
- ---. "I I.- *,,a

Int. Cod. on Tools for AI
San Jose, CA-Nov. 1991

Fast Hypothetical Reasoning System
using Inference-Path Network

Mitsuru Ishizuka and Fumiaki It0 *
Institute of Industrial Science, University of Tokyo
7-22-1, Roppongi, Minato-ku, Tokyo, 106, Japan

*Presently with Information System Laboratory, Canon Ltd.

Abstract
While it i s a very useful knowledge-processing

framework applicable to many practical problems, the most
crucial problem of logic-based hypothetical reasoning
system is its slow inference speed. This paper describes a
fast hypothetical reasoning system named KICK-
SHOTGAN, which avoids inefficient backtracking by
forming a compiled inference-path network followed by the
forward synthesis of necessary hypothesis combination
along this network. The formation of the inference-path
network is based on a linear-time algorithm for the
satisfiability testing of propositional Horn clauses. This
system differs from ATMS mainly in its total problem
solving nature. That is, it works for the logical problem-
solving framework which yields a solution for a given
goal, whereas the ATMS calculates possible data supported
by hypotheses incrementally in response to the input of a
justification (rule) from a problem solver existing outside
the ATMS. Experimentally, the inference speed of this
fast hypothetical reasoning system is thousands of times
faster than that of existing systems implemented in Prolog.

1. INTRODUCTION
The handling of incomplete knowledge in the

knowledge-base is an important approach for broadening
the capability of the knowledge base [l]. Incomplete
knowledge means here knowledge which is not always true;
more specifically, it means knowledge with exceptions,
knowledge with inconsistency, partially missing
knowledge, over-generalized knowledge, etc. In general, a

crucial problem of this reasoning system, a form of non-
monotonic reasoning system, is its slow inference speed.
An immediate remedy for this problem is to incorporate
heuristic knowledge which plays the role of guiding the
inference. However, it is difficult to cover the whole
problem domain by heuristic knowledge, which causes the
well-known knowledge acquisition problem. Therefore, we
have to develop a fast inference mechanism not relying on
heuristic knowledge from the viewpoint of finding a
solution under the bgically described constraints.

By analyzing the behavior of the hypothetical
reasoning system implemented using the mechanism of
Prolog, we consider that the backtracking caused by the
inconsistency among selected hypotheses is the major
factor of deteriorating the inference speed. Then, we
present a two-phase hypothetical reasoning system [6],
where a goal-directed inference-path network is formed
using the complete knowledge set but excluding
hypotheses in first phase. Hypothesis sets necessary for
proving a given goal are synthesized in the second phase
along this inference-path network, in a forward inference
fashion with no backtracking. The inference-path network
also allows to reduce the number of computationally
expensive hypothesis combination to a minimum. The
formation of the inference-path network is based on a
linear-time algorithm for the satisfiability testing of
propositional Horn formulae [7]. Experiments show that .
this fast hypothetical reasoning system can achieve an
inference speed more than 1,000 times faster than that of
Prolog-based implementation.

non-monotonic reasoning system is required to handle

A logic-based hypothetical reasoning system [2,3],
which can deal with incomplete knowledge as hypothesis,
is a useful framework because of its theoretical basis and
its applicability to practical problems including diagnosis
[2,4] and design [5]. Its formalism has a close connection
with constraint satisfaction problem (CSP). The most

incomplete knowledge in the knowledge-base. 2. LOGIC-BASED HYPOTHETICAL
REASONING SYSTEM
The hypothetical reasoning in this paper is a logic-

based one [2 3 , where knowledge is divided into two
categories, i.e., complete knowledge (Or fact in [2,31) and
hypothesis. Complete knowledge denoted as F is
knowledge which is always and has no possibility of

352
0-81862300-4/91$01.00 @ 1991 IEEE

inconsistency. On the other hand, the hypothesis denoted
as H is incomplete or defeasible knowledge for which
consistency checking is required in the inference process.

