
Enhancing Conversational Flexibility in Multimodal
Interactions with Embodied Lifelike Agents

Kyoshi Mori Adam Jatowt Mitsuru Ishizuka

ABSTRACT
 Research carried out in authoring systems for
embodied agent based presentations have traditionally been
confined to scripted interactive presentations. In recent
years, however, there has been a gradual shift to adopting a
more dynamic approach that supports a higher degree of
flexibility in user-agent interactivity, where the user is
allowed to engage in more natural conversations with the
agent. In this paper, we will describe a conversational
module based on techniques used in chat-bots, that we have
implemented as an extension to our previously developed
agent authoring system.

Categories and Subject Descriptors :

H.5.2 [Information Interfaces and Presentation (e.g.,
HCI)]: User Interfaces---interaction styles (e.g., commands,
menus, forms, direct manipulation), natural language; H.1.2
[Models and Principles]: User/Machine Systems---human
factors

General Terms
Human Factors, Languages

Keywords
Conversational Agents, Multimodal Interaction, Chatbots,
Presentation Markup Language

INTRODUCTION
In the last couple of years, an increasing number of

attempts have been made to develop agent authoring
systems that are able to generate agent applications like

presentations on the fly. More recent development has led
to presentations with increased user interactivity.

We believe that such interactivity should involve
direct interaction between the presenter (agent) and the
intended audience (user) in an unrestricted dialogue setting.
However, as it is impossible for the author to predict all
possible user contributions, a mechanism that allows the
agent to engage in dialogues not defined by the author is
necessary. We will describe our implementation of such a
mechanism, which combines chat-bot techniques and
domain-to-domain transitions.

MULTIMODAL PRESENTATION MARKUP LANGUAGE
The Multimodal Presentation Markup Language

(MPML)[1] developed at the Ishizuka Laboratory, is an
XML style markup language designed to allow authors to
easily script animated agent presentations. MPML is
actually a collection of projects each with a different focus
and emphasis. Compared to previous versions, the current
version of MPML, MPML 3.0 allows the author to script
greater interactivity into a presentation. The author is thus
allowed to create interactive background pages containing
selections, which when clicked, trigger the appropriate
decision branch in the presentation. In this way, the user is
able to interact in a somewhat limited degree with the agent.
However, such interactive presentations lack believability
due to two reasons.
 One is that the user interacts directly with the web
page as opposed to the agent. By giving the user a set of
answers to choose from, the user is momentarily distracted
from the agent in attempting to click the right choice. This
is inconsistent with live presentations where the audience
interacts directly with the presenter. Clearly, agent
presentations should also emphasize direct interactions
between the user and the agent presenter.
 The other reason is that interaction is confined to a
limited number of answers that the user is forced to choose
from. Although it is not impossible to increase the number
of answers, each choice provided requires an additional

Copyright is held by the author/ owner(s).
IUI’03, January 12-15, 2003, Miami, Florida, USA
ACM 1-58113-586-6/03/0001..

Department of Information and Communication Engineering
Graduate School of Information Science and Technology

University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan 113-8656.

kmori@miv.t.u-tokyo.ac.jp

presentation branch. This is due to the sequential structure
of the script, which could easily become convoluted if too
many choices are scripted into the presentation. In a
dialogue where the conversation could easily lead to
various topics, a different approach has to be taken.
 We will attempt to deal with these problems in our
implementation of the Conversational Module, an extension
of the current MPML system that allows the creation of
conversation based interactive content while maintaining
the ease of authoring of such content.

CONVERSATIONAL MODULE FOR MPML3.0
The Conversational Module for MPML 3.0 was

implemented using a client-server approach, the client
being a modified version of the MPML3.0 system that
controls the agent presentation and the server consisting of
a dialog engine which accesses a dialog database. A
diagram explaining the main components of the module is
shown in Figure 1 below.

Figure 1

The Conversational Model
 Our approach to handling conversations with the
agent is to have a case-based mechanism that runs on top of
a reasoning mechanism (Figure 2). The case-based
mechanism, which does simple pattern matching has the
advantage of being quick and thus, being able to return near
instantaneous responses to the user. This is crucial in
maintaining believability in the interaction as the user does
not have to wait long for a response. This reactive
component is handled by the Dialog Engine.

On the other hand, simply having a reactive
component is not sufficient in maintaining believability.
The agent also needs to be pro-active in taking the initiative
and ensuring that it achieves its aim in delivering a good
presentation. To handle this, the Reasoning Engine tracks
the conversation, monitoring both user input and responses
from the Dialog Engine and intervening based on changes
in the conditions.

Figure 2

The Dialog Engine

 The Dialog Engine is based on the Artificial
Linguistic Intelligent Computer Entity (ALICE)[2]. The
ALICE chat engine implements the Artificial Intelligence
Markup Language (AIML)[3], which allows dialogs
between the user and agent to be easily scripted. Based on
XML, we believe AIML to be the perfect dialog extension
to our MPML presentation system as authors already
familiar with scripting in MPML can easily learn to script
in AIML.

