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Abstract. There have been numerous attempts at the aggregation of
attributes for relational data mining. Recently, an increasing number of
studies have been undertaken to process social network data, partly be-
cause of the fact that so much social network data has become available.
Among the various tasks in link mining, a popular task is link-based
classification, by which samples are classified using the relations or links
that are present among them. On the other hand, we sometimes employ
traditional analytical methods in the field of social network analysis us-
ing e.g., centrality measures, structural holes, and network clustering.
Through this study, we seek to bridge the gap between the aggregated
features from the network data and traditional indices used in social
network analysis. The notable feature of our algorithm is the ability to
invent several indices that are well studied in sociology. We first define
general operators that are applicable to an adjacent network. Then the
combinations of the operators generate new features, some of which cor-
respond to traditional indices, and others which are considered to be
new. We apply our method for classification to two different datasets,
thereby demonstrating the effectiveness of our approach.

1 Introduction

Recently, increasingly numerous studies have been undertaken to process net-
work data (e.g., social network data and web hyperlinks), partly because of the
fact that such great amounts of network data have become available. Link min-
ing [6] is a new research area created by the intersection of work in link analysis,
hypertext and web mining, relational learning, and inductive logic programming
and graph mining. A popular task in link mining is link-based classification, clas-
sifying samples using the relations or links that are present among them. To date,
numerous approaches (e.g. [8]) have been proposed for link-based classification,
which are often applied to social network data.

A social network is a social structure comprising nodes (called actors) and
relations (called ties). Prominent examples of recently studied social networks
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are online social network services (SNS), weblogs (e.g., [1]), and social book-
marks (e.g., [7]). As the world becomes increasingly interconnected as a “global
village”[18], network data have multiplied. For that reason, among others, the
needs of mining social network data are increasing. A notable feature of social
network data is that it is a particular type of relational data in which the target
objects are (in most cases) of a single type, and relations are defined between
two objects of the type. Sometimes a social network consists of two types of
objects: a network is called an affiliation network or a two-mode network.

Social networks have traditionally been analyzed in the field of social net-
work analysis (SNA) in sociology [16,14]. Popular modes of analysis include
centrality analysis, role analysis, and clique and cluster analyses. These analyses
produce indices for a network, a node, or sometimes for an edge, that have been
revealed as effective for many real-world social networks over the half-century
history of social studies. In complex network studies [17,3], which is a much
younger field, analysis and modeling of scale-free and small world networks have
been conducted. Commonly used features of a network are clustering coefficients,
characteristic path lengths, and degree distributions.

Numerous works in the data mining community have analyzed social networks
[2,13]. For example, L. Backstrom et al. analyzed the social groups and commu-
nity structure on LiveJournal and DBLP data [2]. They build eight community
features and six individual features, and subsequently report that one feature
is unexpectedly effective: for moderate values of k, an individual with k friends
in a group is significantly more likely to join if these k friends are themselves
mutual friends than if they are not. Apparently, greater potential exists for such
new features using a network structure, which is the motivation of this research.
Although several studies have been done to identify which features are useful
to classify entities, no comprehensive research has been undertaken so far to
generate the features effectively, including those used in social studies.

In this paper, we propose an algorithm to generate the various network fea-
tures that are well studied in social network analysis. We define primitive oper-
ators for feature generation to create structural features. The combinations of
operators enable us to generate various features automatically, some of which cor-
respond to well-known social network indices (such as centrality measures). By
conducting experiments on two datasets, the Cora dataset and @cosme dataset,
we evaluate our algorithm.

The contributions of the paper are summarized as follows:

– Our research is intended to bridge a gap between the data mining community
and the social science community; by applying a set of operators, we can
effectively generate features that are commonly used in social studies.

– The research addresses link-based classification from a novel approach. Be-
cause some features are considered as novel and useful, the finding might
be incorporated into future studies for improving performance for link-based
classification.

– Our algorithm is applicable to social networks (or one-mode networks). Be-
cause of the increasing amount of attention devoted to social network data,
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especially on the Web, our algorithm can support further analysis of the
network data, in addition to effective services such as recommendations of
communities.

