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Abstract 
While it i s  a very useful knowledge-processing 

framework applicable to many practical problems, the most 
crucial problem of logic-based hypothetical reasoning 
system is its slow inference speed. This paper describes a 
fast hypothetical reasoning system named KICK- 
SHOTGAN, which avoids inefficient backtracking by 
forming a compiled inference-path network followed by the 
forward synthesis of necessary hypothesis combination 
along this network. The formation of the inference-path 
network is based on a linear-time algorithm for the 
satisfiability testing of propositional Horn clauses. This 
system differs from ATMS mainly in its total problem 
solving nature. That is, it works for the logical problem- 
solving framework which yields a solution for a given 
goal, whereas the ATMS calculates possible data supported 
by hypotheses incrementally in response to the input of a 
justification (rule) from a problem solver existing outside 
the ATMS. Experimentally, the inference speed of this 
fast hypothetical reasoning system is thousands of times 
faster than that of existing systems implemented in Prolog. 

1. INTRODUCTION 
The handling of incomplete knowledge in the 

knowledge-base is an important approach for broadening 
the capability of the knowledge base [l]. Incomplete 
knowledge means here knowledge which is not always true; 
more specifically, it means knowledge with exceptions, 
knowledge with inconsistency, partially missing 
knowledge, over-generalized knowledge, etc. In general, a 

crucial problem of this reasoning system, a form of non- 
monotonic reasoning system, is its slow inference speed. 
An immediate remedy for this problem is to incorporate 
heuristic knowledge which plays the role of guiding the 
inference. However, it is difficult to cover the whole 
problem domain by heuristic knowledge, which causes the 
well-known knowledge acquisition problem. Therefore, we 
have to develop a fast inference mechanism not relying on 
heuristic knowledge from the viewpoint of finding a 
solution under the bgically described constraints. 

By analyzing the behavior of the hypothetical 
reasoning system implemented using the mechanism of 
Prolog, we consider that the backtracking caused by the 
inconsistency among selected hypotheses is the major 
factor of deteriorating the inference speed. Then, we 
present a two-phase hypothetical reasoning system [6], 
where a goal-directed inference-path network is formed 
using the complete knowledge set but excluding 
hypotheses in first phase. Hypothesis sets necessary for 
proving a given goal are synthesized in the second phase 
along this inference-path network, in a forward inference 
fashion with no backtracking. The inference-path network 
also allows to reduce the number of computationally 
expensive hypothesis combination to a minimum. The 
formation of the inference-path network is based on a 
linear-time algorithm for the satisfiability testing of 
propositional Horn formulae [7]. Experiments show that . 
this fast hypothetical reasoning system can achieve an 
inference speed more than 1,000 times faster than that of 
Prolog-based implementation. 

non-monotonic reasoning system is required to handle 

A logic-based hypothetical reasoning system [2,3], 
which can deal with incomplete knowledge as hypothesis, 
is a useful framework because of its theoretical basis and 
its applicability to practical problems including diagnosis 
[2,4] and design [5].  Its formalism has a close connection 
with constraint satisfaction problem (CSP). The most 

incomplete knowledge in the knowledge-base. 2. LOGIC-BASED HYPOTHETICAL 
REASONING SYSTEM 
The hypothetical reasoning in this paper is a logic- 

based one [ 2 3 ,  where knowledge is divided into two 
categories, i.e., complete knowledge (Or fact in [2,31) and 
hypothesis. Complete knowledge denoted as F is 
knowledge which is always and has no possibility of 
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inconsistency. On the other hand, the hypothesis denoted 
as H is incomplete or defeasible knowledge for which 
consistency checking is required in the inference process. 

The basic behavior of this hypothetical reasoning is 
as follows. When a goal (or an observation) G is given, 
the system first tries to prove the goal from complete 
knowledge. If it failes, then the system selects a subset of 
the hypotheses so that the given goal is proved from the 
union of complete knowledge and this hypothesis subset. 
The selected subset of the hypotheses should be consistent 
with complete knowledge, while inconsistency is allowed 
in the whole set of the hypotheses. In ordinary logic-based 
problem solving, the success or failure of deductive proof 
becomes the answer. When the goal includes variables, the 
binding (unification) to the variables becomes an answer in 
the success case. On the other hand, a selected subset of 
hypotheses becomes an answer in the logic-based 
hypothetical reasoning system, in which the deductive 
inference mechanism is utilized in reverse direction to 
generate a solution hypothesis subset. This generative 
nature allows model-based problem solving in the areas of 
diagnosis, design, etc. When compared with a production 
system, this system inherits the good properties of logial 
precise semantics. 

