm(GA)
[Goldberg 89] are also exploited recently in Al area for
efficiently finding near-optimal solutions. The search of
our inference method is different from these probabilistic
methods; our method uses guiding information obtained
by the efficient simplex method for a corresponding
problem relaxed from 0-1 integer domain to real domain,
and excecutes a local search for a 0-1 optimal solution
around the optimal solutuion in real domain.

Also, the efficiency of the local search for CSP
(constraint satisfaction problem) or SAT (satisfiability
testing) is recently recognized such as in a heuristic repair
method [Minton 92] and GSAT [Selman 93a, 93b]. Our
method differs from these methods in that the efficient
simplex method is used to obtain a good initial guess and
analog-value points between (or sometimes outside) 0-1
vertex points are considered in the local search process. In
addition, our method can compute a near-optimal solution
rather than a simple single solution satisfying the
constraints. The use of unconstrained nonlinear
programming for CSP or SAT is shown in [Gu 93].
This local search process is conceptually similar to our
method; however, it does not provide any mechanism to
determine a good initial search point. Thus our method,
while it is described in the context of the hypothetical
reasoning in this paper, may indicate a new efficient
search for wider problem solving under declarative
knowledge.

2. Logic-based Hypothetical Reasoning

The hypothetical reasoning in this paper is a logic-based
one [Poole 87, 88, Ishizuka 91, Ito 91], where knowledge
is divided into two categories, i.e., background knowledge
(or fact in [Poole 87, 88]) and hypothesis. Background
knowledge denoted by X has no possibility of
inconsistency, whereas the hypothesis denoted by H has
the possibility of contradiction with other hypotheses, and
thus is defeasible knowledge.

As illustrated in Fig.1, the basic behavior of this
hypothetical reasoning is as follows. When a goal G is
given, the system first tries to prove this goal from
background knowledge. If it fails, then the system selects
a subset of the hypotheses so that the given goal is
proved from the union of bacground knowledge and this
hypothesis subset, which should be consistent with
background knowledge. This consistent subset of
hypotheses becomes a solution for the given goal in the
hypothetical reasoning system. The generation of this
consistent hypothesis subset can be viewed as abduction.

The structure of above hypothetical reasoning can be
summarized to find a solution h satisfying

chcH (h is a subset of H)
*ZUhF G (G can be derived from £ U h), and
.zuhl O (F U h is consistent, O. empty

clauses),
where I, H and G are background knowledge, possible
hypotheses and a given goal, respectively.
In this paper, we restrict the knowledge
representation to propositinal Horn clauses, since our

180

Background Knowledge

2

consistent

subset

h

Hypothesis
H

Fig. 1 Basic structure of logic-based hypothetical
reasoning.

main concern here is an efficient inference mechanism.
Since the logical negation of an atom cannot be expressed
with Horn clauses, we introduce an atom called "inc" to
denote inconsistency among hypotheses, such as,

inc « hy, hp.,
which says that hy and hy cannot be coexist in an
environment.

Rule-type hypotheses are allowed in general in our
hypothetical reasoning system. They are, however,
transformed by a preprocessing into newly introduced
single-atom hypotheses and modified background
knowledge. For example, a rule-type hypothesis 'peq.'
will be transformed by introducing a new atom 'r' into,

background knowledge p«q,r., and
hypothesis I.
In this case, the hypothesis 'peq.' can be interpreted as
being included in a solution hypothesis set if 'r' is
included in the solution hypothesis set. With this
preprocessing, all the hypotheses become unit clauses
(single atoms).

There are often cases that a goal with a non-Horn
clause such as,

S1 & - & sm « 1], -, tn.
is given to the system; t],---, ty and $1, ---, Sm may be,
for example, input and output observations, respectively,
in a fault diagnosis problem, or an input-output
specification in a circuit design problem. In these cases,
by introducing an atom 'g' indicating an inference goal,
we add

g 81, -, Sm

t1.

tn.
into the knowledge-base as background knowledge, and
then try to prove 'g'.

