Knowledge-Based
—SYSTEMS—

o V0 |

ELSEVIER

Knowledge-Based Systems 9 (1996) 163171

Efficient inference method for computing an optimal solution in
predicate-logic hypothetical reasoning

Akiko Kondo?, Mitsuru Ishizuka®

*Multimedia Systems Laboratory, Fujitsu Laboratories Ltd, Nakahara-ku, Kawasaki 211, Japan
®Department of Information and Communication Engineering, Faculty of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 9 June 1994; revised 13 June 1995; accepted 26 June 1995

Abstract

Hypothetical reasoning, which is one type of abductive reasoning, is an important framework in the development of advanced
knowledge-based systems. One problem with hypothetical reasoning is its slow inference speed, which is due to its nonmonotonic
inference nature. A fast hypothetical reasoning system with predicate Horn clause expressions has been developed to overcome this
problem. However, when the constraints for hypotheses are not strong, the number of hypotheses to be synthetized becomes too large
to calculate. The paper presents an efficient hypothetical reasoning method combining best-first search, beam search and branch-and-
bound search strategies for computing the optimal solution, which is the most desirable solution in many cases. The effectiveness of
this method is shown experimentally using fault-diagnosis problems in logic circuits.

Keywords: Hypothetical reasoning; Predicate logic; Optimal solution search

1. Introduction

Knowledge is often incomplete; that is, it often
involves exception or contradiction. The handling of
incomplete knowledge in knowledge bases is an impor-
tant function in expanding the capability of current
knowledge bases. Hypothetical reasoning handles such
incomplete knowledge as hypothesis [1,2]. It is one type
of abductive reasoning, and it can be directly applied to
model-based diagnosis problems [1,3], design problems
[4] etc. Thus hypothetical reasoning is an important
framework in the development of advanced knowledge-
based systems from both the theoretical and practical
viewpoints.

One crucial problem with hypothetical reasoning is,
however, its slow speed, which is due to its nonmono-
tonic reasoning nature. We have developed fast hypo-
thetical reasoning systems to overcome this problem
[5,6]. KICK-HOPE (Knowledge-base handling InCom-
plete Knowledge — by HOIding Parallel solutions on
Environment lattice) [6] is one of those systems. Its rea-
soning mechanism is related to the SLD-AL [7] or QSQR
[8] methods developed as efficient deductive database
technology, and it works for predicate Horn-clause
knowledge.

0950-7051/96/815.00 © 1996 Elsevier Science B.V. All rights reserved

SSDI 0950-7051(95)01015-7

KICK-HOPE shows high efficiency for many prob-
lems. However, when the constraint for hypotheses is
not strong, the number of hypotheses to be synthetized
becomes too large to calculate and the inference speed
goes down. This problem is inevitable because KICK-
HOPE calculates all the solutions as in database applica-
tions. In many practical cases, we need one or a few good
solutions quickly rather than all the solutions. Therefore,
we present here a fast hypothetical reasoning method
based on KICK-HOPE that obtains an optimal solution
by combining best-first search, beam search and branch-
and-bound search strategies. The effectiveness of this
method is shown experimentally using fault-diagnosis
problems in logic circuits.

2. Logic-based hypothetical reasoning system

Our hypothetical reasoning is based on a logic frame-
work used in Theorist [1,2], in which knowledge is
classified into fact (background knowledge in our
system) or hypothesis. Fact, or background knowledge,
is knowledge which is always correct and has no pos-
sibility of contradiction. On the other hand, hypothesis
is defeasible knowledge having the possibility of

164 A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996) 163171

Background
Knowledge

>

Goal
F G

consistent

solution
hypothesis set

Hypothesis
H

h < H
S UhFEG
> uh e

Fig. 1. Basic structure of logic-based hypothetical reasoning system.

contradiction by other knowledge. The basic behaviour
of this hypothetical reasoning can be described as fol-
lows: if a given goal cannot be proved with only back-
ground knowledge, the reasoning system adopts
consistent hypotheses necessary to prove the goal.

The aim of this hypothetical reasoning is to obtain
these consistent hypotheses, which we call ‘solution
hypotheses’. In general, a deductive-inference mechan-
ism can be used for this hypothesis generation. Hypo-
thetical reasoning can be called abductive reasoning
especially when hypotheses are abduced from a knowl-
edge base. The hypothetical reasoning can be applied to
many practical problems. For example, its solution
hypothesis becomes the representation of faults in a diag-
nosis problem [3], the combinations of possible design
components in a design problem [4] etc.