The structure of the above hypothetical reasoning 
system can be summarized to find a solution h of 

hS;H (h is a subset of H), 
F U h I- G (G can be derived from F Vh), and 
F uh 0 (F u h is consistent, 

0 : empty clause), 

where F, H and G are the complete knowledge, possible 
hypotheses and a given goal, respectively. In addition, it is 
often required for the solution hypothesis subset h to be a 
minimal subset; that is, no subset h' of h satisfies the 
above conditions. 

This hypothetical reasoning system can be 
constructed on first-order predicate logic. We restrict, 
however, the knowledge representation to Hom clauses so 
that fast inference can be achieved. Furthermore, in this 
paper, we only deal with the hypothetical reasoning system 
represented in propositional Hom clauses with no variable, 
since our main concern here is the fast inference 
mechanism. (The representation of first-order predicate 
logic with no function can be expressed in propositional 
logic in the Herbrand domain.) Since the logical negation 
of an atom cannot be expressed in Horn clauses, we 
introduce an atom called "inconsistent" to denote 
inconsistency among hypotheses, such as, 

which says that h l  and h2 cannot be coexist in an 
environment. This expression is also useful for users to 
denote inconsistent relations. 

inconsistent : -h l ,  h2. 

3. Problems with the Implementation 
using the Inference Mechanism of 
Prolog 
The logic-based hypothetical reasoning system can be 

implemented easily by using the inference mechanism 
embedded in Prolog. In this case, the inference proceeds in 
a backward fashion starting from a given goal as in Prolog. 
This is a goal reduction process in which the system tries 
to reduce the goal to empty by adopting available 
knowledge. In the first step, a hypothesis-box (h-box) 
which stores adopted hypotheses is set to be empty. As 
the inference proceeds, the system adopts a new hypothesis 
from the hypothesis base when the reduction of the goal or 
a derived subgoal can not be extended with using only 
complete knowledge and hypotheses existing in the h-box. 
This new hypothesis is put into the h-box only when it is 
consistent with the hypotheses already existing in the h- 
box and complete knowledge. This consistency is checked 
by the failure of proving the 'inconsistent' atom using the 
adopted hypotheses and complete knowledge. If no 

a :- b, d. 
b :- e, f. 

e :- g, i. 
j :- h. 

inconsistent :- C, 9. 
inconsistent :- d, h. 

H j 
h. 
1. 

G 

Fig. 1 An example of hypothetical reasoning 
on Prolog. (The number attached to the node 
indicates the search order, and ( ) shows adopted 
hypotheses. In this case. the god 'a' can be proved 
by adopting the hypothesis {g,i,d) .) 
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appropriate hypothesis exists, then the backtracking is 
invoked to search other remaining reduction branches. In 
this case, the adopted hypotheses between the backtracked 
tip node and the retumed node are discarded from the h-box. 
This inference process is repeated until the goal reduction 
succeeds or no available hypothesis exists. If it is 
successful, the adopted hypotheses existing in the h-box 
become a solution for proving the given goal. (All the 
solution hypotheses can be found by a forced backtracking 
of all the possible branches.) Figure 1 illustrates this 
inference process, where (g, i, d)  can be obtained after 
backtracking as a solution hypothesis for proving a given 
goal 'a'. 

This type of simple implementation has a severe 
problem of slow inference speed. The inefficiency of the 
inference comes from the following causes. 
1) Hypothesis adoption and associated consistency checking 

is executed even for a branch which eventually fails 
due to the lack of appmpriate complete knowledge and 
possible hypothesis. 

2) Upon the change of adopted hypothesis due to 
backtracking, the search of subtrees irrelevant to this 
hypothesis change are also executed. (For example, in 
Fig. 1 the subtree below the subgoal 'f is searched 
every time in spite of the fact that the inference in this 
subtree is irrelevant to the hypothesis change in other 
nodes. Although this is a general problem in backward 
inference with backtracking, the problem is severe in 
hypothetical reasoning since the backtracking is 
invoked by the inconsistency among the adopted 
hypotheses as well.) 