There exist plural solution hypotheses sets in
general. In many cases, an optimal solution hypothesis
set with the minimum weight sum of its element
hypotheses is required as the solution. We consider this
type of a weight-based or cost-based hypothetical
reasoning in this paper. A weight for each element
hypothesis is defined in our system , for example, as,

hyp (hy, 2),
where 2 is a numerical weight assigned to hypothesis hj.

Figure 2 dipicts the functions of the hypothetical
reasoning system described in this paper.

Knowledge-base

(Background Knowledge

Extraction of Knowledge
relevant to Proving the Goal
and its Simplification

C Transformation
C Programming

into Inequalities
C(Near-) Optimal Solution

Solving 0-1 Integer

)
)

Fig.2 Structure of the hypothetical reasoning
of this paper.

Hypohesis Set

3. Transformation of Knowledge into
Inequalities for Applying 0-1 Integer
Programming

In order to apply 0-1 integer programming for solving a
hypothetical reasoning problem, we have to transform
described knowledge into linear inequalities. We first
describe this transformation method employed in our
system.

We assume, closed world assumption (CWA) [Clark
78] for the knowledge-base; i.e., we regard knowledge not
explicitly described in the knowledge-base as false. In
this situation, we can interpret a fact unable to be
deductively proved from the knowledge-base as false; this
is called 'negation as failure’. For example, suppose that

a<b,c, aed, e«f, b, f,
are described in a knowledge-base. In this case, since ‘a’
cannot be proved to be true from this knowledge-base, we
interpret '—a’ is true.

To give a model theoretic semantics to the negation
as failure, we introduce the concept of completion [Clark
78, Lloyd 84]. Simply speaking, we rewrite 'e « f." into
‘e & f.' (¢’ is true iff 'f' is true). Also, if an atom 'd’
appears in the body of a Horn clause and there exist no
Horn clause with the head of 'd', we add '—d' to the
knowledge-base. By this completion procedure, the
above-mentioned illustrative knowledge-base becomes

ae((bac)vd), b,

—d, eof, f.
In the case of propositional Horn clauses, it is known that
the completion and the closed world assumption are
equivalent.

In the framework of our hypothetical reasoning, we
can assume the closed world assumption for background
knowledge and apply the completion. Since it is
unknown whether a hypothesis is true or not in a certain
environment, we regard it as a variable to be determined
for satisfying a given goal under the background
knowledge. That is, we regard the hypothesis as a 0-1
variable in 0-1 integer programming.

Generally speaking, logic formulae in the
knowledge-base can be regarded as constraints.
Transforming these constraints into inequalities, we can
apply 0-1 integer programming for obtaining a solution.
Here, we consider a method of transforming the completed
knowledge-base into inequalities. (Another
transformation method for uncompleted knowledge-base is
shown in [Hooker 88).)

Firstly, modeling the propositional logic formulae
by Boolean algebraic equations, we rewrite the truth value
(true/false) of an atom into 1/0, and equivalence symbol
(&) into equality symbol (=). Then, we can reduce all the
knowledge except hypotheses into one of the following
forms.

(p=q1v-- van,

@p=@QAr--Agnvr

where p, gj,re {0,1}, i=1,2, ---, n,

(3)p=1 ifpis defined,

@p=0

if —p is defined.

Next, we transform above Boolean equations of (1)
and (2) into equivalent linear inequalities. These
equivalent linear inequalities are not unique; however, we
adopt here,

(Y3 T e peqt-- 4G
- <P<L

- C,

@) q1+-~-+qn+nr-(n-l)g p< Qi+ ..+ @u+nr

2n n
for (1) and (2), respectively. All the rule-type knowledge
can be expressed by these linear inequalities, if necessary,
by introducing supplementary variables. The atom 'inc'
indicating inconsistency is transformed into 'inc=0", and
the atom indicating the goal is assigned 1 since it is a
constraint to be satisfed.