The basic behavior of this hypothetical reasoning is
as follows. When a goal (or an observation) G is given,
the system first tries to prove the goal from complete
knowledge. If it failes, then the system selects a subset of
the hypotheses so that the given goal is proved from the
union of complete knowledge and this hypothesis subset.
The selected subset of the hypotheses should be consistent
with complete knowledge, while inconsistency is allowed
in the whole set of the hypotheses. In ordinary logic-based
problem solving, the success or failure of deductive proof
becomes the answer. When the goal includes variables, the
binding (unification) to the variables becomes an answer in
the success case. On the other hand, a selected subset of
hypotheses becomes an answer in the logic-based
hypothetical reasoning system, in which the deductive
inference mechanism is utilized in reverse direction to
generate a solution hypothesis subset. This generative
nature allows model-based problem solving in the areas of
diagnosis, design, etc. When compared with a production
system, this system inherits the good properties of logial
precise semantics.

The structure of the above hypothetical reasoning
system can be summarized to find a solution h of

hS;H (h is a subset of H),
F U h I- G (G can be derived from F Vh), and
F uh 0 (F u h is consistent,

0 : empty clause),

where F, H and G are the complete knowledge, possible
hypotheses and a given goal, respectively. In addition, it is
often required for the solution hypothesis subset h to be a
minimal subset; that is, no subset h' of h satisfies the
above conditions.

This hypothetical reasoning system can be
constructed on first-order predicate logic. We restrict,
however, the knowledge representation to Hom clauses so
that fast inference can be achieved. Furthermore, in this
paper, we only deal with the hypothetical reasoning system
represented in propositional Hom clauses with no variable,
since our main concern here is the fast inference
mechanism. (The representation of first-order predicate
logic with no function can be expressed in propositional
logic in the Herbrand domain.) Since the logical negation
of an atom cannot be expressed in Horn clauses, we
introduce an atom called "inconsistent" to denote
inconsistency among hypotheses, such as,

which says that h l and h2 cannot be coexist in an
environment. This expression is also useful for users to
denote inconsistent relations.

inconsistent : -h l , h2.

3. Problems with the Implementation
using the Inference Mechanism of
Prolog
The logic-based hypothetical reasoning system can be

implemented easily by using the inference mechanism
embedded in Prolog. In this case, the inference proceeds in
a backward fashion starting from a given goal as in Prolog.
This is a goal reduction process in which the system tries
to reduce the goal to empty by adopting available
knowledge. In the first step, a hypothesis-box (h-box)
which stores adopted hypotheses is set to be empty. As
the inference proceeds, the system adopts a new hypothesis
from the hypothesis base when the reduction of the goal or
a derived subgoal can not be extended with using only
complete knowledge and hypotheses existing in the h-box.
This new hypothesis is put into the h-box only when it is
consistent with the hypotheses already existing in the h-
box and complete knowledge. This consistency is checked
by the failure of proving the 'inconsistent' atom using the
adopted hypotheses and complete knowledge. If no

a :- b, d.
b :- e, f.

e :- g, i.
j :- h.

inconsistent :- C, 9.
inconsistent :- d, h.

H j
h.
1.

G

Fig. 1 An example of hypothetical reasoning
on Prolog. (The number attached to the node
indicates the search order, and () shows adopted
hypotheses. In this case. the god 'a' can be proved
by adopting the hypothesis {g,i,d) .)

353

appropriate hypothesis exists, then the backtracking is
invoked to search other remaining reduction branches. In
this case, the adopted hypotheses between the backtracked
tip node and the retumed node are discarded from the h-box.
This inference process is repeated until the goal reduction
succeeds or no available hypothesis exists. If it is
successful, the adopted hypotheses existing in the h-box
become a solution for proving the given goal. (All the
solution hypotheses can be found by a forced backtracking
of all the possible branches.) Figure 1 illustrates this
inference process, where (g, i, d) can be obtained after
backtracking as a solution hypothesis for proving a given
goal 'a'.