3) The same search branch (subtree) may appear more than 
once. (This is also a general problem with Prolog. In 
Fig.1, the subtree below the subgoal 'b' is searched 
twice.) 

4) Supersets of the hypothesis set found already as 
inconsistent may be searched again. (Since the 
adoption of hypothesis depends on the derivation tree 
structure, it is not possible to avoid the adoption of 
these supersets. In Fig.1, an inconsistent 
COmbiMtiOn of hypotheses (c, g) is generated twice.) 

5)  The consistency checking is expensive since it is 
executed by the resolution-type prmf procedure. 
Although a part of the abovedescribed problem is due 

to the inefficiency of Prolog itself, the problem becomes 
severe in hypothetical reasoning since backtracking occures 
frequently due to inconsistency among adopted hypotheses. 
Therefore, a fmt key point of improving the efficiency of 
the hypothetical reasoning is to avoid inefficient 
backtracking due to inconsistency among hypotheses. This 
can be realized in general by using parallel forward 
reasoning. Simple forward reasoning, however, generates 
a large number of inference branches or intermediate nodes, 

most of which are irrelevant to the proof of a given goal. 
Thus it is necessary to identify hypotheses relevant to the 
proof of the goal, and then execute inference concerning 
only these hypotheses. 

The adopted hypotheses are combined at intennediate 
nodes, where the inconsistency check and the deletion of 
hypothesis sets subsumed by another set are also executed. 
This processing is expensive. Thus, a second key point of 
improving the efficiency is to reduce expensive hypothesis 
combination to a minimal number. 

Based on these considerations, we have developed a 
fast hypothetical reasoning system named KICK- 
SHOTGAN (Knowledge-base handling Lncomplete 
Knowledge - by Synthesizing mpotheses through 
Generated Lath on Network), in which an inference-path 
network plays an important role in achieving fast inference. 
All the above-mentioned problems have been solved in this 
system. 

4. Fast Hypothetical Reasoning using 
Inference- Path Network 
The purposes of forming a inference-path network are 

1) to restrict the forward inference branches only to goal- 
directed ones, and 2) to reduce hypothesis combination 
processing to a minimum. The formation of this network 
is based on a linear-time algorithm for testing the 
satisfiability of propositional Hom clauses [7]. In other 
words, this linear-time algorithm is employed as a pre- 
processing step for reducing the computational cost of 
expensive hypothesis combination processing. 

Rule-type fypotheses are allowed in the KICK- 
SHOTGAN. They are, however, transformed as a pre- 
processing into newly introduced single-atom hypotheses 
and modified complete knowledge. For example, a rule- 
type hypothesis "a:-b." is transformed by introducing a new 
atom "c" into, 

complete knowlegde a:-b,c. , and 
hypothesis C.  

According to this pre-processing, all the hypotheses 
become unit clauses (single atoms), which positions in the 
inference network become leaf nodes. 

The KICK-SHOTGAN consists of the following two 
phases. 

4.1 Inference-Path Network Formation 
Phase (Phase-1) 

In this phase-1, the system first constracts a goal- 
directed inference-path network using only complete 
knowledge excluding hypotheses, which are afterward 
associated with the leaf nodes of the network. Since the 
process of this phase-1 is based on the application of the 
linear-time algorithm for testing the satisfiability of 
propositional Hom clauses [7], we describe the process 
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according to the method of [7]. 
The nodes of the network correspond to the atoms 

appearing in complete knowledge. The same atom 
appearing in different clauses is treated as one node; 
therefore, the inefficiency of recalculating the same subtree 
in the Prolog-based implementation can be avoided. The 
merging of the same atom into one node in the inference 
network is possible only in the propositional-logic case 
with no variable. 

We assume that the goal is represented, for example, 
as I 

where the goal is satisfied if a, b and c are true. In addition 
to this 'goal' node and the 'inconsistent' node, we introduce 
an additional 'true' node so that a uniform treatment can be 
possible for all knowledge sentences. The directed links 
between the nodes are set up depending on the types of 
clauses as follows. 

Rule-type clause 

goal : - U ,  b, c. 

