
Efficient hypothetical reasoning
system for predicate-logic

knowledge base
A Kondo, T Makino and M Ishizuka

A hypothetical reasoning system & an important frame-
work in the development of advanced knowledge-based
systems. It can be effectively applied to many practical
problems including model-based diagnosis, and designs.
However, the inference speed of its PROLOG-based imple-
mentation is slow, and this is particularly because of inef-
ficient backtracking. In order to overcome this problem, a
fast hypothetical reasoning mechanism for propositional-
logic knowledge has been developed by combining the
advantages of forward and backward reasoning styles.
This fast mechanism, however, cannot be applied to
hypothetical reasoning with predicate-logic knowledge
where variables are included as arguments. The paper
presents a fast hypothetical reasoning mechanism for pre-
dicate-logic knowledge as an extension of the above idea. A
reasoning method developed in the deductive database area
is effectively utilized to realize this fast mechanism, which
can even manipulate recursive rules.

Keywords: hypothetical reasoning, predicate logic

Knowledge is often incomplete; that is, it often involves
exception or contradiction. The handling of incomplete
knowledge in the knowledge-base is an important func-
tion in expanding the capability of current knowledge
bases [1]. Hypothetical reasoning can handle such incom-
plete knowledge as hypotheses [2,3]. It can be directly
applied to model-based diagnosis systems [2;3], design
systems [4] etc. Thus the hypothetical reasoning system is
an important framework for a next-generation know-
ledge-based system both from the theoretical and the
practical viewpoints. The most crucial problem in
hypothetical reasoning is its slow inference speed due to
its non-monotonic reasoning nature.

One practical way to overcome this problem is to
incorporate heuristic knowledge which serves to navigate

Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi,
Minato-ku, Tokyo 106, Japan
Paper received 2 September 1991. Accepted 21 February 1992

inference paths. However, this causes a knowledge acqui-
sition bottleneck, because it is difficult to collect all the
necessary heuristic knowledge to cover all the areas of a
given problem domain. Therefore, it is necessary to find
a fast hypothetical reasoning method working under
declarative knowledge.

We have developed two fast hypothetical reasoning
systems for a propositional-logic knowledge base. The
first one is based on the formation of an inference-path
network for a given goal [6]; the second one adopts a
parallel inference on a hypothetical-lattice structure [8].
In order to improve efficiency, both of them avoid inef-
ficient backtracking caused by inconsistency among
hypotheses. Parallel inference methods similar to
ATMSs [5] are employed for this purpose.

In general, variables play an important role in expand-
ing the scope of the knowledge representation capability.
If we represent knowledge in propositional logic with no
variables, the scale of the knowledge base becomes too
large for many practical cases. Using the variables in
predicate logic representation, we can express necessary
knowledge in a compact form. Thus it is required to
develop a fast hypothetical reasoning system capable of
working for predicate-logic knowledge with variables.

The methods of the above fast hypothetical reasoning
systems developed for propositional logic, however, can-
not be applied in a straightforward manner to the predi-
cate-logic case. In this paper we present a fast hypotheti-
cal reasoning mechanism that is effective for predicate-
logic knowledge (actually for function-free predicate
Horn-clause knowledge). A reasoning method developed
in the deductive database area is effectively applied to
this mechanism.

L O G I C - B A S E D H Y P O T H E T I C A L
R E A S O N I N G SYSTEM
Our hypothetical reasoning is based on a logic frame-
work first presented in Theorist [2], where knowledge is
divided into fact (complete knowledge) and hypothesis
(incomplete knowledge). It can deal with incomplete

Vol 6 No 2 June 1993 0950-7051/93/020087-08 © 1993 Butterworth-Heinemann Ltd 87

I n°w'edge I) -Ooa, G
I OK I /

. . .J ' - . . .
"~a solution ~ consistent

Incomplete
Knowledge IK

(Hypothesis)

h _ l K
CK U h t--G
CKu h r-I

Figure 1. Logic-based hypothetical reasoning system

knowledge as hypothesis, which is defeasible knowledge
having the possibility of contradiction with other know-
ledge. The basic behaviour of this hypothetical reasoning
is as follows: if a given goal cannot be proved with only
complete knowledge, the system adopts a consistent set
of the hypotheses for proving the goal.