Fig. 1 shows the basic structure of our hypothetical
reasoning. The knowledge base consists of two parts.
One is a set of background knowledge % (which is always
true in any environment) and the other is a set of hypoth-
eses H (which are not always true in an environment and
sometimes contradict other knowledge). Let G be a given
goal, and & be a subset of H. Then the basic function of
this system is to find a solution hypothesis £ satisfying the
following three logical formulae:

hCH
(h is a subset of H),

Y UhrG

(G is proved from ¥ and 4),

Y uh O

< g(X), - >
v

Reasoner

\
< g(a), [h1,h3] > J settled nodes with

supporting-hypotheses
< g(b), [h2] > in[)

Fig. 2. Function of reasoner in KICK-HOPE.

(X and £ are consistent). There exist plural solution
hypotheses As in general that satisfy these conditions.
‘All-solution search’ means the obtaining of all the
feasible solution hypotheses. ‘Optimal search’ means
the obtaining of at least one solution hypothesis such
that its evaluation value is minimal (or maximal).

3. Kick-Hope: a fast hypothetical reasoning system for
predicate-logic knowledge bases

One crucial problem with hypothetical reasoning is its
slow inference speed, which is due to its nonmonotonic
nature. One way to overcome this problem is to combine
the advantages of the forward and backward reasoning
styles. Forward reasoning enables us to avoid the recal-
culation of the same inference tree, and backward
reasoning allows a restricted search only for a goal-
related inference tree. KICK-HOPE [5] has basically
incorporated these advantages. We first describe
KICK-HOPE’s mechanism briefly, since the inference
mechanism of this paper is based on it. We use Prolog
notation, i.e. a variable starts with a capital letter, such as
X, and a constant starts with a lower-case letter, such
as a.

Fig. 2 illustrates the reasoner’s function for KICK-
HOPE. We obtain two kinds of information for a node
through the reasoner, i.e. restricted values for variables
in the node and necessary hypotheses to prove the node.
We call an output node of the reasoner a ‘settled-node’,
and hypotheses in the settled node ‘supporting hypotheses’.

Fig. 3 shows an example of the reasoner’s operation in
KICK-HOPE. When a node g(X) is put into the
reasoner, its child nodes g1(X) and g2(X) are generated
at first. Then they are put into other reasoners sequen-
tially from the left node in order. Since g1(X) and g2(X)
have an and relation, the restriction between their vari-
ables should be considered. After the generation of a
settled node for g1(X), the variable X is restricted to a.
As a result, g2(a), instead of g2(X), is put into the
reasoner. This avoids the generation of unnecessary
settled nodes ({g2(b), [#4]) in this example). After all

A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996) 163—171 165

2

(9(X) - 91(X)&g2(X).)
gi(a) :- h1.

gi(a) :- h2.
g2(a) :- h3.
g2(b) :- h4.

inconsistent :- h1&h3.
_ J

<g(X), - > —| Reasoner |— <g(a), [h1*h3]>

<g1(X), - > f <g2(a),[h3]>

<g1(a), [h1,h2]>| [<g2(a), - >

Reasoner Reasoner

Fig. 3. Example of knowledge base and reasoner’s operation in KICK-
HOPE.

the child nodes are settled, their supporting hypotheses
are synthetized to generate g(X)’s settled-node {(g(a),
[#1 A A3]). Here, h1 A h3 implies a synthetized-hypothesis,
whose synthesis is carried out by the bit wise or operation
of the bit vectors of 41 and 43. This hypothesis-synthesis
operation is based on ATMS [9], and it allows efficient
calculation of the minimal supporting hypothesis by the
use of a hypothesis lattice structure.

In this method, backward reasoning is adopted for
generating necessary child nodes, and forward reasoning
is adopted for the hypothesis synthesis on the hypothesis
lattice. With these mechanisms, KICK-HOPE has a high
efficiency in comparison with simple reasoning based on
a simple inference mechanism embedded in Prolog.

However, when the constraints for hypotheses are not
strong, the number of supporting hypotheses becomes
large. Since the cost of the hypothesis synthesis which
corresponds to join operations in relational databases
is very expensive, the reasoning speed slows down
accordingly. This problem is mainly due to KICK-
HOPE’s mechanism of calculating all the solutions.

Thus, we have developed a fast hypothetical reasoning
system KICK-HOPE II for obtaining optimal solutions
instead of all the solutions. The efficiency of this system
is achieved primarily by reducing the number of
hypothesis-synthesis operations. We describe its reason-
ing mechanisms in the next section.