A directed link is established from each atom in the 
body part of the clause to the atom in its head part. 
A unique number is assigned to the links 
corresponding to the same clause. The links with 
the same number represent an AND relation. As the 
goal clause can be regarded as a rule-type clause, this 
type of directed link is established for the goal clause 
as well. 

Fact clause 
The fact clause of complete knowledge is a unit 
clause declaring a fact which is true all the time. A 
directed link is established from the 'true' node to the 
node corresponding to the atom of the fact clause. 

A directed link is established from each atom in the 
body part of the clause with the head of 
'inconsistent' to 'inconsistent' node. A unique 
number is assigned to the links corresponding to the 
same clause. 

Clause with 'inconsistent' head. 

The following initial states are assigned to the nodes; 
"true" state to 'true' node, 
"true-by-hypothesis (true-by-h, in short)" state to 
hypothesis node, 

"false" state to other nodes. 
As described later, the node with the "true-by-h" state holds 
a hypothesis-box (h-box) to store the sets of hypotheses 
(called environments in ATMS [8]) necessary for 
supporting its "true-by-h" state. ("he h-box in our system 
corresponds to label in ATMS.) The hypothesis set is 
represented intemally in a computer as a bit-vector as in the 
ATMS [8] for efficient handling of hypothesis combination 
and consistency checking. 

If all the tail nodes of the same numbered directed 

premise r 

conclusion C 

a :- c,b. 
a 1- c,d. 

c :- d. 
c :- b. 

i) investigate 'cl. 

2 1  27 ---b 
iii) 'c' becomes "true" and 

its propagation occures. 

ii) investigate 'd' and "true" is 
propagated through links. 

iv) 'a' becomes "true" 
after investigating b. - link which has not been 

+ - - - - - link which is already 
0 falsenode investigated yet. 

0 truenode investigated. 
4 - - link through Which 

"true" propagates. 

Fig. 2 An example of goal-directed inference 
by "true" state propagation on network. 

link are in the "true" state, then the "true" state can be 
propagated to the tip node by changing its state to "true". 
This propagation is repeated until no further "true" state 
can be generated. If the "true" state is propagated to the 
'inconsistent' node, then it tums out that the inconsistency 
exists in the complete knowledge F; this situation should 
be avoided by deleting inappropriate knowledge. If the 
'goal' node does not have "true" state at this moment, it can 
not be satisfied by only using complete knowledge; and 
consequently the adoption of consistent hypotheses is 
required. 

The propagation of the "true" state to a certain node 
can be executed by a goal-directed search as illustrated in 
Fig. 2, where the 'true' node is omitted by setting the 
initial state of the fact clause node (d in this case) to "me". 
A compiled inference-path network for a given goal can be 
formed by using this type of goal-directed propagation of 
the node state. In addition to the "true" state propagation, 
the "true-by-h" state is also propagated if all the tail nodes 
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F 

(i) initial network (ii) compiled inference-path 
network for goal 'a'. 

Fig.3 An example of inference-path network 
formation. 

of the same numbered directed links are in the 'true-by-h' or 
'true' state. At this moment, computational y expensive 
hypothesis propagation and combination is not executed 
and postponed to phase-2. The "true" state assignment can 
overwrite the "true-by-h" state. Starting from the goal 
node, the system can determine the state of the connected 
nodes in a backward inference manner. 

The hypothesis which contributes to prove the goal 
is only synthesized from the nodes with "true-by-h" state. 
Only these nodes should be considered in synthesizing the 
necessary hypotheses in the phase-2; thus, the system 
extracts this portion from the network. A pair of two tip 
and tail nodes is merged into one node if the tip node has 
only one incoming link and the tail node has only one 
outgoing link. The inference-path network for the goal is 
thus formed. Figure 3 shows the inference-path network 
formation for the same example as in Fig. 1. In Fig. 3, 'J' 
node is removed since it is irrelevant to the goal, If ' node 
is also removed since it has 'true' state which does not have 
any influence on the propagation of the hypothesis. Also, 
'e' and 'b' nodes are merged into one node. The inference- 
path network allows the minimization of computationally 
expensive hypothesis combination through the network. 