This selected hypothesis set, which we call 'a solution
hypothesis set', becomes an answer, that is, it may be a
fault in a diagnosis problem or a combination of possible
design components in a design problem. While the
deductive inference mechanism is used to prove the given
goal, it can be said that a reverse deductive inference
mechanism is utilized to search the solution hypothesis
set. Because of this generating function of the consistent
solution hypotheses set, the system has the practical
importance of being applicable to many problems, such
as diagnoses [2,3] and design [4]. Furthermore, it
becomes a framework of abduction.

Figure 1 shows the basic structure of the hypothetical
reasoning. The knowledge base consists of two parts.
One is a set of complete knowledge CK (which is always
true in the world); the other is a set of hypotheses or
incomplete knowledge IK (which is not always true in the
world and sometimes contradicts other knowledge). Let
G be a given goal, and h be a subset of IK. Then the basic
function of the system can be written as that of finding a
solution hypothesis set h satisfying the following three
logical equations:

h ~ _ I K

(h is a subset of IK),

CK U h~-G

(G can be proved from CK and h),

CK U hVE3

CK

Ca :- b,c. d :- h,i.
b : -d . e : - i .
b : -e . f : - j .
b : - f . f : -k .
c :- f,g. j :- I,m.
inconsistent : - i , g .

IK G

@

(

f3

m I

:3

D

Figure 2. Example of inefficiency of PROLOG-based
hypothetical reasoning

(CK and h are consistent). It is desirable in general that
the solution hypothesis set h is a minimal one; that is,
there is no solution hypothesis set h' such that h' c h and
h' satisfies the above three logical equations.

INEFFICIENCY OF S I M P L E
I M P L E M E N T A T I O N U T I L I Z I N G P R O L O G
INFERENCE M E C H A N I S M

A hypothetical reasoning system can be easily imple-
mented utilizing the inference mechanism of PROLOG. In
this case, a necessary set of hypotheses is generated along
the depth-first inference path. This generated hypothesis
set is then subjected to a consistency check. If a contra-
diction is found, a part of the generated hypothesis set is
discarded and another hypothesis is generated in accord-
ance with the backtracking mechanism of PROLOG.
When the inference succeeds, the generated consistent
hypothesis set becomes a solution hypothesis set.

However, this simple implementation using the PRO-
LOG inference mechanism is not efficient, as described
below. Figure 2 exemplifies this inefficient inference
behavior.

• Search for non-promising branches: This is the case
where a branch has a false node on the inference path.
Since the node of this branch has no possibility of
being true, it is useless to search this branch. For
example, in Figure 2, the node j is always false
because its child node m is false. Thus a search of the
node j branch will be in vain.

• Plural searches for the same branch: This is a general
problem with PROLOG'S backtracking. After changing
a hypothesis upon backtracking, no information

88 Knowledge-Based Systems

remains about the backtracked branch. If the same
branch appears again, then it may be searched again.
For example, in Figure 2, at node b, the child node dis
first selected. At the search stage before node g, the
candidate for the solution hypotheses set is [h, i, k].
Adding the hypothesis g, backtracking is invoked
owing to the inconsistency between i and g. At this
time the information about the node f branch is lost.
Therefore, after searching the next child node e of the
node b, the node f branch is searched again. In
hypothetical reasoning, backtracking occurs more
often than in the usual inference cases because of the
possibility of inconsistent hypotheses. Hence this inef-
ficiency is very serious in hypothetical reasoning.

• Plural searches for the same sub-tree: There may be
more than two identical sub-trees on the inference
tree. Since these sub-trees cannot be identified, they
are searched respectively. For example, in Figure 2,
there are two nodes f on the inference tree. In the
inference process, these nodes f are searched. This is
also a general problem of PROLOG-based backward
inference.