This paper is organized as follows. Section 2 presents related works of this
study. In Section 3, we show details of the indices of social network analysis. In
Section 4, we propose our method for feature generation by defining nodesets,
operators, and aggregation methods. Section 5 describes experimental results for
two datasets, followed by discussion and conclusions.

2 Related Work

Various models have been developed for relational learning. A notable study
is that of Probabilistic Relational Models (PRMs) [5]. Such models provide a
language for describing statistical models over relational schema in a database.
They extend the Bayesian network representation to enable incorporation of a
much richer relational structure and are applicable to a variety of situations.
However, the process of feature generation is decoupled from that of feature se-
lection and is often performed manually. Alexandrin et al. [11] propose a method
of statistical relational learning (SRL) with a process for systematic generation
of features from relational data. They formulated the feature generation process
as a search in the space of a relational database. They apply it to relational
data from Citeseer, including the citation graph, authorship, and publication, in
order to predict the citation link, and show the usefulness of their method.

C. Perlich et al. [10] also propose aggregation methods in relational data.
They present the hierarchy of relational concepts of increasing complexity, us-
ing relational schema characteristics and introduce target-dependent aggregation
operators. They evaluate this method on the noisy business domain, or IPO do-
main. They predict whether an offer was made on the NASDAQ exchange and
draw conclusions about the applicability and performance of the aggregation
operators.

L. Backstrom et al. [2] analyzes community evolution, and shows that some
structural features characterizing individuals’ positions in the network are influ-
ential, as well as some group features such as the level of activity among members.
They apply a decision-tree approach to LiveJournal data and DBLP data, which
revealed that the probability of joining a group depends in subtle but intuitively
natural ways not just on the number of friends one has, but also on the ways
in which they are mutually related. Because of the relevance to our study, we
explain the individuals’ features used in their research in Table 1; they use eight
community features and six individual features. Our purpose of this research can
be regarded as generating such features automatically and comprehensively to
the greatest degree possible.

Our task is categorized into link-based object classification in the context
of link mining. Various methods have been used to address tasks such as loopy
belief propagation and mean field relaxation labeling [15]. Although these models
are useful and effective, we do not attempt to generate such probabilistic or
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Table 1. Features used in [2]

Features related to an individual u and her set S of friends in community C

Number of friends in community (|S|).
Number of adjacent pairs in S(|(u, v)|u, v ∈ S ∧ (u, v) ∈ EC |).
Number of pairs in S connected via a path in EC .
Average distance between friends connected via a path in EC .
Number of community members reachable from S using edges in EC .
Average distance from S to reachable community members using edges in EC .

statistical models in this study because it is difficult to compose such models
using these basic operations.

3 Social Network Features

In this section, we overview commonly-used indices in social network analysis
and complex network studies. We call such attributes social network features
throughout the paper.

One of the simplest features of a network is its density. It describes the general
level of linkage among the network nodes. The graph density is defined as the
number of edges in a (sub-)graph, expressed as a proportion of the maximum
possible number of edges.

Within social network analysis, the centrality measures are an extremely pop-
ular index of a node. They measure the structural importance of a node, for
example, the power of individual actors. There are several kinds of centrality
measures [4]; the most popular ones are as follows:

Degree. The degree of a node is the number of links to others. Actors who
have more ties to other actors might be advantaged positions. It is defined
as CD

i = ki

N−1 , where ki is the degree of node i and N is the number of
nodes.

Closeness. Closeness centrality emphasizes the distance of an actor to all others
in the network by focusing on the distance from each actor to all others. It
is defined as CC

i = (Li)−1 = N−1�
j∈G dij

, where Li is the average geodesic
distance of node i, and dij is the distance between nodes i and j.

Betweenness. Betweenness centrality views an actor as being in a favored po-
sition to the extent that the actor falls on the geodesic paths between other
pairs of actors in the network. It measures the number of all the shortest
paths that pass through the node. It is defined as CB

i =
�

j<k∈G njk(i)/njk

(N−1)(N−2) ,
where njk denotes the number of the shortest paths between nodes j and k,
and njk(i) is the number of those running through node i.