This type of simple implementation has a severe
problem of slow inference speed. The inefficiency of the
inference comes from the following causes.
1) Hypothesis adoption and associated consistency checking

is executed even for a branch which eventually fails
due to the lack of appmpriate complete knowledge and
possible hypothesis.

2) Upon the change of adopted hypothesis due to
backtracking, the search of subtrees irrelevant to this
hypothesis change are also executed. (For example, in
Fig. 1 the subtree below the subgoal 'f is searched
every time in spite of the fact that the inference in this
subtree is irrelevant to the hypothesis change in other
nodes. Although this is a general problem in backward
inference with backtracking, the problem is severe in
hypothetical reasoning since the backtracking is
invoked by the inconsistency among the adopted
hypotheses as well.)

3) The same search branch (subtree) may appear more than
once. (This is also a general problem with Prolog. In
Fig.1, the subtree below the subgoal 'b' is searched
twice.)

4) Supersets of the hypothesis set found already as
inconsistent may be searched again. (Since the
adoption of hypothesis depends on the derivation tree
structure, it is not possible to avoid the adoption of
these supersets. In Fig.1, an inconsistent
COmbiMtiOn of hypotheses (c, g) is generated twice.)

5) The consistency checking is expensive since it is
executed by the resolution-type prmf procedure.
Although a part of the abovedescribed problem is due

to the inefficiency of Prolog itself, the problem becomes
severe in hypothetical reasoning since backtracking occures
frequently due to inconsistency among adopted hypotheses.
Therefore, a fmt key point of improving the efficiency of
the hypothetical reasoning is to avoid inefficient
backtracking due to inconsistency among hypotheses. This
can be realized in general by using parallel forward
reasoning. Simple forward reasoning, however, generates
a large number of inference branches or intermediate nodes,

most of which are irrelevant to the proof of a given goal.
Thus it is necessary to identify hypotheses relevant to the
proof of the goal, and then execute inference concerning
only these hypotheses.

The adopted hypotheses are combined at intennediate
nodes, where the inconsistency check and the deletion of
hypothesis sets subsumed by another set are also executed.
This processing is expensive. Thus, a second key point of
improving the efficiency is to reduce expensive hypothesis
combination to a minimal number.

Based on these considerations, we have developed a
fast hypothetical reasoning system named KICK-
SHOTGAN (Knowledge-base handling Lncomplete
Knowledge - by Synthesizing mpotheses through
Generated Lath on Network), in which an inference-path
network plays an important role in achieving fast inference.
All the above-mentioned problems have been solved in this
system.

4. Fast Hypothetical Reasoning using
Inference- Path Network
The purposes of forming a inference-path network are

1) to restrict the forward inference branches only to goal-
directed ones, and 2) to reduce hypothesis combination
processing to a minimum. The formation of this network
is based on a linear-time algorithm for testing the
satisfiability of propositional Hom clauses [7]. In other
words, this linear-time algorithm is employed as a pre-
processing step for reducing the computational cost of
expensive hypothesis combination processing.

Rule-type fypotheses are allowed in the KICK-
SHOTGAN. They are, however, transformed as a pre-
processing into newly introduced single-atom hypotheses
and modified complete knowledge. For example, a rule-
type hypothesis "a:-b." is transformed by introducing a new
atom "c" into,

complete knowlegde a:-b,c. , and
hypothesis C.

According to this pre-processing, all the hypotheses
become unit clauses (single atoms), which positions in the
inference network become leaf nodes.

The KICK-SHOTGAN consists of the following two
phases.