• Search for redundant solutions: An obtained solution
may not be a minimal one, i.e. it may be a redundant
solution. Since the PROLOG inference mechanism
retains just one solution at a time, it is impossible to
know whether or not the solution is minimal. For
example, in Figure 2, the solution hypothesis set at the
node d is [h, i] and that of the node e is [i]. As [h, i] is
redundant to [i], the search for the node d should be
avoided.

We describe in the following section the fast hypothetical
reasoning systems that we have developed for proposit-
ional-logic knowledge in order to solve these problems.

FAST H Y P O T H E T I C A L R E A S O N I N G F O R
P R O P O S I T I O N A L - L O G I C K N O W L E D G E

There are two main inference methods, i.e. backward
(top-down) inference and forward (bottom-up) infer-
ence. The backward inference, as in PROLOG, has the
advantage of searching only goal-related nodes, and the
disadvantage of searching the same node more than
twice. Especially in hypothetical reasoning, this disad-
vantage is very serious, because backtracking is invoked
frequently owing to the inconsistency between hypoth-
eses, as described in the previous section.

On the other hand, the forward inference, which is
suitable for searching all the solutions, has the advantage
of not searching the same node twice, and the disadvan-
tage of searching the nodes that are not related to the
given goal. In the ATMS [5], which is usually used in
combination with a forward production system, an
efficient parallel forward inference is realized by main-
taining multiple consistent hypothesis sets (environ-
ments). The control leading to a goal-directed inference
path depends on heuristic rules written by a user in the
ATMS. In our logic-based hypothetical reasoning, we
cannot rely on this type of heuristic knowledge.

The problems described in the previous section can be
solved by combining the advantages of backward and
forward reasoning.

The first problem is due to the depth-first search
mechanism of PROLOG. Even if a false node exists in the
right space of an AND branch, it cannot be recognized

before the search. Since synthetizing hypotheses is very
expensive in hypothetical reasoning, it is important to
prune non-promising branches (branches involving false
nodes) before the hypothesis synthesis. This problem can
be solved by forming a compiled inference path (back-
ward inference process) before synthetizing the hypoth-
eses (forward inference process).

The second problem is due to the fact that the
PROLOG-based version holds a single environment. This
problem can be solved by using a parallel forward infer-
ence with a multiple environment to avoid the backtrack-
ing caused by inconsistency between hypotheses.

The third problem can be solved by merging the identi-
cal nodes into one to form a compiled inference-path
network.

The fourth problem can be solved by holding multiple
environments at each node, and deleting redundant
(non-minimal) hypothesis sets.

Considering these points, we have so far developed the
following two fast hypothetical reasoning systems for
propositional-logic knowledge.

Fast hypothetical reasoning using inference-path
network
In this method [6], a goal-directed initial inference-path
network is first formed by connecting related knowledge.
Identical nodes are merged into one. By propagating
truth or false values from leaf complete knowledge
nodes, inference paths known to be always-true or
always-false regardless of the hypotheses are deleted. As
a result, an inference-path network can be formed for the
given goal. We call this process the 'inference-path for-
mation phase'. The first and third problems can be
solved in this phase. This inference-path formation phase
is very efficient since it is based on a linear-time algor-
ithm for testing the satisfiability of the propositional
Horn formulae by Dowling and Gallier [7], Next,
hypotheses are synthetized in 'a forward inference man-
ner along this inference-path network. We call this pro-
cess the 'hypothesis synthesis phase'. Since the hypoth-
eses are synthetized with holding multiple combinations
(environments), as in the ATMS [5], the second and
fourth problems are solved. Figure 3 shows a formed
inference-path network for the same knowledge base as
is described in Figure 2.

Parallel inference utilizing hypotheses-lattice
structure
In this method [8], a given goal is first unfolded using
only complete knowledge into a number of sub-goals.
Since always-true and always-false nodes, for which
truth values are determined regardless of the hypotheses,
disappear during this process, the first problem is solved.
Next, supporting hypotheses for each sub-goal are
mapped onto a hypotheses lattice. Since minimal
hypothesis sets can be easily found on the lattice, the
fourth problem is solved. Finally, these hypotheses on
the lattices are synthetized into solution hypothesis sets.
Since there is no backtracking, the second problem is
solved. This method does not compile knowledge into a
network structure; the third problem is not solved.