4. Optimal search for hypothetical reasoning

In this section we describe optimal search strategies
compatible with KICK-HOPE. KICK-HOPE obtains

all the supporting hypotheses for a settled node as
shown in Fig. 2. However, not all the supporting hypoth-
eses for every node are necessarily required to obtain the
optimal solution for a given goal. In optimal search, only
an optimal supporting hypothesis has to be generated at
first for each node. In subsequent reasoning, when an
optimal supporting hypothesis is judged to be unsuitable,
a second optimal supporting hypothesis has to be gener-
ated. This case occurs when

e this optimal supporting hypothesis contradicts the
supporting hypothesis of the other node, or

e it is possible for another supporting hypothesis (not
the optimal one) to compose an optimal solution for
the goal.

Considering these situations, we can reduce the
number of hypothesis-synthesis operations to obtain an
optimal solution effectively.

For the evaluation of optimality, we assign a numeri-
cal weight to each element hypothesis. An optimal solu-
tion is a supporting hypothesis for which the weight sum
of the element hypotheses is minimal. We describe below
optimal search strategies applied for hypothesis synthesis
that utilize the weight of the hypothesis. If, in this paper,
we consider the weight to be the cost of the hypothesis,
this type of reasoning can be called cost-based hypothe-
tical reasoning, as seen, for example, in [10].

4.1. Weight of hypothesis and lower bound of
unsynthetized hypothesis

We define here the weight of an element hypothesis as
an integer larger than 0 and the weight of a hypothesis as
the weight sum of its element hypotheses. An optimal
solution is a supporting hypothesis for which the weight
is minimal for a given goal.

Thus a light-weighted hypothesis has priority over a
heavy one. In a case in which the weight of an element
hypothesis is not clearly defined, its weight is considered
to be 1 (the default value). If the weight of every element
hypothesis is 1, a hypothesis with a small number of
element hypotheses has priority, because the weight of
a hypothesis coincides with the number of its element
hypotheses.

Next we consider the lower bounds (LBs) of unsynthe-
tized hypotheses (hypotheses which are not yet synthe-
tized). We effectively use this value to decide the order of
merge operations (for hypothesis synthesis). The LB of
an unsynthetized hypothesis has a value such that the
weight of the hypothesis always becomes more than or
equal to this value after synthesis.

We define the LB of an unsynthetized hypothesis as
follows:

e The LB of A&B is the maximum of A’s LB or B’s LB,
and
e The LB of (4 or B) is the minimum of 4’s LB or B’s LB.

166 A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996) 163171

hyp & ---- weight=1

— a&b->a*b - weight = 3
hyp b - weight=2 142=3
hyp a ---- weight=1

= a&a'b->a*b - weight=3

hyp a*b ---- weight=3

Fig. 4. Examples of calculation of weight of synthetized hypothesis.

Fig. 4 shows the reason why the LB of A&B is not
simply the sum of 4’s LB and B’s LB. When the weight
of hypothesis @ is 1 and that of hypothesis b is 2, the
weight of hypothesis a A b becomes 3 (1 + 2 = 3). How-
ever, the weight of hypothesis a&(a A b) becomes 3 (not
1 + 3 = 4), because a&(a A b) becomes a A b after synth-
esis. Thus, in the case in which one hypothesis is included
in the other one, or both hypotheses have common
elements, the weight of the synthetized hypothesis does
not simply become the sum of each weight. As the
synthetized-hypothesis weight becomes minimal when
one hypothesis is included in the other one, the maxi-
mum LB of the component hypotheses becomes the LB
of the unsynthetized hypothesis.

On the other hand, it is natural to define the LB of
(4 or B) as the minimum of 4’s LB and B’s LB.

4.2. Optimal search strategies for hypothesis synthesis

In this section, we describe optimal search strategies
for hypothesis synthesis using the weights and LBs of
unsynthetized hypotheses.

We utilize the following three optimal search strategies
for efficient hypothesis synthesis:

e best-first search,
e beam search,
e branch-and-bound search.

We describe these mechanisms briefly, and a way in
which they can be applied to our hypothetical reasoning
with reference to the example of Fig. 5.