With above procedures, the hypothetical reasoning
with the propositional logic expression can be
reformulated into 0-1 integer programming; among 0-1
integer solutions satisfying all the constraints, the
variables with 1 become to represent a solution
hypothesis set. Setting the weight sum of element

181

hypotheses to the objective function of the 0-1 integer
programming, we can obtain the optimal solution
hypothesis set by calculating the optimal solution of the
0-1 integer programming.

4. Extraction of Knowledge Relevant to
Proving a Goal and its Simplification

With above-mentioned method, the optimal solution
hypothesis set in the hypothetical reasoning can be
computed in principle by the 0-1 integer programming
method. However, if we transform all knowledge in the
knowledge-base into inequalities and apply 0-1 integer
programming, it becomes quite inefficient because the
number of 0-1 variables becomes large. Practical
performance cannot be attained by this simple application
of 0-1 integer programming for practical-scale knowledge-
bases, since, different from linear programming in real
domain, the speed of integer programming is not
sufficient.

For the hypothetical reasoning with propositional
Horn clauses, it is possible to efficiently extract limited
knowledge relevant to proving a given goal, while leaving
the synthesis of necessary hypotheses to a later process,
by the same method as one used in a fast hypothetical
reasoning using inference-path network [Ito 91, Ishizuka
91}. The extracted knowledge can be further simplified or
compiled efficiently. These procedures can be constructed
on the basis of a linear-time algorithm of satisfiability
testing for propositional Horn clauses [Dowling 84].
Since the computational complexity of 0-1 integer
programming is NP-complete and its computational time
increases exponentially with respect to the number of
variables, this type of preprocessing for reducing the

variables is necessary for dchieving a highly efficient
computation,

Our preprocessing consists of three processes. The
first process is the formation of a goal-directed initial
inference-path, and the second is its simplification. The
third one is the extraction of releyant constraint
knowledge indicating inconsistent combinations among
hypotheses (hereinafter, inconsistency knowledge). For
illustration purpose, we consider a knowledge-base
including hypotheses h1~h13 with numerical weights and
a goal (a, b) shown in Fig. 3.

An initial inference-path network can be formed by a
backward inference originated from the given goal. This
inference-path network becomes to contain all relevant
knowledge possibly to contribute to the proof of the goal.
The unit clauses of background knowledge and element
hypotheses are placed at the leaf nodes of this network.
For the knowledge-base and the goal of Fig.3, the initial
inference-path network of Fig.4 can be formed, for
example. Knowledge such as pee,hi)., q<k, L. ----,
and the element hypotheses of hg~h13 are not included in
this network, since they are irrelevant to proving the goal
(a, b) in this case.

In the simplification process of the inference-path
network, 'true’ state at the nodes corresponding to unit-
clause background knowledge, and 'false’ state at the nodes
with no possibility of turning into 'true’ because of
lacking their child hypothesis nodes are propagated
upward. That is, we assign 'true-by-hypothesis' state to
all the intermediate nodes in the inference-path network
except ones corresponding to the unit clauses of
background knowledge. We also assign ‘true-by-
hypothesis' state to the hypothesis nodes. Then, the 'rue’
and ‘false’ states are propagated upward by changing the
‘true-by-hypothesis' state of an AND node to 'true’ state if

all its AND-connected child nodes

are in 'true’ state and to false’ state

if one of them is in 'false’ state, and

Goal by changing the ‘true-by-
hypothesis' state of an OR node to

Hypotheses
~ Background Knowledge with weights
[a « c,d. 1 « ho.) (hyp (hy, 1)\ (a, b)

b« c. 1 « hs. hyp (hz, 2)
b «i. m « hs. hyp (h3, 3)
C « f m « ho. hyp (hs, 1)
C «]J. p « e, hu hyp (hs, 3)
c <L q« kL hyp (hs, 1)
d < hi, k. I « q,ho hyp (hs, 2)
€ « ha. I « m, hi. hyp (hs, 4)
€l . hyp (hs, 1)
1 «<m,n. InC « hi,-ha. hyp (hio, 2)
f. inc « ho, hs. hyp (hu, 1)
j «hs. inc « hs, h. hyp (hiz, 2)
j « ha inc « he, hu. hyp (hi3, 3)
k « hs. Inc « hio, hia.