These two hypothetical reasoning systems greatly
improved the inference speed for propositional-logic

Vol 6 No 2 June 1993 89

CK
f

a :- b,c. d :- h,i.
b:-d. e:-i .
b:-e. f:-j.
b:-f. f:-k.
c :- f,g. j :-I,m.
inconsistent :-i,g.

J

IK

g" k" l h. I.
i.

G

d

(

D
Figure 3. Example of efficient hypothetical reasoning uti-
lizing inference-path network

knowledge. In particular, the first system achieved an
inference speed that was thousands of times faster than
that of the system implemented utilizing the inference
mechanism of PROLOG.

EXTENSION TO P R E D I C A T E - L O G I C
KNOWLEDGE

In this section, we consider the application of these fast
hypothetical reasoning mechanisms to the predicate-
logic case. They cannot, however, be applied easily
owing to the unification among the nodes.

First, we consider an extension of the first method,
using the inference-path network [6]. Figure 4 shows an
example of the initial inference-path network for the
predicate-logic knowledge base. In Figure 4, different
variable names are assigned to the same node since the
variable of each rule is independent. Rule recursion is
included in this example.

If a goal is g 1 (a), the instantiation X to a is propagated
along this initial network; then a contradiction occurs
because of different instantiations X to a and b (X/a and
X/b through X/XI/X3/a, X4/X1/b). This is because gl(a)
and g l(b) are expressed as the same node g l(X), although
these nodes should be different nodes. In general, the
truth value of the node cannot be determined before the
node is instantiated. Therefore, in order to form the
inference-path network for predicate-logic knowledge,
knowledge has to be expanded in the Herbrand universe.
However, the size of network in this case will become too
large for practical use.

CK IK G
~gl(X) : - g2(X).] ["hl(a).] ~
gl(X) :- hl(X).]]hl(b).]
g2(X) :- h2(X,Y),gl(Y). /|h2(a,b). I

inconsistent :- h2(X,Y),h2(Y,Z)J [h2(b,c).J

(gl (X))
X/X1. X/X2

@1 '

I
 2(Xl))

Xl/X3 i
@2(X3))

(h 2 (X 3 ~ X 4)) x 4 . / . x .

X3/a,X4!b.. X3/b,X4/c
........................... , ~ 2".'~

Figure 4. Example of initial network for predicate-logic
knowledge base

Thus we consider an extension of the second method,
i.e. parallel inference utilizing a hypothetical-lattice
structure [8]. However, the unfolding method in the pro-
positional-logic case cannot be applied to the predicate-
logic case for the following reasons

Cases where unfolding is inefficient without
hypotheses

Since the variables of the nodes may remain as they are
unless hypotheses are adopted, unnecessary branches not
related to the goal may be searched. Figure 5, for exam-
ple, shows this type of inefficiency with respect to the
application of the unfolding method. Since the node
g3(X1, X) would be instantiated to g3(a, b) with the
adoption of the hypotheses hl(a) and h2(b), the system
needs to prove only the node g3(a, b) for this node g3(Xl,
X) in this case. However, as the variables X and X1 of the
node g3(Xl, X) cannot be determined without adopting
hypotheses, the system goes on to prove the node g3(Xl,
X). This search is inefficient. In this example, the unfold-
ing method without the adoption of hypotheses searches
hypotheses h3(a), h3(b), h4(a) and h4(b), although only
h4(a) needs to be searched.