4.1 Inference-Path Network Formation
Phase (Phase-1)

In this phase-1, the system first constracts a goal-
directed inference-path network using only complete
knowledge excluding hypotheses, which are afterward
associated with the leaf nodes of the network. Since the
process of this phase-1 is based on the application of the
linear-time algorithm for testing the satisfiability of
propositional Hom clauses [7], we describe the process

354

according to the method of [7].
The nodes of the network correspond to the atoms

appearing in complete knowledge. The same atom
appearing in different clauses is treated as one node;
therefore, the inefficiency of recalculating the same subtree
in the Prolog-based implementation can be avoided. The
merging of the same atom into one node in the inference
network is possible only in the propositional-logic case
with no variable.

We assume that the goal is represented, for example,
as I

where the goal is satisfied if a, b and c are true. In addition
to this 'goal' node and the 'inconsistent' node, we introduce
an additional 'true' node so that a uniform treatment can be
possible for all knowledge sentences. The directed links
between the nodes are set up depending on the types of
clauses as follows.

Rule-type clause

goal : - U , b, c.

A directed link is established from each atom in the
body part of the clause to the atom in its head part.
A unique number is assigned to the links
corresponding to the same clause. The links with
the same number represent an AND relation. As the
goal clause can be regarded as a rule-type clause, this
type of directed link is established for the goal clause
as well.

Fact clause
The fact clause of complete knowledge is a unit
clause declaring a fact which is true all the time. A
directed link is established from the 'true' node to the
node corresponding to the atom of the fact clause.

A directed link is established from each atom in the
body part of the clause with the head of
'inconsistent' to 'inconsistent' node. A unique
number is assigned to the links corresponding to the
same clause.

Clause with 'inconsistent' head.

The following initial states are assigned to the nodes;
"true" state to 'true' node,
"true-by-hypothesis (true-by-h, in short)" state to
hypothesis node,

"false" state to other nodes.
As described later, the node with the "true-by-h" state holds
a hypothesis-box (h-box) to store the sets of hypotheses
(called environments in ATMS [8]) necessary for
supporting its "true-by-h" state. ("he h-box in our system
corresponds to label in ATMS.) The hypothesis set is
represented intemally in a computer as a bit-vector as in the
ATMS [8] for efficient handling of hypothesis combination
and consistency checking.

If all the tail nodes of the same numbered directed

premise r

conclusion C

a :- c,b.
a 1- c,d.

c :- d.
c :- b.

i) investigate 'cl.

2 1 27 ---b
iii) 'c' becomes "true" and

its propagation occures.

ii) investigate 'd' and "true" is
propagated through links.

iv) 'a' becomes "true"
after investigating b. - link which has not been

+ - - - - - link which is already
0 falsenode investigated yet.

0 truenode investigated.
4 - - link through Which

"true" propagates.

Fig. 2 An example of goal-directed inference
by "true" state propagation on network.

link are in the "true" state, then the "true" state can be
propagated to the tip node by changing its state to "true".
This propagation is repeated until no further "true" state
can be generated. If the "true" state is propagated to the
'inconsistent' node, then it tums out that the inconsistency
exists in the complete knowledge F; this situation should
be avoided by deleting inappropriate knowledge. If the
'goal' node does not have "true" state at this moment, it can
not be satisfied by only using complete knowledge; and
consequently the adoption of consistent hypotheses is
required.

The propagation of the "true" state to a certain node
can be executed by a goal-directed search as illustrated in
Fig. 2, where the 'true' node is omitted by setting the
initial state of the fact clause node (d in this case) to "me".
A compiled inference-path network for a given goal can be
formed by using this type of goal-directed propagation of
the node state. In addition to the "true" state propagation,
the "true-by-h" state is also propagated if all the tail nodes

355

F

(i) initial network (ii) compiled inference-path
network for goal 'a'.

Fig.3 An example of inference-path network
formation.

of the same numbered directed links are in the 'true-by-h' or
'true' state. At this moment, computational y expensive
hypothesis propagation and combination is not executed
and postponed to phase-2. The "true" state assignment can
overwrite the "true-by-h" state. Starting from the goal
node, the system can determine the state of the connected
nodes in a backward inference manner.