4.2.1. Best-first search

This is a strategy [11] of searching from the best-valued
node in order. We utilize this strategy to decide the order
of synthetizing hypotheses. In many cases, the evaluation
for deciding the order has been made on the basis of
heuristic knowledge. However, since we can easily com-
pute the LBs of subgoals in logic-based hypothetical
reasoning as described in the previous section, we use
these LBs for the evaluation without any other heuristic
knowledge. Since the LB changes with the process of
hypothesis synthesis, the updated LB must be used. In
the example of Fig. 5, as the LB of sg1 is 1 and that of sg2
is 2, the supporting hypotheses for sgl are synthetized
first. If the LB of sg1 exceeds that of sg2 in the process of

9 -1

CuT

sg1 sg2

LB =1 LB

sg3

2 LB=3

hyp a
weight 1

bc d e f g
i 2 1 1 3 4

LB = Lower Bound

Fig. 5. Example of lower bound for nodes in inference tree.

hypothesis synthesis in sg1, it is interrupted, and hypoth-
esis synthesis for sg2 starts.

Fortunately, it is guaranteed that the optimal solution
can be obtained when the LB is used for the evaluation in
the best-first search strategy. Accordingly, solutions
obtained in our system are always optimal ones. The
best-first search strategy generally has the drawback of
requiring a huge memory area. We can, however, reduce
this problem by using the following beam-search
strategy.

4.2.2. Beam search

This is strategy [11] of restricting the hypotheses under
consideration to only promising ones in the middle of the
search. There are two kinds of strategies for the selection
of hypotheses. One is to select a certain number of good-
evaluated hypotheses (this number is called the beam
width) and remove the others. The other strategy is to
remove the hypotheses whose weights have a larger value
than a certain threshold, and select the remaining ones.

In hypothetical reasoning, this beam-search strategy
does not guarantee the optimality of the solutions. This
is because the remaining hypotheses in the intermediate
nodes possibly become inconsistent in the subsequent
reasoning. In particular, when the beam width is used
to select the hypotheses, the necessary hypotheses are
often removed in the intermediate nodes. On the other
hand, selecting hypotheses by a threshold is useful in the
case in which we do not need hypotheses that are
weighted too heavily. When a value is set up as a thresh-
old weight, it behaves as a global constraint in the
reasoning. With this strategy, if solutions are obtained,
they are always optimal ones. If no solution is obtained,
the threshold weight should be increased because it is too
small to obtain solutions.

Thus we adopt the beam-search strategy with a thresh-
old in our hypothetical reasoning. In Fig. 5, when the
threshold weight is set to 3, subgoal sg3 is removed
because the LB of sg3 becomes 4.

A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996 163171 167

This beam-search strategy should be used secondarily in
order to compensate for the problem of the best-first search
strategy, i.e. the consumption of a huge memory area.

4.2.3. Branch-and-bound search

This strategy [12,13] generates one solution at first and
memorizes its weight as a temporary weight. Then it
prunes the branches whose weights exceed this value,
and the temporary weight is updated when a better-
valued (lighter-weighted) solution is obtained.

In the example of Fig. 5, as the supporting hypothesis
of sgl is a A b and its weight is 2, the temporary weight is
set to 2. In the process of hypothesis synthesis in sg2, the
LB of sg2 exceeds 2. That is, when hypothesis ¢ and
hypothesis d are combined, the weight becomes 3.
Since it becomes certain that the weight of sg2 is
larger than 3, the hypothesis synthesis in sg2 becomes
unnecessary.

We utilize this strategy for unsettled or relation nodes.
When optimal supporting hypotheses for settled nodes
are obtained, their smallest weight is propagated to other
or-relation nodes as a temporary weight. Thanks to this
procedure, it becomes unnecessary to obtain the optimal
supporting hypothesis for every node. In other words, we
do not need to obtain the optimal supporting hypothesis
for a node for which the LB exceeds the temporary weight.

In general, this branch-and-bound search strategy can
be adopted only for the final goal in hypothetical reason-
ing, because, even if an optimal supporting hypothesis is
obtained in an intermediate node, it does not always
become a component of the optimal solution for a
given goal. Also, the optimal supporting hypothesis in
the intermediate node may contradict other hypotheses
to be combined in the subsequent reasoning. Thus we
also keep nonoptimal hypotheses (we call them next can-
didate hypotheses) with optimal ones in the intermediate
node, and use them when needed in the subsequent
reasoning. The next-candidate hypotheses consist of
unsynthetized hypotheses and synthetized hypotheses
which are not optimal at that time.

We have incorporated these strategies into the hypoth-
esis synthesis in KICK-HOPE, and have developed
KICK-HOPE 11, a fast predicate-logic hypothetical
reasoning system for computing an optimal solution.
The data structure and the reasoning algorithm of
KICK-HOPE 1II are described in some detail in the
next section for those who need to know them precisely,
for example to implement a similar mechanism.

