
An Extensible Approach for Mapping Relational DB

to RDF

Mamdouh Farouk, Mitsuru Ishizuka

Creative Informatics Department

 Graduate School of Information Science & Technology, The University of Tokyo

Tokyo, Japan

mamdouh@mi.ci.i.u-tokyo.ac.jp, ishizuka@i.u-tokyo.ac.jp

Abstract—Converting web data to semantic format is an

important task for the next generation of the web. A huge

amount of web data is stored in databases. Moreover, many

approaches have been proposed to map between DB and web

ontologies. This paper proposes an approach to convert DB to

RDF with extra user-defined rules. These extra rules, which

extend the original data, enable semantic query engines to answer

more queries. The proposed approach generates not only RDF

data based on the mapping of DB to RDF but also extra

discovered relations based on user-defined rules. A prototype for

the proposed approach is implemented to show the feasibility of

the proposed idea.

Keywords mapping DB to RDF; semantic web

I. INTRODUCTION

Semantic web is a vision in which a web agent can
understand and interact with web resources [1]. In order to
enable web agent to understand web data, this data should be
represented into a machine-readable format. There are many
semantic web languages that are formalized to represent web
data such as RDF, DAML, OWL. The Resource Description
Framework (RDF) is a W3C recommendation that represents
current web into machine understandable format.

Moreover, a huge amount of web data are stored in
databases [2]. Therefore, many researchers pay much care to
convert relational DB to RDF triples. Moreover, many
researchers try to represent dynamic web pages into semantic
format [3]. In the other hand, the process of converting DB to
RDF should be simple [4] to encourage the DB owner to
convert his data.

There are different approaches to convert DB to RDF
[2][5][8]. A common step in these approaches is finding a
mapping between DB schema and ontology structure. Based on
this mapping, the DB can be accessed semantically either by
generating RDF corresponding to original data or by keeping
the data in the DB, where it can be managed better, and
generating RDF on demand. There are different approaches for
the latter way. One approach is converting SQL query result to
RDF on the fly when the DB is queried [6]. This approach is
suitable in case of dynamic web pages that retrieve content
from underlying DB. Another approach is developing a

semantic access layer as an intermediate layer between web
agents and normal DB [7].

One approach that maps and converts DB to RDF is D2R
[7]. D2R tool auto-generates the mapping file and the user
modifies this generated file to fit the appropriate meaning.
Moreover, D2R server enables the user to query the generated
RDF using SPARQL queries. Dumping RDF data that
represents DB is also supported by D2R.

On the other hand, the main objective of converting
relational DB to RDF is to enable web agents to understand
this data. However, there are some difficulties facing web agent
to understand this data. One important issue that should be
faced is finding implicit data. In other words, how the web
agent can infer the implicit data like a human who read the
normal web pages. Showing this implicit data will enables web
agent to deeply understand web data.

This paper proposes an approach to convert relational DB
to RDF with additional relations discovered based on user-
defined rules. Unlike other approaches, our approach provides
not only mapping and generating RDF but also adding extra
knowledge, which is very useful in query answering process. In
other words, this work proposes adding extra knowledge (user-
defined rules) to the mapping schema level to improve the
query-answering process. The generated RDF semantic
representation together with the added knowledge can be used
by intelligent search engines to infer more data and obtain
accurate search results.

Although, DB is an excellent tool to store and manage data,
it needs simple inference to improve its performance of
querying data [5]. This work is an extension to DB2RDF
approach that converts DB to RDF data. This paper does not
focus on converting DB to RDF. However, it focuses on adding
extra knowledge (user-defined rules) during mapping process.
These rules are useful to discover extra relations and to be easy
for web agents to understand web data. In the proposed
approach, the generated RDF data contains not only original
DB data but also inferred data that supports query answering
process.

Another related approach, which tries to express rules and
infers additional RDF data, is SPIN [9]. SPIN is a group of
RDF properties that can be used to express rules. These rules

179978-1-4673-0483-2 c©2012 IEEE

attached to a specific ontology class and can be applied to infer
data, or modify the current data. spin:rule property can be used
to define an inference rule using SPARQL construct or
insert/delete.

Moreover, SPIN adds rules to ontology level. However, our
approach separates between rule level and ontology level.
Separation between ontology and rules levels gives the user
flexibility to add rules. In other words, it is difficult for the user
to update the standard shared ontology to add his own rules.
Moreover, many users may add rules to infer the same property
depending on their own data. The user wants to extend his data
depending on the semantics of the data and the expected
queries to be asked. Therefore, the users have different data
want to make many rules even for the same ontology.
Attaching rules to dataset gives flexibility to the users and
avoids rules conflicts on ontology level.