We are currently using the web version of the
ALICE chat engine, where a PHP script accesses AIML
defined scripts stored in a mySQL server. The interface
with the Javascript based MPML presentation script is
implemented using Javascript Remote Scripting.

The Reasoning Engine

Domain Model

The Reasoning Engine is implemented based on
the Domain Model. According to Dahlback and Jonnson
[4], the Domain Model represents the structure of the world
and usually comprises a subset of general world knowledge.
It holds knowledge of the world that is talked about. In
relation to our research, the Domain Model is the
knowledge related to the topic of the presentation, or a
collection of subset topics of the main presentation content,
depending on the nature of the content. This is
advantageous to the author as it reduces the need to predict
every single input the user will make, and instead, allows
the author to concentrate on scripting conversation within a
specified domain.

Application to the Conversational Module

In our system, we have implemented a two-domain
system, where the system determines whether the user is
conversing within the domain of the presentation topic or
whether he or she is speaking out of topic. We will call the
two domains In-Domain and Out-of-domain. The In-
Domain dialog set is defined by the author, while the Out-
of-Domain dialog set is taken from a pre-defined dialog set.
The author is of course free to modify the Out-of-Domain
set. The transition set is based on the table shown in Figure
3.
 Based on the type of input provided by the user,
the agent’s response state moves from the In-Domain to
Out-of-Domain field. To allow for a smooth transition, two
intermediate states; Reluctant and Concede, are used. The
Reluctant state is based on the fact that if a user says
something out of the specified domain, the agent indicates
that it is unable to understand the user and is therefore,
‘reluctant’ to pursue the direction proposed by the user. If
the user persists in speaking out of domain, the agent then
shifts to the Concede state where it eventually allows the
user to take control of the direction of the conversation.

Given input condition :In-Domain
 Result in Agent State:In-Domain
 Agent Response:
 Standard author defined response

Given input condition :Out-of-Domain
 Result in Agent State:Reluctant
 Agent Response:
 Lack Understanding handling

Given input condition :Out-of-Domain persists
 Given agent state:Reluctant
 Result in Agent State:Concede
 Agent Response:
 User initiative handling

Given input condition :Out-of-Domain persists
 Given agent state:Concede
 Result in Agent State:Out-Domain
 Agent Response:
 Out-of-Domain System defined response

Figure 3

 Currently, the factors influencing transitions
between states are the user’s input and the agent’s previous
state. Thus, when the user persists in speaking out of
domain, the agent state will progress towards the Out-Of-

Domain field. However, the agent can only proceed from
the In-Domain to Out-of-Domain state by passing through
the Reluctant and Concede states.
 Although the agent allows the user to control the
conversation in the Out-of-Domain state, it will continue to
remind the user of the topic of the current presentation,
conveying its intention of desiring to move back to its
original In-Domain state. Thus, the agent will always direct
the conversation towards In-Domain in an attempt to keep
the user focused on the presentation. An example of
conversation between the user and agent presenter is shown
in Figure 4. The conversation between the user and the
agent took place after the agent gave a presentation on the
topic of the Biography of Albert Einstein.

Agent : I would be glad to answer any questions you
have.
User : Tell me more about Einstein’s marriage
Agent : Einstein was married twice, first to his classmate
and then to his cousin.
User : His cousin?
Agent : His cousin’s name was Elsa. Would you like to
see pictures related to his marriage?
User : Yes, please.
<Agent presents on Einstein’s marriage>
Agent : What else would you like to know?
User : This is boring, let’s talk about movies instead.
Agent : I’m not sure how that is of any relation to
Einstein. Why don’t you ask me about his family instead?
User : No, why can’t we talk about movies?
Agent : Fine then, let’s talk about it
User : So, do you know Tom Cruise?
Agent : Yes…<Conversation proceeds>

Figure 4

CONCLUSION
In this paper, we have shown how an interactive

presentation authoring system allowing natural
conversations between the user and the agent presenter can
be implemented using our proposed Conversational
Module, which incorporates the ALICE chat-bot sub-
module. With our module, it is now also possible to script a
dialog interaction within a presentation without having to
predict all possible interactions that could occur. We plan
to extend our work by focusing on increasing the
functionality of the module, such as using more efficient
state transition techniques.

REFERENCES
1. Sylvain Descamps, Helmut Prendinger and Mitsuru

Ishizuka. A Multimodal Presentation Markup
Language for Enhanced Affective Presentation,
Advances in Education Technologies: Multimedia,
WWW and Distant Education In Proceedings of the
International Conference on Intelligent Multimedia
and Distant Learning (ICIMADE-01), Fargo, North
Dakota, USA, pp. 9-16, 2001. Available at
http://www.miv.t.u-tokyo.ac.jp/MPML/en/

2. Artificial Linguistic Internet Computer Entity (ALICE)
Resources. Available at
http://alice.sunlitsurf.com/alice/about.html

3. Artificial Intelligence Markup Language (AIML)
Resources. Available at
http://alice.sunlitsurf.com/alice/aiml.html

4. N. Dahlbäck and A. Jönsson. Integrating domain
specific focusing in dialogue models. In Proceedings of
Eurospeech'97, volume 4, pages 2215-2218, Rhodes,
Greece, 1997.