—

k « he. inc « hn, hlZ.)

Fig. 3 An example of knowledge-base with hypotheses

and an inference goal to be satisfied.

182

'true’ state if one of its OR-
connected child nodes is in ‘true’
state and to 'false’ state if all of
them are in 'false’ state.

In the illustrative initial
inference-path network of Fig.4,
since node 'f’ is in 'true’ state, node
‘¢’ having this 'f' as its OR-
connected child node turns into
‘true’ state. As a result, at node 'a’'
having this node 'c' as its AND-
connected child node, we don't need
to consider this node 'c’ and its child
nodes any more in the synthesis
process of necessary hypotheses and
need to consider only child node 'd'.
Furthermore, node 'n’ in Fig.4 can
be identified as 'false’ state, since it
doesn't have any child hypothesis
nodes and thus has no possibility of
turning into 'true’ state. Then, node

Fig.4 Agoal-directed initial inference-path network.

'i" also becomes 'false’ state because it has this node 'n’ as
its AND-connected child node. Thus, at node ‘b’ having
this node 'i' as its OR-connected child node, we don't need
to consider node 'i' any more in the synthesis process of
necessary hypotheses and need to consider only child node
'e’. As a result, a simplified inference-path network
shown in Fig.5 is obtained.

Moreover, since it is a constraint that the goal
becomes 'true’ if a solution exists, we can determine the
state of AND-connected child nodes by propagating this
constraint downward. For example, in the inference-path
network of Fig.5, nodes 'a’ and ‘b’ are required to be 'true’;
as a consequence, node ‘d’, node k' and hypothesis node
‘h1' are also required to be 'true’. In the same manner, it
is necessary for node ‘e’ to be 'true’. Thus we can obtain
simplified constraint equations shown in the right side of
Fig.5. Here, 'h1=1' means that the element hypothesis
'h1" should be adopted to satisfy the given goal;
otherwise, the goal cannot be satisfied. We can thus
reduce the number of variables for 0-1 integer
programming.

The extraction of relevant inconsistency knowledge
can be performed by selecting only inconsistency
knowledge in which every body atom is appeared in the
simplified inference-path network as hypothesis or
intermediate node. We can’ignore other inconsistency
knowledge in the case of the given goal.

1 =havl
l=h7vhs

0 =hzAhe
0 =hsAln
~

Fig.5 A simplified inference-path network and extracted
constraint Boolean equations (right side).

By the above procedures, the simplified constraint
(Boolean) equations shown in the right side of Fig.5 are
obtained for the case of Fig.3. Excluding the variables
already determined to O or 1, we can have simplified
constraint equations with only five variables as,

1=hs v hg,
1=h2 vh7vhg,
0 =h2 A hg,
0=h5Ah7.

We transform these constraint equations into linear
inequalities according to the method described in section
3. The objective function z for integer programming can
be set based on the weights of the element hypotheses, for
example, in this case as,

z = h1 + 2hg + 3hs5 + hg + 2h7 + 4hg

=1+ 2h2 + 3h5 + hg + 2h7 + 4hg,

Then, we can apply 0-1 integer programming for solving
the weight-based hypothetical reasoning.

S. Applying Exact and Approximate
Solution Methods of 0-1 Integer
Programming and their Evaluation

For solving 0-1 integer programming, we have applied

two exact methods and one approximate method, i.e., 1)
all integer method, 2) implicit enumeration method [Balas

183

65], and 3) pivot and complement method [Balas 80]. See
[Greenberg 71, Garfinkel 72, Konno 81], for example, for
general discussion on integer programming methods.

There are two main approaches in the exact solution
methods for 0-1 integer programming; they are cutting
plane method and branch-and-bound method. The all
integer method is a variant of the cutting plane method.
The implicit enumeration method is based on the branch-
and-bound method. Both methods partially employ an
efficient linear programming method, i.e., simplex
method in their processes. It is recognized in general that
the implicit enumeration method is the most efficient
among currently available exact solution methods.