A popular variation of centrality measure is the eigenvector centrality (also
known as PageRank or stationary probability). Because we do not target the
eigenvector centrality in this paper, we do not explain it here but we will discuss
it in Section 6.
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Another useful set of network indices is the characteristic path length (some-
times denoted as L) and clustering coefficient (denoted as C), which are the most
important and frequently-invoked characteristics of complex network studies.

Characteristic path length. The characteristic path length L is the average
distance between any two nodes in the network (or a component).

Clustering coefficient. The clustering for a node is the proportion of edges
between the nodes within its neighborhood divided by the number of edges
that could possibly exist between them. The clustering coefficient C is the
average of clustering of each node in the network.

There are other groups of indices such as structural equivalence (defined on a
pair of nodes), and structural holes (defined on a node). We do not explain all
the indices but readers can consult literature on social network analysis [16,14].

4 Methodology

In this section, we define the elaborate operators that generate social-network
features. Using our model, we attempt to generate features that are often used
in social science. Our intuition is simple; recognizing that traditional studies in
social science have shown the usefulness of several indices, we can assume that
feature generation toward the indices is also useful.

Then, how can we design the operators so that they can effectively construct
various types of social network features? Through trial and error, we can come
up with the feature generation in three steps; we first select a set of nodes.
Then the operators are applied to the set of nodes to produce a list of values.
Finally, the values are aggregated into a single feature value. Eventually, we can
construct indices such as characteristic path length L, clustering coefficient C,
and centralities. Below, we explain each step in detail.

4.1 Defining a Node Set

First, we define a node set. We consider two types of node sets: one is based on
a network structure; the other is based on the category of a node.

Distance-based node set. Most straightforwardly, we can choose the nodes
that are adjacent to node x. The nodes are, in other words, those of distance
one from node x. The nodes with distance two, three, and so on can be defined
as well. We define a set of nodes as follows.

– C
(k)
x : a set of nodes within distance k from x.

Note that C
(k)
x does not include node x itself. C

(∞)
x means a set of nodes that

are reachable from node x.
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Table 2. Operator list

Notation Input Output Description Stage
C

(1)
x node x a nodeset adjacent nodes to x 1

C
(∞)
x node x a nodeset reachable nodes from x 2

Np ∩ C
(1)
x node x a nodeset all positive nodes adjacent to x 3

Np ∩ C
(∞)
x node x a nodeset all positive nodes reachable from x 3

s(1) a nodeset a list of values 1 if connected, 0 otherwise 1
t a nodeset a list of values distance between a pair of nodes 1
tx a nodeset a list of values distance between node x and other

nodes
2

ux a nodeset a list of values 1 if the shortest path includes node
x, 0 otherwise

2

Avg a list of values a value average of values 1
Sum a list of values a value summation of values 1
Min a list of values a value minimum of values 1
Max a list of values a value maximum of values 1

Ratiop two values value ratio of value on positive nodes(Np ∩
C

(k)
x ) by all nodes (C(k)

x )
4

Category-based node set. We can define a set of nodes with a particular
value of some attribute. Although various attributes can be targeted, for link-
based classification, we specifically examine the value of the category attribute
of a node to be classified. We denote a set of positive nodes as Np.

Considering both distance-based and category-based node sets, we can define
the conjunction of the sets, e.g., C

(1)
x ∩ Np.

4.2 Operation on a Node Set

Given a nodeset, we can conduct several calculations to the node set. Below, we
define operators to two nodes, and then expand it to a nodeset with an arbitrary
number of nodes.

The most straightforward operation for two nodes is to check whether the
two nodes are adjacent or not. A slight expansion is performed to check whether
the two nodes are within distance k or not. Therefore, we define the operator as
follows:

s(k)(x, y) =
{

1 if nodes x and y are connected within k
0 otherwise

Another simple operation for two nodes is to measure the geodesic distance
between the two nodes on the graph. We can define an operator as follows:

t(x, y) = distance between x to y = argmin
k

{s(k)(x, y) = 1}

If given a set of more than two nodes (denoted as N), these two operations
are applied to each pair of nodes in N . For example, if we are given a node set
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{n1, n2, n3}, we calculate s(1)(n1, n2), s(1)(n1, n3), and s(1)(n2, n2) and return
a list of three values, e.g. (1, 0, 1). We denote this operation as s(1) ◦ N .