The remainder of this paper is organized as follows. Section
2 describes the overall system architecture as well as system
details. The experiments and results are discussed in section 3.
Finally, section 4 provides the conclusion of this research.

II. SYSTEM ARCHITECTURE

Although, there are many approaches convert relational
database to RDF, our contribution is adding extra knowledge
(user-defined rules) during the mapping process. This
knowledge extends the original data and enables search engines
to answer more queries easily.

The proposed system is divided generally into three main
tasks as shown in Fig. 1. The first task is mapping between DB
schema and web ontologies. This step is semi-automatic in
which the user uses the developed mapping tool, Fig. 2, to map
DB to ontology. The second task is adding extra knowledge to
the mapping file. This knowledge can be used as an extension
to the DB. The last task is RDF generation, which generates
RDF from both mapping schema and extra-added user-defined
rules.

A. Mapping between DB and RDF

In our approach, the mapping between relational DB and
RDF is a semi automatic process in which the user maps
between schema of DB and ontology structure. The user uses
the developed tool, Fig. 2, to map between DB tables and

classes from different ontologies. The user also maps between
DB fields and ontology properties. The relation between DB
objects should be represented in the mapping by map foreign
key fields to appropriate ontology property that represents
corresponding relation between ontology classes. The
generated mapping is expressed into XML intermediate format.

There are three steps for this mapping. The first step is
mapping DB tables to ontology classes. In this step, the user
selects ontology class corresponding to each table. The user
can select classes belong to different ontologies. The second
step is mapping between DB fields and ontology properties.
The user selects the suitable property for each field. The
mapping tool helps users to do this mapping easily and
correctly. The last step is mapping relations of the DB. In this
step, the user represents M-M and 1-M relation in terms of
ontology relations. M-M relation is considered as two relations
each one is 1-M relation. The user maps the foreign key field to
the appropriate ontology property that represents same relation
between ontology classes. For example, consider that a DB for
university researchers contains two tables: researchers, and
departments. The field deptID in researchers table is a foreign
key refers to departments table. In such case, the user may map
deptID field to hasaffiliation property in person class. The
domain of hasaffiliation property is organization class. So the
hasaffiliation property represents the relation between
researchers table and department table.

B. Adding Rules

After finishing mapping between DB schema and ontology,
our approach adds extra knowledge to the mapping file. This
extra knowledge is considered as an extension for the original
data stored in the DB. Moreover, this knowledge is used to
infer more data from the DB and to support query answering
process.

To clarify the idea of adding user-defined rules to the
process of mapping DB to RDF consider this scenario. The
database of international semantic web conferences (ISWC)
contains information about some conferences in semantic web
field and other data related to these conferences such as

Figure 2. The mapping tool

Figure 1. System architecture

Mapping DB to

web ontology

Adding user-

defined rules

Dumping DB into RDF

Inferring extra data

Mapping

schema

Mapping

schema+rules

 RDF

DB

Ontology

180 2012 Japan-Egypt Conference on Electronics, Communications and Computers

published papers, authors and so on. Normally, this database is
queried about authors and their interest points or their
publications. For example, who is interested in semantic
representation?. Who knows Prof. John? The DB or the
traditionally generated RDF data cannot properly answer these
questions based on the available data. Moreover, knows
relation in foaf ontology does not exist neither in DB nor in the
generated RDF data. However, a human can suggest an answer
based on a simple inference. Consequently, adding some
inference rules helps web agents to understand the data and
answer such queries. For example, the following rules can be
added:

• If a person A is an author to a paper Y, and a person B

is an author to the same paper Y A knows B.

• If a person A is an author to a paper Y, and the main

topic of Y is T then A is interested in T.

Using these rules is considered as a DB extension that adds
more relations to the original relational database. As a result,
these rules enable search engines to answer more queries.
Adding user-defined rules depends on the meaning of the DB
schema and the queries that used to be asked. These rules are
added during the mapping process, which occurs only once.
Using these rules solves the problem of finding the implicit
information and enables web agents to go one more step to
understand web data.

 Production rule format, “condition action”, is used to
represent the user defined rules. The syntax of production rule
is carefully designed to be easy for implementation of
generating extra data and to be easy for reasoning. The
condition part syntax is the same as SPARQL query condition
syntax. The action part is also represented into SPARQL
syntax to be easy for execution. Fig. 3 shows an example for
the added rules. The first part of the rule is xml namespaces for

the used vocabularies. The second part is the conditions of the
rule represented into SPARQL syntax. The last part is the
action part, which is true if the conditions are true.