Cases where unfolding is impossible without
hypotheses

Without determining the variables of the nodes, the
unfolding may become impossible, especially when some
rules are recursive. A recursive rule should be excluded in
propositional logic because the inference does not termi-
nate. However, in the predicate-logic case, the inference
terminates even with recursive rules after the instantia-
tion of the variables. Thus it is natural to permit recur-
sive rules in a predicate-logic knowledge base. Figure 6

90 Knowledge-Based Systems

CK

gl (X) :- hl (X), g2 (X).
g2 (X) :- h2 (Xl), g3 (Xl ,X).
g3 (a,X) :- h3 (X).
g3 (b,X) :- h4 (X).
inconsistent :- h2 (X), h3 (X).

IK G

l
'hl (a).l ~ - ~
h2 (b)./
h3 (a). I
h3 (b). I
h4 (a). I
h4 (b).J

Figure 5. Example in which unfolding is inefficient without
adoption of hypotheses

CK

g (X,X) :- hl (X).
(X,Y) :- h2 (X,Z), g (Z,Y).

inconsistent :- hl (X), hl (Y)
Xd=Y.

IK G
hl (a). " l ~
hl (b). /
h2 (a,b).J

Cg(a, x)

.......... i i
, t TS° i

::~ii!~ii~i~:~l!!'~ :.L :iiii~ijii~::~"~:~:~:::~ ~. : : i : !~. ~:~:. ~i : . ~

Figure 6. Example in which unfolding is impossible with-
out adoption of hypotheses

shows an example where the unfolding is impossible
unless hypotheses are adopted. The goal could be proved
even in this example if all the variables of the nodes were
determined by adopting hypotheses.

Consequently, it becomes necessary in the case of pre-
dicate logic to determine the variables of the node by

< g(X) , - - >

Reasoner I

< g(a), [hl ,h3] >
< g(b), [h2] >

Initial Node

Settled Node
• true node
• false node

node where all
the supporting
hypothesis sets
are determined

Figure 7. Function of KICK-HOPE reasoner

adopting hypotheses, and to propagate this unification
information among the nodes under search. Considering
the above issues, we have developed a fast hypothetical
reasoning system called KICK-HOPE (Knowledge-Base
Handling Incomplete Knowledge - - by Holding Parallel
Solution on Environment Lattice) which is applicable to
function-free predicate-logic Horn-clause knowledge.
The inference mechanism of KICK-HOPE corresponds
to that of the QSQR method [9, 10] in deductive database
technology, but KICK-HOPE can also manipulate
hypotheses (defeasible knowledge).

KICK-HOPE: A FAST H Y P O T H E T I C A L
R E A S O N I N G S Y S T E M A P P L I C A B L E T O
P R E D I C A T E - L O G I C K N O W L E D G E

While rule-type incomplete knowledge is allowed in our
knowledge base, we transform it by pre-processing into
newly introduced unit-clause incomplete knowledge and
a modified complete knowledge version of this rule-type
knowledge. (The rule-type knowledge corresponds to
IDB in deductive databases.) For example, incomplete
knowlege 'a:-b.' is transformed before reasoning into
complete knowledge 'a:-b,c.' and incomplete knowledge
'c.'. Then all incomplete knowledge becomes unit clauses
(fact-type), which are placed at the leaf position of the
inference tree.

The data structure of a node in KICK-HOPE is

(Node-Name, Supporting Hypothesis Sets)

At the initial stage, Node-Name may have variables and
Supporting Hypothesis Sets is undecided. These inital
nodes are transformed into settled nodes through the
reasoner of KICK-HOPE. (See as an example Figure 7).
We call this transformation process 'solving the node' to
obtain all the settled nodes for a certain node as in this
example. The settled nodes are classified into the follow-
ing three categories (each Node-Name is instantiated):

• True node: always true (no need for hypotheses):

(Node-Name, true)

Vol 6 No 2 June 1993 91

Reasoner
Node

C ass f eat on

IIKoow,o0oe bas i 'and' node 'or' node I I (External DB)]
Processing Pr°cessing l] Search /

Processing Synthesis node
Deletion

/ -- , , /
Inconsisteney l] Redundancy Bit-vector

Check I C h e c k Oper?tin°ne ntn Lattice

l l l l n l

Figure 8. Behavior o f K I C K - H O P E reasoner

• False node: always false:

(Node-Name, false)

• Node: where all the supporting hypothesis sets are
determined:

(Node-Name, supporting hypotheses sets)

Figure 8 shows the behavior of the KICK-HOPE rea-
soner. First, a node is judged as any of 'and-node', 'or-
node' or others. If the node is 'and-node', 'and-node
processing' is executed. If the node is 'or-node', 'or-node
processing' is executed. Otherwise, 'knowledge-base
(external DB) search processing' is executed. Algorithms
for 'and-node processing' and 'or-node processing' are as
follows:

((Algorithm for node (A and B)))

(l) Solve the node A. (Settled nodes for the node A
are obtained.)

(2) Unify all the settled nodes for the node A with
the node B.

(3) Solve all the unified nodes B.

(4) Synthetize supporting hypotheses sets among
the mutually unified nodes A and B. Delete
inconsistent or redundant hypothesis sets.

((Algorithm for node (A or B)))

(1) Solve the node A and the node B. (Settled nodes
for both node A and node B are obtained.)

(2) Delete redundant hypothesis sets.

'Knowledge-base search processing' is executed when the

node is not either "and-node" or 'or-node', that is, the
node is a unit clause. This processing is as follows.

((Algorithm for unit clause A))

(I) Obtain a list of return nodes for all knowledge
unified with the node A in the knowledge base.

The return node is classified into the following four
cases, according to the knowledge to be unified:

• Case I: In this case, the node is unified with rule-type
complete knowledge. Node-Name is the body of the
unified complete knowledge, and Supporting Hypoth-
eses Sets remains undecided. Since this return node is
not yet a settled node, this node is solved afterwards.

• Case 2." In this case, the node is unified with fact-type
complete knowledge. The return node becomes a true
node (a settled node).

• Case 3." In this case, the node is unified with incom-
plete knowledge. Node-Name is this unified incom-
plete knowledge (hypothesis), and Supporting
Hypothesis Set is a list of this hypothesis. This return
node is a settled node.

• Case 4: In this case, there is no knowledge to be
unified. The return node is a false node (a settled
node).

Reasoning systems holding parallel solutions, like
KICK-HOPE, take a lot of time for merge operations
such as the synthetizing of hypotheses and the deleting of
redundant hypotheses. In KICK-HOPE, where the
hypotheses are expressed as bit vectors as in the ATMS,
this merge operation is executed efficiently by bit ope-
rations on the hypothesis lattice as in the propositional-
logic case, because this operation is done after the nodes
have been settled.

ESTIMATION OF INFERENCE SPEED

Figures 9 and 10 show Example 1 and Example 2, respec-
tively, of predicate knowledge bases and corresponding
inference-tree structures. Using these examples, we esti-
mate the inference speed of KICK-HOPE compared
with that of the implementation utilizing the inference
mechanism of PROLOG.

While the CK of both the examples is the same, the IK
of Example 2 is an incomplete knowledge set excluding
such knowledge as shape h (,1) from the IK of Example
1. When we represent the scale of knowledge of the
incomplete knowledge h(X,Y) [X = 1,2 N - 1,
Y = 1,2,3] as N, then the number of nodes on the infer-
ence tree is 6N + 4 for both examples. Example 1 is an
example in which the same branches are searched multi-
ply because of the backtracking invoked by the inconsis-
tent condition (inconsistent :-h(X,1) & h(X,3).) in the
inference of PROLOG. On the other hand, Example 2 is an
example in which no plural search happens in both
KICK-HOPE and the PROLOG-based inference.

Figure 11 depicts an inference-time result for Example
1. The inefficiency of the PROLOG-based inference is
apparent in Figure 1 I. For example, the inference time at
N = 3 is 0.12 s in KICK-HOPE and 0.13 s in the PRO-
LOG-based inference mechanism, whereas at N = 15 it is
2.22 s in KICK-HOPE and 2693.86 s in the PROLOG-

92 Knowledge-Based Systems

CK
r

f (X,O) :- f (X,1), f (X,2).
f (X,1) :- h (X,1).
f (X,1) :- h (X,2).
f (X,2) :- f (X+1,0).
f (X,2) :- h (X,3).
inconsistent :- h (X,1), h (X,3).
inconsistent :- h (X,2), h (Y,3), i

X=~Y.