The hypothesis which contributes to prove the goal
is only synthesized from the nodes with "true-by-h" state.
Only these nodes should be considered in synthesizing the
necessary hypotheses in the phase-2; thus, the system
extracts this portion from the network. A pair of two tip
and tail nodes is merged into one node if the tip node has
only one incoming link and the tail node has only one
outgoing link. The inference-path network for the goal is
thus formed. Figure 3 shows the inference-path network
formation for the same example as in Fig. 1. In Fig. 3, 'J'
node is removed since it is irrelevant to the goal, If ' node
is also removed since it has 'true' state which does not have
any influence on the propagation of the hypothesis. Also,
'e' and 'b' nodes are merged into one node. The inference-
path network allows the minimization of computationally
expensive hypothesis combination through the network.

4.2 Hypothesis Synthesis Phase
(Phase-2)

The node with the "true-by-h" state becomes true
supported by hypothesis when there exists more than one
hypothesis set in its h-box. In the beginning, all the h-
boxes are set to empty. A simple parallel forward inference
without backtracking can be executed by placing
hypotheses into their corresponding leaf nodes in the
inference-path network and by propagating them along the

directed links. The union or product of the hypothesis sets
of lower nodes is synthesized depending on OR or AND
relation at upper nodes.

The synthesized hypothesis set is subjected to a
consistency check. As in ATMS [8], the system checks
whether or not the synthesized hypothesis set is a superset
of the inconsistent hypothesis sets (called nogood sets in
ATMS) by comparing their bit-vectors. A minimality
check is also conducted to remove redundant hypothesis
sets. By comparing the bit-vectors of the hypothesis sets
existing in the same node, the system removes the
redundant hypothesis sets subsumed by another hypothesis
set. After theses checks, the consistent and non-redundant
synthesized set is placed into the h-box.

The simple execution of consistency and minimality
checks described above is not necessarily efficient, since
these checks are executed every time against the
inconsistent hypothesis sets and already synthesized
hypothesis sets. Thus, the notion of stage and redundancy-
marker has been introduced in KICK-SHOTGAN to
improve the efficiency of these checks.

Each stage S is characterized by a corresponding
element hypothesis hs. The stage starts from putting one
hypothesis into the h-box of the corresponding leaf node.
This hypothesis is propagated through the directed links as
long as possible. If further propagation becomes
impossible, then one stage ends. Only one hypothesis is
inserted into the network's leaf node in one stage.
Accordingly, hypothesis sets synthesized in this stage S
always include the element hypothesis hs.

The hypothesis sets synthesized before this stage S
never include this element hypothesis hs. Therefore, these
hypothesis sets can never be redundant to the new

356

initial network I,

compiled inference-path
hypotheses

hypotheses hp*sisfircr
inconsistent

synthesizer hypotheses
cmgiptcncy checker

Phm2 ' ndundancv checker

[solution hypotheses I-
hypothetical reasoning mechanism

c-

Fig.4 System configuration of KICK-SHOTGAN.

hypothesis set synthesized in the stage S. Accordingly, the
minimality check can be omitted for the case of the above-
mentioned relation.

The inconsistent hypothesis sets are found when the
hypothesis sets put in the h-box of the 'inconsistent' node.
The system removes these sets and these supersets from all
the h-boxes except one of the 'inconsistent' node.. An
inconsistent hypothesis set found at a stage S always
contains an element hypothesis hs characterizing the stage
S. The hypothesis sets which should be removed from the
h-boxes also contain this element hypothesis hs, since they
are the supersets of the inconsistent hypothesis set found at
the stage S. Therefore, the inconsistency check with
respect to the inconsistent hypothesis set found at a stage S
can be restricted only to the hypothesis sets synthesized at
the same stage S; no other checks are necessary.

In the present system, the sequence of hypothesis
placement into the network is determined according to the
order of hypothesis description in the hypothesis base.
There may be a more efficient method for this sequence
determination.