On the other hand, the pivot and complement (P&C)
method is an efficient approximate solution method for
finding a near-optimal solution in polynomial time.
Integer constraint is first relaxed in this method to find an
optimal solution in real domain by employing the
simplex method. Then, by repeating the change of bases
(pivot operation) so as to decrease the degree of non-
integer index and by rounding the assignments to
variables into 0 or 1 while allowing the slight increase of
the objective function value, the P&C method finds a
feasible integer solution. In the next step, the P&C
method executes a local search around this feasible integer
solution for finding a better 0-1 integer solution
(complement operation).

For example, the problem illustrated in section 4
and in Figs.3-5 becomes to the following 0-1 integer
programming problem after removing unnecessary

equations because of already détermined variables.

hs + hg 21

hy + h7+hg 21

-hp-hg2-1

-hg-h72-1
where

ha, hs, hg, h7, hg € (0,1},
and the objective function

z=14+ 2hp + 3h§ + hg + 2h7 + 4hg

= minimize.

In this example, together with already determined element
hypothesis hj, a final solution will be obtained as (hj,
hg, h7) with the minimum value 4 of the objective
function.

Hypothetical reasoning systems employing above-
described 0-1 integer programming methods have been
implemented in C language and their performance was
evaluated. Fault diagnosis problems of digital circuits
were used as examples in experiments. The CPU time on
Sun4/370 was measured with respect to several sizes of
the digital circuits. The CPU time here includes the
extraction of relevant knowledge, its simplification,
transformation into inequalities, and 0-1 integer
programming. Table 1 shows the experimental results.

The time expressed as simplification in Table 1 is
the time spent for the extraction of knowledge relevant to
a given goal and its simplification; this is within 0.1 sec
in the used examples and is very fast. Figure 6 depicts
these measurements against the number of possible

Table 1 Experimental performance of hypothetical reasoning
systems employing 0-1 integer programming methods.
(- indicates the cases that a solution was not obtained in
a pre-determined time limit.)

Number of CPU time [sec] Val.ue f’f)
Example Element Objective Function
R el O it 8

o el R e i Ml

iplification

[§)) 15510 0.01 0.02 0.01 0.04 9 9
) 3024 0.02 75.53 9.37 225 14 14
3 45538 0.03 - 1301.04 12.01 19 19
(4) 60—52 0.06 - - 35.77 7 24
5) 7566 0.09 - - 87.57 ? 29
(6) 15—7 0.01 0.01 0.01 0.02 10 11
) 30524 0.02 9.73 40.60 1.63 15 15
(8) 4538 0.04 | 13094.15 8172.21 11.86 20 20
9) 6052 0.05 - - 35.27 ? 25
(1) 15511 0.01 0.02 0.10 0.08 9 9
(12) 30525 0.02 83.75 55.03 1.98 14 15
(13) 4539 0.03 - 8598.74 11.96 19 21
(14) 6053 0.07 - - 50.18 ? 25
(16) 1511 0.01 0.03 0.05 0.12 4 7
a7 3025 0.02 2.56 18.15 2.16 8 15
(18) 4539 0.04 | 185041 1877.5 12.01 12 17
(19) 60—53 0.06 - - 39.67 ? 25

184

CPU time

(sec)
4A e : All Integer Method
10"+ A : Implicit Enumeration
Method
O Pivot and Complement
3 Method
10° [
102 |+ .}
0 A
1 =
g, *
w0l oA
A
1021 y
1

-~
S

.
’

.
.
.
.
¢
o
.
4
’
.
.
1
¢
.
.
’
¢
’
’

¢
.

1 1

>

45 60

Number of possible element
hypotheses

Fig. 6 Inference time (CPU time) of hypothetical reasoning
systems employing 0-1 integer programming methods.

element hypotheses which indicates the scale of
knowledge-base. Since the 0-1 integer programming is
NP-complete problem, the all integer method and the
implicit enumeration method which are exact solution
methods show exponential-time performance against the
scale of knowledge-base, though these methods were
applied after the preprocessing including the extraction of
relevant knowledge, etc.