IK

h (0,1).
h (0,2).
h (0,3).

h (1,3).

h (r~-1,1
h (n-1,2).
h In-1 R~

G CK
"f (X,O) :- f (X,1), f (X,2).
f (X,1) :- h (X,1).
f (X, 1) :- h (X,2).
f (X,2) :- f (X+1,0).
f (X,2) :- h (X,3).
inconsistent :- h (X,1), h (X,3),
inconsistent :- h (X,2), h (Y,3),

X ~ Y .

IK
(0,2).

h (0,3).
h (1,2).
h (1,3).

h (n-1,2)
h (n-1,3).

G

Figure 9. Knowledge base and corresponding inference-
tree structure (Example 1)

based inference mechanism. (These data are measured on
a Sun-4.)

Figure 12 depicts an inference-time result for Example
2. This shows that the PROLOG-based inference mecha-
nism infers slightly faster than KICK-HOPE. This phe-
nomenon is due to the high processing cost of the merge
operation in KICK-HOPE whereas no inefficiency of
plural searches in the PROLOG-based inference appears in
this case. However, the slope of the inference-time
increase of KICK-HOPE is not steep, and its inference
speed does not exceed a constant times (only 2-3 times)
the range of the PROLOG-based inference mechanism.

These two graphs reveal that the inference speed of the
PROLOG-based inference is extremely affected by back-
tracking, but the KICK-HOPE speed is not; that is, it
depends only on the number of nodes on the inference
tree. In practical knowledge bases, the number of back-
trackings is expected to lie between those in Example 1
and Example 2. Thus KICK-HOPE is superior to a large
extent in inference speed over the hypothetical reasoning
system using the PROLOG-based inference mechanism.

C O N C L U S I O N S

We have described the fast hypothetical reasoning
system called KICK-HOPE for function-free predicate-
logic Horn-clause knowledge. KICK-HOPE has solved
the second and fourth problems described in the third
section.

The second problem regarding wasteful multiple
searches for the same branch is a crucial one, especially
in hypothetical reasoning, because of the backtracking

Figure 10. Knowledge base and corresponding inference-
tree structure (Example 2)

._E
I -
~D
Q..
O

[sec]

10 4

10 2

101

10 o

10 "1

o Implementation using
Prolog Inference Mechanism

• KICK-HOPE

I I 1 I !

3 6 9 12 15

N (scale of knowledge-base)

Figure 11. Inference time for knowledge base and goal of
Example 1

Vol 6 No 2 June 1993 93

[sec]

104

103

E lo 2

13. O 101

100

10-1

Implementation using
Prolog Inference Mechanism

• KICK-HOPE

L I I I

3 6 g 12 15

N (scale of knowledge-base)

),

Figure 12. Inference time for knowledge base and goal of
Example 2

invoked by inconsistency between hypotheses. By solv-
ing this problem, the inference speed has been largely
improved (see the previous section).

For the fourth problem, the deletion of redundant
hypothesis sets at each node is very important for predi-
cate-logic knowledge. In KICK-HOPE, at each node,
after settling the left-positioned child node, the right-
positioned child nodes are unified. Deleting redundant
hypothesis sets at the left-positioned child node decreases
the number of the right-positioned child nodes to be
unified: this contributes to narrowing down the right
search space.