A redundancy marker has been introduced after a study
about the case that redundant hypothesis sets are generated.
The redundant hypothesis set is generated only when a
component of this set is used at a lower node to synthesize
more than two hypothesis sets. This case occurs only at a
node having more than two outgoing links. The
hypothesis set which is synthesized via nodes having only
one outgoing link never make other hypothesis sets
redundant, nor can it be made redundant by other sets. A
redundancy marker IND (abbreviation of independent) is

assigned to this type of hypothesis set. The hypothesis set
which is synthesized via nodes having more than two
outgoing links has the possibility of redundant relation
with another set. A redundancy marker DEP (abbreviation
of dependent) is set to this type of hypothesis sets. The
hypothesis set synthesized from the two hypothesis set
having DEP and IND markers may become redundant with
respect to another set, but never make other hypothesis sets
redundant. A redundancy marker S U P (abbreviation of
superset) is set to this type of hypothesis set. These
redundancy markers IND, DEP and SUP are assigned to the
hypothesis sets when they are synthesized. The system can
reduce the cost of the minimality check by using the
information of these redundancy markers attached to the
hypothesis sets.

Although a part of the behavior in phase-2 is similar
to the label updating in the ATMS [81, the system of this
paper differs from the ATMS in that 1) the synthesis and
propagation of the hypothesis sets are guided by the
compiled inference-path network, and 2) the efficient
checking of the consistency and minimality of the
hypothesis set is achieved by introducing the stage and
three redundancy markers.

Figure 4 shows the system structure of KICK-
SHOTGAN incorporating these inference mechanisms.

5. EVALUATION OF INFERENCE
SPEED
The speed improvement of KICK-SHOTGAN has

been evaluated by using test examples. The examples here
are taken from the fault diagnosis problems of logic

357

I
/ I

P I
1 x 1

x Prolog-based
I

/ 1 Implementation

1 1 OKICK-SHOTGAN

1 1

0 < 20 40 60 80

No. of Hypotheses

Fig.5 Inference speed (CPU time on Sun4)
V.S. number of possible hypotheses
in fault diagnosis problems.

circuits, where possible faults of each gate are described as
hypotheses. By changing the scale of logic circuits, the
different sizes of hypothetical reasoning problems are
generated. The inference speeds have been measured in
CPU time running on SUN41260. The Prolog-based
version of the hypothetical reasoning has been
implemented in Sicstus Prolog. After the compilation of
this Prolog program, its execution program is generated.
The KICK-SHOTGAN has been implemented in C. After
compilation by gcc compiler on SUN4, the execution
program was obtained.

Figure 5 illustrates the measured inference speeds for
finding all the possible solutions. In an inference mode of
finding a single solution, a faster inference speed can be
obtained, depending on the structure of search tree and the
location of a solution in the tree. The measurements for
evaluation have been made for the cases of finding all the
solutions, since they reflect the effect of search space

pruning well. The KICK-SHOTGAN can achieve the
speed more than 1,OOO times faster than that of the Prolog-
base implementation in several evaluation tests including
the examples shown in Fig. 5.

6 . CONCLUSION
A fast logic-based hypothetical reasoning system has

been presented. A large improvement (more than 1,OOO
times faster) of inference speed has been achieved by
employing the inference-path network. Key points for this
achievement are the avoidance of backtracking due to the
inconsistency among adopted hypotheses and the reduction
of the number of computationally expensive hypothesis
syntheses. An additional improvement has been achieved
by introducing the stage concept in the hypothesis adoption
and the redundancy marker.

This system differs from the ATMS [8] mainly in its
total problem solving framework. That is, this system
works to yield a solution for a given goal based on a
logical problem solving framework. In other words, this
systems searches a solution by satisfying the logically
described constraints. On the other hand, the ATMS
calculates possible data supported by hypotheses in
response to the input of a justification (rule) from a
problem solver (production system in most cases) existing
outside the ATMS. In the ATMS, it is left to users to
guide the inference direction to reach a goal by writing
appropriate rules.