In addition to s and t operations, we define two other operations. One is
to measure the distance from node x to each node, denoted as tx. Instead of
measuring the distance of two nodes, tx ◦ N measures the distance of each node
in N from node x. Another operation is to check the shortest path between two
nodes. Operator ux(y, z) returns 1 if the shortest path between y and z includes
node x. Consequently, ux ◦ N returns a set of values for each pair of y ∈ N and
z ∈ N . Operations tx and ux focus on node x in terms of the distance and the
shortest path, and can be considered fundamental.

4.3 Aggregation of Values

Once we obtain a list of values, several standard operations can be added to the
list. Given a list of values, we can take the summation (Sum), average (Avg),
maximum (Max), and minimum (Min). For example, if we apply Sum aggrega-
tion to a value list (1, 0, 1), we obtain a value of 2. We can write the aggregation
as e.g., Sum◦s(1)◦N . Although other operations can be performed, such as tak-
ing the variance or taking the mean, we limit the operations to the four described
above.

Additionally, we can take the difference or the ratio of two obtained values.
For example, if we obtain 2 by Sum◦ s(1) ◦N and 1 by Sum◦ s(1) ◦Cx, the ratio
is 2/1 = 2.0.

We can thereby generate a feature by subsequently defining a nodeset, ap-
plying an operator, and aggregating the values. Because the number of possible
combinations is enormous, we apply some constraints on the combinations. First,
when defining a nodeset, k is an arbitrary integer theoretically; however, we limit
k to be 1 or infinity for simplicity. Operator s(k) is used only as s(1). We also limit
taking the ratio only to those two values with and without a positive nodeset.

The nodesets, operators, and aggregations are shown in Table 2. We have
4(nodesets)×4(operators)×4(aggregations) = 64 combinations. If we consider
the ratio, there are ratios for C

(1)
x to Np ∩ C

(1)
x , and for C

(∞)
x to Np ∩ C

(∞)
x . In

all, there are 4 × 4 × 2 more combinations, and 96 in total. Each combination
corresponds to a feature of node x. Note that some combinations produce the
same value; for example, Sum◦tx◦C

(1)
x is the same as Sum◦s◦C∞

x , representing
the degree of node x.

The resultant value sometimes corresponds to a well-known index as we intend
in the design of the operators. For example, the network density can be denoted
as Avg ◦ s(1) ◦ N . It represents the average of edge existence among all nodes;
it therefore corresponds to the density of the network. Below, we describe other
examples that are used in the social network analysis literature.

– diameter of the network: Min ◦ t ◦ N
– characteristic path length: Avg ◦ t ◦ N

– degree centrality: Sum ◦ s
(1)
x ◦ N

(1)
x

– node clustering: Avg ◦ s(1) ◦ N
(1)
x
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– closeness centrality: Avg ◦ tx ◦ C
(∞)
x

– betweenness centrality: Sum ◦ ux ◦ C
(∞)
x ,

– structural holes: Avg ◦ t ◦ N
(1)
x

We can generate several features that have been shown to be effective in
existing studies [2]. A couple of examples are the following

– Number of friends in community = Sum ◦ S
(1)
x ◦ (C(1)

x ∩ Np) and

– Number of adjacent pairs = Sum ◦ s(1) ◦ (N (1)
x ∩ Np) .

These features represent some of the possible combinations. Some lesser-
known features might actually be effective.

5 Experimental Result

In this section, we describe empirical results obtained using our social network
feature generation. Through the experiment, we show the usefulness of the gen-
erated features toward link-based classification problems. We classify a node into
categories using the relations around the node.

5.1 Datasets and Task

After generating features, we investigate which features are better to classify
the entities. We employ a decision tree technique following [2] to generate the
decision tree (using C4.5 algorithm [12]). We use two datasets: Cora database
and @cosme. We first explain the characteristics of these datasets, and then
describe the results and findings.