4.2 Hypothesis Synthesis Phase 
(Phase-2) 

The node with the "true-by-h" state becomes true 
supported by hypothesis when there exists more than one 
hypothesis set in its h-box. In the beginning, all the h- 
boxes are set to empty. A simple parallel forward inference 
without backtracking can be executed by placing 
hypotheses into their corresponding leaf nodes in the 
inference-path network and by propagating them along the 

directed links. The union or product of the hypothesis sets 
of lower nodes is synthesized depending on OR or AND 
relation at upper nodes. 

The synthesized hypothesis set is subjected to a 
consistency check. As in ATMS [8], the system checks 
whether or not the synthesized hypothesis set is a superset 
of the inconsistent hypothesis sets (called nogood sets in 
ATMS) by comparing their bit-vectors. A minimality 
check is also conducted to remove redundant hypothesis 
sets. By comparing the bit-vectors of the hypothesis sets 
existing in the same node, the system removes the 
redundant hypothesis sets subsumed by another hypothesis 
set. After theses checks, the consistent and non-redundant 
synthesized set is placed into the h-box. 

The simple execution of consistency and minimality 
checks described above is not necessarily efficient, since 
these checks are executed every time against the 
inconsistent hypothesis sets and already synthesized 
hypothesis sets. Thus, the notion of stage and redundancy- 
marker has been introduced in KICK-SHOTGAN to 
improve the efficiency of these checks. 

Each stage S is characterized by a corresponding 
element hypothesis hs. The stage starts from putting one 
hypothesis into the h-box of the corresponding leaf node. 
This hypothesis is propagated through the directed links as 
long as possible. If further propagation becomes 
impossible, then one stage ends. Only one hypothesis is 
inserted into the network's leaf node in one stage. 
Accordingly, hypothesis sets synthesized in this stage S 
always include the element hypothesis hs. 

The hypothesis sets synthesized before this stage S 
never include this element hypothesis hs. Therefore, these 
hypothesis sets can never be redundant to the new 
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initial network I, 

compiled inference-path 
hypotheses 

hypotheses hp*sisfircr 
inconsistent 

synthesizer hypotheses 
cmgiptcncy checker 

Phm2 ' ndundancv checker 

[ solution hypotheses I- 
hypothetical reasoning mechanism 

c- 

Fig.4 System configuration of KICK-SHOTGAN. 

hypothesis set synthesized in the stage S. Accordingly, the 
minimality check can be omitted for the case of the above- 
mentioned relation. 

The inconsistent hypothesis sets are found when the 
hypothesis sets put in the h-box of the 'inconsistent' node. 
The system removes these sets and these supersets from all 
the h-boxes except one of the 'inconsistent' node.. An 
inconsistent hypothesis set found at a stage S always 
contains an element hypothesis hs characterizing the stage 
S. The hypothesis sets which should be removed from the 
h-boxes also contain this element hypothesis hs, since they 
are the supersets of the inconsistent hypothesis set found at 
the stage S. Therefore, the inconsistency check with 
respect to the inconsistent hypothesis set found at a stage S 
can be restricted only to the hypothesis sets synthesized at 
the same stage S; no other checks are necessary. 

In the present system, the sequence of hypothesis 
placement into the network is determined according to the 
order of hypothesis description in the hypothesis base. 
There may be a more efficient method for this sequence 
determination. 

A redundancy marker has been introduced after a study 
about the case that redundant hypothesis sets are generated. 
The redundant hypothesis set is generated only when a 
component of this set is used at a lower node to synthesize 
more than two hypothesis sets. This case occurs only at a 
node having more than two outgoing links. The 
hypothesis set which is synthesized via nodes having only 
one outgoing link never make other hypothesis sets 
redundant, nor can it be made redundant by other sets. A 
redundancy marker IND (abbreviation of independent) is 

assigned to this type of hypothesis set. The hypothesis set 
which is synthesized via nodes having more than two 
outgoing links has the possibility of redundant relation 
with another set. A redundancy marker DEP (abbreviation 
of dependent) is set to this type of hypothesis sets. The 
hypothesis set synthesized from the two hypothesis set 
having DEP and IND markers may become redundant with 
respect to another set, but never make other hypothesis sets 
redundant. A redundancy marker S U P  (abbreviation of 
superset) is set to this type of hypothesis set. These 
redundancy markers IND, DEP and SUP are assigned to the 
hypothesis sets when they are synthesized. The system can 
reduce the cost of the minimality check by using the 
information of these redundancy markers attached to the 
hypothesis sets. 