5. Kick-Hope II: a fast predicate-logic hypothetical
reasoning system for computing an optimal solution
5.1. Data structure

In general, rule-type hypotheses are allowed. However,

< g(X), - ,— >

6 =5

l w* =2
Reasoner

<g(a), 1:h1, [(2, 2:h2)] > setiled node

Fig. 6. Function of reasoner in KICK-HOPE II.

using the same transformation as that used in KICK-
HOPE [6] etc. [5], we can transform them into unit-clause
(fact-type) hypotheses and rule-type background knowl-
edge by preprocessing. As in KICK-HOPE, we deal with
the case in which hypotheses are defined as grounded
unit clauses not including variables. In this case, the
number of possible hypotheses becomes finite, and they
can be expressed as bit vectors, allowing efficient reason-
ing operations, particularly for hypothesis synthesis
and consistency checking as in ATMS [9]. A weight
value (which is an integer larger than 0) is set for each
hypothesis.

The data structure of nodes in KICK-HOPE II is of
the form of

{Node-name, Optimal-supporting-hypothesis,
Next-candidate-hypothesis)

Here, Optimal-supporting-hypothesis is denoted as
Weight: Hypotheses, and Next-candidate-hypothesis is
expressed as a list, the elements of which are (LB, Non-
optimal-supporting hypothesis), and are sorted by their
LBs. At the initial stage, Node-name may have variables,
and Optimal-supporting-hypothesis and Next-candidate
hypothesis are undecided. When the nodes are put into
the reasoner of KICK-HOPE II with a temporary weight
w* and a threshold weight 8, they are transformed into
settled nodes (see the example of Fig. 6).

The settled nodes are classified into the following four
categories (each Node-name is instantiated):

e True node (always true) (no supporting hypothesis is
required):

{Node-name, true, —}

e False node (always false):
(Node-name, false, —)

e Node whose optimal supporting hypothesis is determined:

(Node-name, Optimal-supporting-hypothesis,
Next-candidate-hypothesis)

e Node where there exists no lighter-weighted supporting
hypothesis than a temporary weight (in this case an

168 A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996) 163-171

Reasoner Node

Classification

.

‘and' node ‘or' node Single node
Processing Processing Processing
I Hypothesis || Hypothesis || Knowledge-
Unification ;
; Synthesis Synthesis base
Processing y‘an pt y o Search
\ & /
Consistency Weight
Check Check

Fig. 7. Components of reasoner in KICK-HOPE II.

optimal supporting hypothesis does not need to be
obtained):

(Node-name, ‘non’, Next-candidate-hypothesis)

The fourth type of node appears when the LB of the
node exceeds the temporary weight w* in the process of
generating its optimal supporting hypothesis. In any
case, its next-candidate hypothesis must be kept because
the next-candidate hypothesis is occasionally used in the
reasoning for upper nodes. (The supporting hypotheses
of the upper (or parent) nodes are synthetized from the
supporting hypotheses of their lower (or child) nodes.)

5.2. Reasoning algorithm

Fig. 7 shows the reasoner operation of KICK-HOPE
I1. At first a node is judged to be one of the following: a
‘single node’ (which consists of one literal), an ‘and node’
(which is a complex node having an and relationship), or
an ‘or node’ (which is a complex node having an or
relationship). If the node is a single node, ‘single-node
processing’ is executed. If the node is an and node, ‘and-
node processing’ is executed. Otherwise, ‘or-node proces-
sing’ is executed'.

We give algorithms for these processings with the tem-
porary weight w* and the threshold weight 6 for a node.

Algorithm for single node N:

(1) Generate settled nodes and update w* in accordance

A complex node (and node/or node) having more than two predi-
cates is processed from the left operator. For example, A&B&C is
processed as an and node for 4 for B&C.

with the following four cases:

(1.1) Case in which N is unified with fact-type (unit-
clause) background knowledge. Generate a
true node (N, true, —), and set w* to 0.

(1.2) Case in which N is unified with the hypothesis:
Let H and w indicate the unified hypothesis
and the weight of H, respectively. Then,

o beam search: if w > 6, generate nothing
e branch-and-bound search: if w > w*, gener-
ate (N, non, [(w,w : H)]).

Otherwise, generate (N,w: H,[]), and set w*
o w.

(1.3) Case in which N is unified with the head of rule-
type background knowledge: Let B indicate
the body of unified rule-type background
knowledge. Then, put the node (B, —, —)
into the reasoner with w* and 6 to generate
settled nodes. Remove the false nodes among
these settled nodes. Rewrite the first terms
(Node-name) of all the remaining settled
nodes as N, whose variables are substituted
according to the unified information.

(1.4) Case in which N cannot be unified with any
knowledge: Generate a false node (N, false,
—), and terminate.