Thus the feature of KICK-HOPE is that it searches
just once for only the necessary inference path related to
proving the goal. In general, the number of nodes on the
inference trees, however, increases exponentially with
respect to the scale of knowledge. Accordingly, the infer-
ence speed of KICK-HOPE increases exponentially, as
seen in Figures 11 and 12. To make KICK-HOPE faster,
we should investigate techniques for lowering the cost of
the merge operation, such as synthetizing hypotheses and
deleting redundant hypothesis sets. There are some
efficient techniques for join operations with bit vectors in
relational database technology [11, 12]. Still, since the
computational complexity of non-monotonic reasoning
including hypothetical reasoning has been proved to be
NP-complete or NP-hard [13], even in the propositional-
logic case, the inference speed in the worst case cannot
exceed the limit of the exponential order if we stay in
ordinal search mechanisms. To overcome this limit, the
transformation of knowledge (learning) [14] and the util-
ization of past reasoning results (analogy) [15] are pro-
mising approaches. We .are now exploring these
approaches for further efficient hypothetical reasoning
systems.

A C K N O W L E D G E M E N T S

The authors are grateful to Professor Randy Goebel
(University of Alberta, Canada) for his comments. This
work was supported by Ministry of Education Grant-in-
Aids 92452154 (B) and 02215105 (Special Area on Intelli-
gent Information & Communications).

REFERENCES

[1] M. Ishizuka: An Approach Toward Next-Gene-
ration Knowledge-Base System by Handling
Incomplete Knowledge, Journal of JSAI, Vol. 3,
No. 5, pp. 552-562 (1988) (in Japanese)

[2] D. Poole, R. Aleliunas and R. Goebel: Theorist; A
logical Reasoning System for Defaults and Diag-
nosis in The Knowledge Frontier: Essays in the
Knowledge Representation (N. J. Cercone and G.
McCalla (Eds.)), Springer-Verlag, USA (1987)

[3] M. lshizuka and T. Matsuda: Knowledge Acqui-
sition Mechanisms for a Logical Knowledge Base
including Hypothesis, Knowledge-Based Systems,
Vol, 3, No. 2, pp.77 86 (1990)

[4] T. Makino and M. Ishizuka: A Hypothetical Rea-
soning System with Constraint Handling Mecha-
nism and its Application to Circuit-Block Synthe-
sis, Proc. PRICAI'90, Nagoya, pp. 122 127 (1990)

[5] J. de Kleer: An Assumption-Based TMS, Artificial
Intelligence, Vol. 28, pp.127 162 (1986)

[6] F. Ito and M. Ishizuka: Fast Hypothetical Reason-
ing System using Inference-Path Network, Journal
of JSAI, Vol. 6, No. 4, pp.501-509 (1991)

[7] W.F. Dowling, J. H. Gallier: Linear-time Algor-
ithm for Testing the Satisfiability of Propositional
Horn Formulae, Journal of Logic Programming,
Vol. 3, pp.267- 284 (1984)

[8] A. Kondo, T. Makino and M. Ishizuka: An
Efficient Inference for Hypothetical Reasoning
System by using Parallel Solving Technique with
Environment Lattice, 40th Nat. Conv. IPSJ, 6c-1
(1990.3) (in Japanese)

[9] L. Vieille: Recursive Axioms in Deductive Data-
base: The Query/Subquery Approach, Proc. First
International Conference on Expert Database
Systems, pp. 179-193 (1986)

[10] S. Nishio and Y. Kusumi: Evaluation Methods for
Recursive Queries in Deductive Databases, Jour-
nal of IPSJ, Vol. 29, No. 3, pp.240-255 (1988) (in
Japanese)

[11] Y. Stanley and W. Su: Database Computers
McGraw-Hill (1988)

[12] E. Ozkarahan: Database Machines and Database
Management Prentice-Hall (1986)

[13] H .A. Kautz and B. Selman: Hard Problems for
Simple Default Logics, Proc. of KR'89, Toronto,
Canada, pp.189-197 (1989)

[14] T. Makino and M. [shizuka: A Hypothetical Rea-
soning System with Experiences-Based Learning
Mechanism, 1990 Autumn Nat. Conv. IEICE, No.
D- 155 (i 990.10) (in Japanese)

[15] A. Abe and M. lshizuka: Fast Hypothetical Rea-
soning System using Analogy on Inference-Path
Network, IPSJ Technical Report 90-AI-72-2
(1990.9) (in Japanese)

94 Knowledge-Based Systems