Cora dataset. This dataset, contributed by A. McCallum [9], contains 300,000
scientific papers related to computer science classified into 69 research areas.
About 10,000 papers include detailed information about properties such as the
title, author names, a journal name, and the year of publication. In addition,
each paper has information about its cited literature. We therefore have a citation
network in which a node is a paper and an (undirected) edge is a citation. We
do not use direction information on edges.

Training and test data are created as follows: we randomly select nodes from
among those in the target category and those which cite or are cited by a paper
in the target category. We randomly select one-fifth of the whole 69 categories
as target categories. For example, in the case of the category Neural networks
in Machine Learning in Artificial Intelligence, the number of all nodes is 1682;
the number of positive nodes (in this category) is 781. Because the negative
examples are the nodes which are not in the category but which have a direct
relation with other nodes in the category, the settings are more difficult than
those used when we select negative examples randomly.
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@cosme dataset. @cosme (www.cosme.net) is the largest online community
site of “for-women” communities in Japan. It provides information and reviews
related to cosmetic products. Users of @cosme can post their reviews of cosmetic
products (100.5 thousand items of 11 thousand brands) on the system. Notable
characteristics of @cosme are that a user can register other users who can be
trusted, thereby creating a social network of users.

Because a user of @cosme can join various communities on the site, we can
classify users into communities, as was done with the Cora dataset. The nodes are
selected from among those who are the members of the community, or those who
have a relation with a user in the community. Here we target popular commu-
nities with more than 1000 members1. In case of I love Skin Care communities,
the number of nodes is 5730 and the number of positive nodes is 2807.

5.2 Experimental Results

We generate features defined in Table 2 for each dataset. To record the effective-
ness of operators, we first limit the operators of Stage 1, as shown in Table 2;
then we include the operators of Stage 2, those of Stage 3, and one of Stage 4.

Table 4 shows the values of recall, precision, and F-value for the Cora dataset.
The performance is measured by 10-fold cross validation. As we use more opera-
tors, the performance improves. Figures 1 and 2 show the top three levels of the
decision tree when using operators of Stage 1 and 2, and all the operators. We
can see in Fig. 1 that the top level node of the decision tree is Sum◦ s(1) ◦C

(∞)
x ,

which is the number of edges that node x has, or the degree centrality. The
second top node is Sum◦ tx ◦C

(1)
x , which also corresponds to a degree centrality

(in a different expression).
If we add operators in Stage 3 and Stage 4, we obtain a different decision tree

as in Fig. 2. The top node is the ratio of the number of positive and all nodes
neighboring node x. It means that if the number of neighboring nodes in the
category is larger, the node is more likely to be in the category, which can be
reasonably understood. We can see in the third level the ratio of Avg◦s(1)◦C

(∞)
x ,

which corresponds to the density of the subgraph including node x. There are

1 Such as I love Skin Care community, Blue Base community and I love LUSH com-
munity.
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Table 3. Recall, precision, and F-value in
the @cosme dataset as adding operators

Recall Precision F-value
Stage 1 0.429 0.586 0.494
Stage 2 0.469 0.593 0.523
Stage 3 0.526 0.666 0.586
Stage 4 0.609 0.668 0.636

Table 4. Recall, precision, and F-value in
Cora dataset as adding operators

Recall Precision F-value
Stage 1 0.427 0.620 0.503
Stage 2 0.560 0.582 0.576
Stage 3 0.724 0.696 0.709
Stage 4 0.767 0.743 0.754
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also features calculating the ratio of Sum◦tx◦C∞
x , which is a closeness centrality,

and Sum ◦ ux ◦ C
(1)
x , which corresponds to a betweenness centrality.