(2) Merge the settled nodes which have the same uni-
fied constants in N into one node by synthetizing
their supporting hypotheses through a ‘hypothesis-
synthesis or’ operation, to be described in the next
section. If no settled node is obtained, generate a
false node (N, false, —).

Algorithm for and node N1 & N2:

(1) Generate settled nodes SN1 for N1 through the
reasoner with w* and 6.

(2) In the case in which there is no element in SN1, or
SN1is a false node, terminate. In the case in which
no settled node for N1&N?2 is obtained, generate a
false node (N1&N2 false, —), and terminate.

(3) Take one node FN1 from SN1 and denote the
remaining nodes as SN1'. Also, let N2’ be an N2
whose variables are substituted according to the
unified information of FN1.

(4) Generate settled nodes SN2 for N2' through the
reasoner with w* and 6.

(5) In the case in which there is no element in SN2, or
SN2 is a false node, rewrite SN1' to SN1 and go to
step 2.

A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996) 163171 169

(6) Take one node FN2 from SN2, and denote the
remaining nodes as SN2'.

(7) Synthetize the supporting hypotheses in FN1 and
FN2 through a ‘hypothesis-synthesis-and’ opera-
tion, to be described in the next section. In the
case in which synthetized hypotheses are obtained,
generate a scttled node whose Node-name is
FN1&FN2, and update w*. Rewrite SN2’ as SN2
and go to step S.

Algorithm for or node N1 or N2:

(1) Generate settled nodes SN1 for N1 through the
reasoner with w* and 6, and update w*. Remove
false nodes among these settled nodes.

(2) Generate settled nodes SN2 for N2 through the
reasoner with w* and 6, and update w*. Remove
false nodes among these settled nodes.

(3) Merge the nodes in whose arguments the predicates
and constants are exactly the same onto one node
by synthetizing their supporting hypotheses
through a hypothesis-synthesis or operation, to be
described in the next section. If no settled node is
obtained, generate a false node (N1 or N2, false,

).

hypothesis B_OTH from B*". Regarding
A&B as the aggregation of A4,&B,
A&B_OTH, A_OTH&B;, and A_OTH&
B _OTH, sort them according to their LBs
for best-first search.

(4.2) Synthetize hypotheses in order. If a synthe-
tized hypothesis is inconsistent, or its weight
exceeds f, remove this hypothesis for beam
search.

(4.3) Terminate the hypothesis synthesis when the
LB of every unsynthetized hypothesis exceeds
w*. In the case in which a hypothesis with a
minimal weight of less than w* is obtained, set
this as an optimal supporting hypothesis.
Otherwise, set non instead of optimal sup-
porting hypothesis. Sort the unsynthetized
hypotheses and nonoptimal synthetized
hypotheses according to their LBs, and set
them as a next-candidate-hypothesis for
branch-and-bound search.

(4.4) In the case in which no synthetized hypothesis
is obtained after synthetizing every element,
generate nothing (this means the failure of
the hypothesis synthesis.).

5.3. Hypothesis synthesis

A and B in the algorithms of this section are ‘true’ or
unsynthetized hypotheses. The symbol ** in the algo-
rithms indicates the operation of obtaining the optimal
hypothesis from an unsynthetized hypothesis. This can
be calculated by combining ‘hypothesis-synthesis and’
and ‘hypothesis-synthesis or’ operations, to be described
below.

Algorithm for hypothesis synthesis A&B:

(1) If both 4 and B are true, generate ‘true’.

(2) If Ais true, generate an optimal supporting hypoth-
esis and a next-candidate hypothesis from B™™.

(3) If Bis true, generate an optimal supporting hypoth-
esis and a next-candidate hypothesis from 41+.

(4) Synthetize the elements in 4 and B to generate an
optimal supporting hypothesis and a next-candi-
date hypothesis as described below.

(4.1) Generate an optimal supporting hypothesis
A, and a next-candidate hypothesis 4_OTH
from 4", Also, generate an optimal support-

Algorithm for hypothesis synthesis A or B:
(1) If either 4 or B is true, generate ‘true’.