On the other hand, Table 1 and Fig.6 show that the
pivot and compliment (P&C) method which is an
efficient approximate solution method can find a near-
optimal solution_in polynomial time. The regression
analysis of the experimental data reveals that the CPU
time is approximately 4.7th power of the number of
possible element hypotheses in the knowledge-base. The
obtained solutions coincide with the optimal solutions in
many cases, or are good near-optimal solutions as seen in
the original paper (Ballas 80] and Table 1. (It appears that
the solution by the P&C method for example No.17 in
Table 1 is not good, since its objective function value is
8 whereas the value of the optimal solution is 15. It

becomes clear, however, by a detailed analysis that this
approximate solution is the second best solution in this
case.)

As seen in the above experiments, the pivot and
complement (P&C) method allows a practical
polynomial-time hypothetical reasoning. It is, however,
not necessarily suitable from its algorithm for the
following cases.

* The constraints in 0-1 integer programming is
strong. :
* The optimal real-number solution and the optimal
integersolution are located far away to each other.
In other words, since this method emphasizes the near-
optimality of the solution rather than reliably finding a
feasible solution, there are cases that the method fails to
find a 0-1 solution even if the solution exists. There
may be possibilities of improving its performance by
considering each problem structure particularly in the
hypothetical reasoning problem.

185

6. Conclusions

This paper has presented a polynomial-time hypothetical
reasoning which employs an approximate solution
method of 0-1 integer programming. A preprocessing
including the extraction of restricted knowledge relevant
to a given goal and its simplification is incorporated to
effectively reduce the number of variables of 0-1 integer
programming. Unlike existing probabilistic search
methods such as simulated annealing(SA) and genetic
algorithm(GA), and other local search methods such as
the heuristic repair method [Minton 92], GSAT [Selman
93a, 93b]) and Gu's method based on the unconstrained
nonlinear programming [Gu 93], the salient feature of our
method is the efficient local search arround the optimal
real-domain solution obtained by the efficient simplex
method. A further improvement may be possible if we
take account of a specific knowledge structure of the
hypothetical reasoning.

References

[Balas 65] E. Balas: An Additive Algorithm for Solving
Linear Programs with Zero-One Variables, Opsearch,
Vol.13, pp.517-546 (1965)

[Balas 80) E. Balas and C. Martin: Pivot and
Complement -- A Heuristic for 0-1 Programming,
Management Science, Vol.26, pp.86-96 (1980).

{Bylander 89] T. Bylander, D. Allemang, et al.: Some
Results Concerning the Complexity of Abduction,
Proc. Int'l Conf. on Principles of Knowledge
Representation and Reasoning (KR'89), (1989).

[Charniak 90] E. Charniak and S. Shimony: Probabilistic
Semantics for Cost Based Abduction, Proc. AAAI'90
(1990).

[Chamiak 92] E. Charniak and E. Santos Jr.: Dynamic
MAP Calculation for Abduction, Proc. AAAI'92
(1992).

[Clark 78] K. L. Clark: Negation as Failure, in Logic and
Databases (H. Gallaire and J. Minker (eds.)), Plenum
Press, N.Y., pp.293-322 (1978).

[deKleer 86] J. deKleer: An Assumption-based TMS,
Artifi. Intelli., Vol.28, pp.127-167 (1986).

[Dhar 90} V. Dhar and N. Ranganathan: Integer
Programming vs. Expert Systems: An Experimental
Comparison, Comm. ACM, Vol.33, No.3, pp.323-
336 (1990).

[Dowling 84] W. F. Dowling and J. H. Gallier: Linear-
time Algorithm for Testing the Satisfiability of
Propositional Horn Formulae, Jour. of Logic
Programming, Vol.3, pp.267-284 (1984).