Although a part of the behavior in phase-2 is similar 
to the label updating in the ATMS [81, the system of this 
paper differs from the ATMS in that 1) the synthesis and 
propagation of the hypothesis sets are guided by the 
compiled inference-path network, and 2) the efficient 
checking of the consistency and minimality of the 
hypothesis set is achieved by introducing the stage and 
three redundancy markers. 

Figure 4 shows the system structure of KICK- 
SHOTGAN incorporating these inference mechanisms. 

5. EVALUATION OF INFERENCE 
SPEED 
The speed improvement of KICK-SHOTGAN has 

been evaluated by using test examples. The examples here 
are taken from the fault diagnosis problems of logic 
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0 < 20 40 60 80 

No. of Hypotheses 

Fig.5 Inference speed (CPU time on Sun4) 
V.S. number of possible hypotheses 
in fault diagnosis problems. 

circuits, where possible faults of each gate are described as 
hypotheses. By changing the scale of logic circuits, the 
different sizes of hypothetical reasoning problems are 
generated. The inference speeds have been measured in 
CPU time running on SUN41260. The Prolog-based 
version of the hypothetical reasoning has been 
implemented in Sicstus Prolog. After the compilation of 
this Prolog program, its execution program is generated. 
The KICK-SHOTGAN has been implemented in C. After 
compilation by gcc compiler on SUN4, the execution 
program was obtained. 

Figure 5 illustrates the measured inference speeds for 
finding all the possible solutions. In an inference mode of 
finding a single solution, a faster inference speed can be 
obtained, depending on the structure of search tree and the 
location of a solution in the tree. The measurements for 
evaluation have been made for the cases of finding all the 
solutions, since they reflect the effect of search space 

pruning well. The KICK-SHOTGAN can achieve the 
speed more than 1,OOO times faster than that of the Prolog- 
base implementation in several evaluation tests including 
the examples shown in Fig. 5. 

6 .  CONCLUSION 
A fast logic-based hypothetical reasoning system has 

been presented. A large improvement (more than 1,OOO 
times faster) of inference speed has been achieved by 
employing the inference-path network. Key points for this 
achievement are the avoidance of backtracking due to the 
inconsistency among adopted hypotheses and the reduction 
of the number of computationally expensive hypothesis 
syntheses. An additional improvement has been achieved 
by introducing the stage concept in the hypothesis adoption 
and the redundancy marker. 

This system differs from the ATMS [8] mainly in its 
total problem solving framework. That is, this system 
works to yield a solution for a given goal based on a 
logical problem solving framework. In other words, this 
systems searches a solution by satisfying the logically 
described constraints. On the other hand, the ATMS 
calculates possible data supported by hypotheses in 
response to the input of a justification (rule) from a 
problem solver (production system in most cases) existing 
outside the ATMS. In the ATMS, it is left to users to 
guide the inference direction to reach a goal by writing 
appropriate rules. 

Although a large improvement of the inference speed 
has been achieved in this system, the computational cost 
still remains exponential order with respect to the number 
of possible hypotheses as seen in the logarithmic scale of 
vertical axis in Fig. 5. The computational complexity of 
non-monotonic reasoning including hypothetical reasoning 
has been proved as NP-complete or NP-hard [9,10]. Thus, 
the wall of exponential computational cost cannot be 
overcome as long as we stay in search methods in ordinary 
sense. We have found an efficient mechanism of using 
analogy to overcome this speed limit in the sense of 
average inference time (not worst-case time) [ll]. The 
inference-path network introduced in this paper plays an 
important role also in realizing an efficient analogical 
inference mechanism. 

Although only propositional Horn clauses are 
permitted as knowledge representation in this paper, a 
similar concept for fast inference can be applicable to the 
knowledge represented in predicate Horn clauses with 
variables [12]. However, in the case of predicate clauses, 
literals with the same predicate and the same constant 
arguments cannot be treated as one node in the inference- 
path network if they have variables as arguments, while the 
same atom appearing in different clauses are merged into 
one node in the case of propositional clauses. 
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