(2) Synthetize the elements in 4 and B*' in order,
while sorting them every time their LBs are updated
for best-first search.

ing hypothesis B; and a next-candidate

6. Experimental evaluation of inference speed

We evaluate the inference speed of KICK-HOPE II
using the example of fault-diagnosis problems for logic
circuits. We define the state of each gate (‘normal’,
‘stuck-on’ or ‘stuck-off’) as hypotheses. In this example,
the number of hypotheses is in proportion to the number
of gates. Therefore, in large-scale circuits, determining
fault gates from observations becomes very time-
consuming, as the number of possible combinations of
hypotheses (the states of gates) increases exponentially.
KICK-HOPE II effectively solves this problem by setting
up weights for hypotheses. That is, by setting the weight
to

o 1 for the case in which a gate is ‘normal’,

e N for the case in which a gate is abnormal (‘stuck-on’
or ‘stuck-off’) (where N is an adequately large
integer),

170 A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996) 163—171

Inference Time
(CPU time [sec])
100000 T T T
—&— EX1. HOPE
—0—— EX1. HOPEI
10000 [— —&— EX2. HOPE
—0— EX2. HOPEII
. Yy —&— EX3. HOPE
000 y —&— EX3. HOPEIl
100 / ﬁ
/V]
10
]
1
A
10 20 30 40 50 &0 70

Number of Possible Element Hypotheses

Fig. 8. Experimental results for inference times for fault diagnosis
problems in adder circuits.

Table 1
Number of generated solutions in fault diagnosis problems in adder
circuits

Number of hypotheses Number of generated solutions

15 30 45 60

Example Ex 1 HOPE 19 453 11351 -

HOPE II 1 1 1 1

Example Ex2 HOPE 14 498 13006 -

HOPE 11 2 1 1 1

Example Ex 3 HOPE 14 356 13028 -
HOPE I1 1 | 1 1

the problem can be solved before calculating all the com-
binations, since the ‘normal’ state hypothesis has priority
during the inference. Practically, calculating all the com-
binations is not smart, because the number of fault gates
is one or a very few in many cases. As N is larger, the
normal state hypothesis has higher priority. In this
example, we set N to be around the number of gates.

Furthermore, KICK-HOPE 1II utilizes a threshold
weight to limit the solution hypothesis weight. In this
example, we set it so that the number of fault gates
becomes less than four.

Fig. 8 shows the inference times, and Table 1 gives the
number of solutions obtained by KICK-HOPE II and
KICK-HOPE for this example. EX1, EX2 and EX3 in
Table 1 and Fig. 8 are problems with different types of
faults. It is shown that the inference speed of KICK-
HOPE 1I is improved to a great extent because of a
small number of generated solutions.

The number of fault gates in the optimal solution is
zero in EX1, one in EX2, and two in EX3. Fig. 8 and
Table 1 show that the inference time becomes longer as
the number of fault gates increases. However, the reason-
ing is expected to compute the solution in a short time in
most cases, because it is very rare for many gates to
behave abnormally at the same time.

In the case in which the optimal solution-hypothesis

output does not include correct fault gates (for example,
in the case in which the optimal solution indicates one
fault, in spite of their being two fault gates in the circuit),
KICK-HOPE II can easily compute the second optimal
solution because the next-candidate hypothesis is always
kept at every node in the system.

7. Conclusions

We have described a fast hypothetical reasoning sys-
tem called KICK-HOPE II that computes an optimal
solution from a predicate-logic knowledge base and a
given goal. KICK-HOPE II has overcome KICK-
HOPE’s problem, i.c., the increase in the number of
hypothesis-synthesis operations, by incorporating best-
first search, beam search and branch-and-bound search
strategies to obtain an optimal solution.

However, in the case in which the constraints for the
hypotheses are strong enough, the efficiency of KICK-
HOPE is higher than that of KICK-HOPE II. This is
because the number of solutions does not become so
large in both systems, whereas KICK-HOPE II executes
more complicated operations for weights than does
KICK-HOPE. Thus, it can be said that KICK-HOPE
II is useful for the case in which an optimal solution is
required, or the number of possible solutions is supposed
to become large because of weak hypothesis constraints.

The inference time of KICK-HOPE II is influenced by
the weights of the element hypotheses. In the case in
which differences between the weights are large, high
efficiency can be expected in general. On the other
hand, in the case in which differences between the
weights are small, high efficiency cannot be expected,
because of the decrease in the priority-search effect.
However, even in the latter case, the reasoning can be
accomplished before calculating all the combinations,
because the number of hypotheses in an intermediate
node may vary.

The AAA/H algorithm by Ng and Mooney [14] has an
objective similar to that of our system. That algorithm
uses a method of setting a beam width for the beam-
search strategy. The strategy of using a beam width,
however, does not guarantee the optimality of the solu-
tions. Furthermore, it is risky to adopt beam search as a
main strategy in hypothetical reasoning, because the risk
is high that all the synthetized hypotheses in an inter-
mediate node will eventually become inconsistent in the
subsequent reasoning.