Although a large improvement of the inference speed
has been achieved in this system, the computational cost
still remains exponential order with respect to the number
of possible hypotheses as seen in the logarithmic scale of
vertical axis in Fig. 5. The computational complexity of
non-monotonic reasoning including hypothetical reasoning
has been proved as NP-complete or NP-hard [9,10]. Thus,
the wall of exponential computational cost cannot be
overcome as long as we stay in search methods in ordinary
sense. We have found an efficient mechanism of using
analogy to overcome this speed limit in the sense of
average inference time (not worst-case time) [ll]. The
inference-path network introduced in this paper plays an
important role also in realizing an efficient analogical
inference mechanism.

Although only propositional Horn clauses are
permitted as knowledge representation in this paper, a
similar concept for fast inference can be applicable to the
knowledge represented in predicate Horn clauses with
variables [12]. However, in the case of predicate clauses,
literals with the same predicate and the same constant
arguments cannot be treated as one node in the inference-
path network if they have variables as arguments, while the
same atom appearing in different clauses are merged into
one node in the case of propositional clauses.

358

Acknowledgments
The authors are grateful to Prof. Randy Goebel

(Univ. of Alberta) for his disscussion and coments on this
paper. This work was supported by the Grant-in-Aids of
Ministry of Education, No.0245 152(B) and No.02215105
(Special Area on Intelligent Info. and Communications).

References

1

M. Ishizuka, "An Approach to Next-generation
Knowledge-base Systems by Handling Incomplete
Knowledge (in Japanese)", Jour. JSAI, Vol. 3, No. 5,

D. Poole, R. Aleliunas and R. Goebel, "Theorist : A
Logical Reasoning System for Defaults and
Diagnosis", in The Knowledge Frontier : Essays in the
Knowledge Representation, (NJ. Cercone and
C. McCalla (Eds.)), Springer-Verlag, N.Y. (1987).
D. Poole, "A Logical Framwork for Default
Reasoning', Artif. Intelli., Vo1.36, pp.27-47 (1988).
M. Ishizuka and T. Matsuda, "Knowledge Acquisition
Mechanisms for a Logical Knowledge Base including
Hypotheses", Knowledge-Based Systems, Vol. 3, No.

T. Makino and M. Ishizuka, "A Hypothetical
Reasoning System with Constraint Handling
Mechanism and its Application to Circuit-Block
Synthesis", Proc. PRICAIPO, pp. 122-127, Nagoya

pp. 552-562 (1988).

2, pp. 77-86 (1990).

(1990).

[6] F. It0 and M. Ishizuka, "A Fast Hypothetical
Reasoning System utilizing Logical Constraints (in
Japanese)", Tech Report of AI Research Group, IPS of
Japan, AI70-5 (1990).

Algorithm for Testing the Satisfiability of Proposi-
tional Horn Formulae?, Jour. of Logic Program., Vol.

[7] W.F. Dowling and J.H. Gallier, "Linear-time

3, pp. 267-284 (1984).
[8] J. deKleer, "An Assumption-based TMS", Artif,

191 H. Kautz and B. Selman, "Hard Problems for Simple
Intelli., Vol. 28, pp. 127-162 (1986).

Default Logics", Proc. of 1st Int'l Conf. on Principles
of Knowledge Representation and Reasoning (KR'89).
(1989).

[IO] T. Bylander, D. Allemang, et. al., "Some Results
Concerning the Complexity of Abduction", ibid.

[1 I] A. Abe and M. Ishizuka, "Fast Hypothetical Reason-
ing System using Analogy on Inference-path Network
(in Japanese)", Tech Report of AI Research Group,
IPS of Japan, AI72-2 (1990).

[121 A. Kondo and M. Ishizuka, "An Efficient Hypo-
thetical Reasoning System for Knowledge-base
represented in Predicate Logic", ibid, AI73-3 (1990),
Also Proc. 3rd TAI, San Jose (1991).

359