The results of @cosme dataset are shown in Table. 3. The trend is the same as
that for the Cora dataset; if we use more operators, the performance improves.
The decision trees when using up to Stage 2 operators and all operators are
shown in Figs. 3 and 4. The top level node of Fig. 3 is Sum ◦ tx ◦ C

(1)
x , which is

the number of edges among nodes adjacent to node x. The top level node in Fig.
4 is the ratio of the summation of the path length of reachable positive nodes
from node x to the summation of the path length of all reachable nodes. In the
third level, we can find Sum ◦ t ◦ C

(1)
x . This value is not well known in social

network analysis, but it measures the distance among neighboring nodes of node
x. The distance is 1 if the nodes are connected directly, and 2 if the nodes are
not directly connected (because the nodes are connected via node x). Therefore,
it is similar to clustering of node x. Table 5 shows the effective combinations of
operators (which appear often in the obtained decision trees) in Cora dataset2.

In summary, various features have been shown to be important for classifica-
tion, some of which correspond to well-known indices in social network analysis
such as degree centrality, closeness centrality, and betweenness centrality. Some
indices seem new, but their meanings resemble those of the existing indices. Nev-
ertheless, the ratio of values on positive nodes to all nodes is useful in many cases.
The results support the usefulness of the indices that are commonly used in the

2 The score 1/r is added to the combination if it appears in the r-th level of the decision
tree, and we sum up the scores in all the case. (Though other feature weighting is
possible, we maximize the correspondence to the decision trees explained in the
paper.)
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Table 5. Effective combinations of operators in Cora dataset

Rank Combination Description
1 Sum ◦ tx ◦ (C(1)

x ∩ Np) The number of positive nodes adjacent to node x.
2 Sum ◦ tx ◦ C

(1)
x The number of nodes adjacent to node x.

3 Sum ◦ s(1) ◦ (C(∞)
x ∩ Np) The density of the positive nodes reachable from node x.

4 Sum ◦ s(1) ◦ (C(1)
x ∩ Np) The number of edges among positive nodes adjacent to

node x.
5 Max ◦ t ◦ (C(1)

x ∩ Np) Whether there is a triad including node x and two posi-
tive nodes.

6 Sum ◦ s(1) ◦ C
(1)
x The number of edges among nodes adjacent to node x.

7 Sum ◦ s(1) ◦ C
(∞)
x The number of edges among nodes reachable from node

x.
8 Max ◦ ux ◦ (C(∞)

x ∩ Np) Whether the shortest path includes node x.
9 Max ◦ s(1) ◦ (C(1)

x ∩ Np) Whether there is a triad including node x and two posi-
tive nodes.

10 Ave ◦ s1 ◦ C
(∞)
x The Density of the component.

social network literature, and illustrate the potential for further composition of
useful features.

6 Discussion

We have determined the operators so that they remain simple but cover a variety
of indices. There are other features that can not be composed in our current
setting, but which are potentially composable. Examples include

– centralization: e.g., Maxn∈N ◦Sum◦s(1)◦C
(∞)
x −Avgn∈N ◦Sum◦s(1)◦C

(∞)
x

– clustering coefficient: Avgn∈N ◦ Avg ◦ s(1) ◦ N,

both need additional operators. There are many other operators; for example,
we can define the distance of two nodes according to the probability of attracting
a random surfer. Eigenvector centrality is a difficult index to implement using
operators because it requires iterative processing (or matrix processing). We
do not argue that the operators that we define are optimal or better than any
other set of operators; we show the first attempt for composing network indices.
Elaborate analysis of possible operators is an important future task.

One future study will compare the performance with other existing algorithms
for link-based classification, i.e., approximate collective classification algorithms
(ACCA) [15]. Our algorithm falls into a family of models proposed in Induc-
tive Logic Programming (ILP) called propositionalization and upgrade. More
detailed discussion of the relations to them is available in a longer version of the
paper.
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7 Conclusions

In this paper, we proposed an algorithm to generate various network features
that are well studied in social network analysis. We define operators to generate
the features using combinations, and show that some of which are useful for node
classification. Both the Cora dataset and @cosme dataset show similar trends.
We can find empirically that commonly-used indices such as centrality measures
and density are useful ones among all possible indices. The ratio of values, which
has not been well investigated in sociology studies, is also sometimes useful.

Although our analysis is preliminary, we believe that our study shows an
important bridge between the KDD research and social science research. We
hope that our study will encourage the application of KDD techniques to social
sciences, and vice versa.
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