Since the computational complexity of nonmonotonic
reasoning, including hypothetical reasoning, has been
proved to be NP-complete or NP-hard [15,16], KICK-
HOPE II cannot exceed the limit of exponential-order
inference times with respect to the problem size as
shown in Fig. 8 and Table 1. To overcome this problem,
approximate methods for computing a near-optimal

A. Kondo, M. Ishizuka/Knowledge-Based Systems 9 (1996) 163-171 171

solution [17], reasoning with a learning or analogy
mechanism [18,19], and knowledge-base compilation
[20] are promising approaches.

Acknowledgements

This work was supported by the Japanese Ministry of
Education Grant-in-Aids 04452190 (B) and 04229105
(special area on knowledge science).

References

[1] D. Poole, R. Aleliunas and R. Goebel, Theorist: a logical reason-
ing system for defaults and diagnosis, in N.J. Cercone and
G. McCalla (eds.), The Knowledge Frontier: Essays in Knowledge
Representation: Springer-Verlag, USA, 1987, pp. 331-352.

{2] D. Poole, A logical framework for default reasoning. Artif. Intell.,
36 (1988) 27-47.

[3] M. Ishizuka and T. Matsuda, Knowledge acquisition mechanisms
for a logical knowledge base including hypothesis, Knowledge-
Based Systems, 3 (1990) 77-86.

[4] T. Makino and M. Ishizuka, A hypothetical reasoning system with

constraint handling mechanism and its application to circuit-block

synthesis, in Proc. PRICA '90, Nagoya, Japan, 1990, pp. 122-127.

F. Ito and M. Ishizuka, Fast hypothetical reasoning system using

inference-path network, J. JSAIL 6 (1991) 501-509 (also Proc. TAI

'91, San Jose, CA, USA, 1991, pp. 352-359).

A. Kondo, T. Makino and M. Ishizuka, An efficient inference for

hypothetical reasoning system for predicate-logic knowledge-base,

in Proc. TAI '91, San Jose, CA, USA, 1991, pp. 360-367 (also

Efficient hypothetical reasoning system for predicate-logic

knowledge base, Knowledge-Based Systems, 6 {(1993) 87-94).

{5

=

[6

—

[7] L. Vieille, A database-complete proof procedure based on SLD-
resolution, in Proc. 4th ICLP, 1987, pp. 74—103.

[8] L. Vieille, From QSQ towards QoSaQ: global optimization of
recursive queries, in Proc. Expert Database Systems, 1988, pp.
421-435.

[9] J. de Kleer, An assumption-based TMS, Artif. Intell., 28 (1986)
127-162.

[10] E. Charniak and S. Shimony, Probabilistic semantics for cost
based abduction, in Proc. AAAI 90, 1990.

[11] A. Bar and E.A. Feigenbaum (eds.), The Handbook of Artificial
Intelligence, Vol. 1, William Kaufmann, USA, 1981.

[12] E.L. Lawer and D.E. Wood, Branch-and-bound methods: a sur-
vey, Operations Research, 14 (1966) 699-719.

[13] T. Ibaraki, Enumerative approaches to combinatorial optimiza-
tion, Annals of Operations Research, 10 and 11 (1987).

[14] H.T. Ng and R.J. Mooney, An efficient first-order Horn-clause
abduction system based on the ATMS, in Proc. AAAI-91, 1991,
pp. 494-499.

[15) H.A. Kautz and B. Selman, Hard problems for simple default
logics, in Proc. KR ’89, Toronto, Canada, 1989, pp. 189-197.

[16] J. Stillman, It’s not my default: the complexity of membership
problems in restricted propositional defauit logics, in Proc.
AAAI-90, 1990, pp. 571-578.

[17) M. Ishizuka and T. Okamoto, A polynomial-time hypothetical
reasoning employing an approximate solution method of 0-1
integer programming for computing near-optimal solution, in
Proc. Canadian Conf. Al, Banff. Canada, 1994, pp. 179-186.

{18] T.Makino and M. Ishizuka, Speedup of hypothetical reasoning by
experience-based learning mechanism, Knowledge-Based Systems,
7 (1994) 189-198.

[19] M. Ishizuka and A. Abe, Fast hypothetical reasoning using
analogy on inference-path networks, in Proc. TAI '93. Boston,
MA, USA, 1993, pp. 232-239.

[20] S. Tsuruta and M. Ishizuka, A compiling method for predicate
knowledge-base for efficient abductive hypothesis synthesis, J.
JSAL 7 (1992) 130137 (in Japanese).