[Garfinkel 72] R. Garfinkel and G. L. Nemhauser: Integer
Programming, Jon Wiley and Sons (1972)

[Goldberg 891 D. E. Goldberg: Genetic Algorithm in
Search, Optimization & Machine Learning, Addison-
Wesley (1989).

[Greenberg 71] H. Greenberg: Integer Programming, Jon
Wiley and Sons (1971)

[Gu 93] J. Gu: Local Search for Satisfiability (SAT)
Problem, IEEE Tran. SMC, Vol.23, No.4, pp.1108-
1129 (1993).

186

[Hooker 88] J. N. Hooker: A Quantitative Approach to
Logic Inference, Decision Support Systems, Vol.4,
No.1, pp.45-69 (1988).

[Ishizuka 90} M. Ishizuka and T. Matsuda: Knowledge
Acquisition Mechanisms for a Logical Knowledge
Base including Hypotheses, Knowledge-Based
Systems, Vol.3, No.2, pp.77-86 (1990).

[Ishizuka 91] M. Ishizuka and F. Ito: Fast Hypothetical
Reasoning System using Inference-Path Network,
Proc. Int'l Conf. on Tools for Al (TAI'91), San Jose
(1991).

[Ishizuka 93] M. Ishizuka and A. Abe: Fast Hypothetical
Reasoning using Analogy on Inference-path
Networks, Proc. Int'l Conf. on Tools with Al
(TAI'93), Boston (1993).

[Ito 91] F. Ito and M. Ishizuka: Fast Hypothetical
Reasoning System using Inference-Path Network (in
Japanese), Jour. Japanese Soc. for Al, Vol.6, No.4,
pp-501-509 (1991).

[Kirkpatrik 83] S. Kirkpatrik, et al.: Optimization by
Simulated Annealing, Science, No0.220, pp.671-681
(1983).

[Kondo 91] A. Kondo, T. Makino and M. Ishizuka: An
Efficient Hypothetical Reasoning System for
Predicate-logic Knowledge-base, Proc. Int'l Conf. on
Tools for Al (TAI'91), San Jose (1991).

[Konno 81] H. Konno: Integer Programming (in
Japanese), Sangyo-Tosho (1986)

[Makino 90] T. Makino and M. Ishizuka: A Hypothetical
Reasoning System with Constraint Handling
Mechanism and its Application to Circuit-Block
Synthesis, Proc. PRICAI'90, Nagoya (1990).

{Minton 92] S. Minton, et. al.: Minimizing Conflicts: a
Heuristic Repair Method for Constraint Satisfaction
and Scheduling Problems, Artif. Intelli., Vol.58,
pp.161-205 (1992).

[Poole 87] D. Poole, R. Aleliunas and R. Goebel:
Theorist: A Logical Reasoning System for Defaults
and Diagnosis, in The Knowledge Frontier: Essays in
The Knowledge Representation (N. J. Cercone and G.
McCalla (eds.)), Springer-Verlag, N.Y. (1987).

[Poole 88] D. Poole: A Logical Framework for Default
Reasoning, Artif. Intelli., Vol.36, pp.27-47 (1988).

[Selman 93a] B. Selman and H. Kautz: An Empirical
Study of Greedy Search for Satisfiability Testing,
Proc. AAAI-93 (1993).

[Selman 93b] B. Selman and H. Kautz: Domain-
Independent Extensions to GSAT: Solving Large
Stractured Satisfiability Problems, Proc. IJCAI-93
(1993).

[Tsuruta 91] S. Tsuruta and M. Ishizuka: A Compiling
Method of Propositional Knowledge Base for
Abductive Generation of Lacked Knowledge (in
Japanese), Jour. Japanese Soc. for Al, Vol.6, No.1,
pp-117-123 (1991).

[Tsuruta 92] S. Tsuruta and M. Ishizuka: A Compiling
Method of Predicate Knowledge Base for Efficient
Abductive Hypothesis Synthesis (in Japanese), Jour.
Japanese Soc. for Al, Vol.7, No.l, pp.130-137
(1992).