Moreover, there are two approaches to use these rules. The
first one is to expand the original data with adding new inferred
information. For example, adding the inferred relations
between DB objects to RDF data. In this way, the generated
RDF data contains more relations than relational DB. One
advantage of this approach is that there is no need for new web
agents that can use the new added rules. In other words, a
normal semantic agent can make the use of these rules and
consume the new added data in the same way as the original
data without change its behavior. However, adding new data to
the original one increases data.

The other approach to use the defined rules is to use these
rules during the processing of original data to infer more data
on the fly without storing the new data. This approach keeps
the size of the original data. However, there is overhead
processing of using inference rules during searching or
processing the original data. the proposed system supports the
first approach because the generated data can be consumed
using normal SPARQL query engines.

C. Dumping RDF Data

The process of dumping or generating RDF data
corresponding to DB contains two steps. The first step is
automatic generation for RDF triples that represent the
relational DB. This step is based on the mapping between DB
schema and ontology. The second step is applying the user-
defined rules on the generated RDF and adding the inferred
data to the original RDF.

Dumping Relational DB into RDF. This process auto-
generates RDF data corresponding to the data stored in the DB.
Moreover, the proposed system dumps RDF data based on the
mapping file generated by the developed mapping tool. The
following steps should be executed to generate RDF data.

1- From the mapping file, get all tables mapped to ontology

classes.

2- For each table

a. Create an SQL select query to retrieve all data in the

table

b. For each retrieved record, create an instance of the

corresponding ontology class of the current table. //

uri of the created instance is constructed from the

following pattern (table name/ auto-increment

number). i.e papers/23.

c. For each mapped field belongs to this table in

mapping file, create an instance of the corresponding

property inside the created class instance

d. Assign a value to the created property from the

retrieved data.

e. If the field represents a foreign key, the value of the

created property will be a reference to another class

instance

<rule id="2" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:iswc="http://annotation.semanticweb.org/iswc/iswc.daml#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >

 <text>

 if two people are authors for the same paper, then they know each
others.

 </text>

<condition>
<con>

{

 ?ppr rdf:type iswc:InProceedings.
 ?person rdf:type foaf:Person.

 ?person2 rdf:type foaf:Person.

 ?ppr dc:Creator ?person.
 ?ppr dc:Creator ?person2.

 FILTER (?person != ?person2)

}
</con>

</condition>

<action>
{ ?person foaf:knows ?person2. }

</action>

 </rule>

Figure 3. Example of user-defined rules

2012 Japan-Egypt Conference on Electronics, Communications and Computers 181

This algorithm is implemented using Java. It generates the
corresponding RDF of a DB including the relations between
DB objects depending on mapping schema file.

Adding Extra Inferred RDF Data. Using the user-defined
rules, our approach inferred additional RDF triples. These
triples are added to RDF data that represents DB. Rule syntax
that facilitates the process of inferring and adding extra RDF is
adopted. The decided format quoted from SPARQL syntax. As
a result, it is easy to use SPARQL engine in inference process.

Furthermore, the proposed algorithm for inferring extra
RDF data uses forward chaining to fire the rules. This means
that if the condition part of a rule is true based on the available
RDF data then the action part should be inserted as a new RDF
triple into the RDF data. The algorithm of adding RDF triples
based on the user-defined rules is as follows.

Inputs: RDF data, user-defined rules

Output : new RDF data

For each user-defined rule

1- Get condition part of the rule

2- Construct a SPARQL select query

3- Execute the SPARQL query on RDF data

4- Replace variables in the action part of the rule with

the values from the query result

5- Construct a SPARQL update query using the action

part

6- Execute the update query to insert the new

information to the RDF data.

This algorithm takes RDF data that represents DB and the
extra rules as inputs and adds inferred RDF triples to RDF data
based on rule execution. The second step in the above
algorithm constructs a SPARQL query from the condition part
of the current rule. The query construction is simple, the
common variables in the condition part and action part are
extracted and a select query for these variables is constructed
with the same conditions stated in condition part of the rule.

The variables in the action part are replaced with the resulted
values. In addition, a new SPARQL query (insert query) is
constructed from action part after replacing the variable. The
new query adds inferred data to the RDF data.

Moreover, the process of adding discovered relations in the
proposed approach is simple and powerful. Actually, this
process implemented as execution of two SPARQL queries: a
select query to check rule conditions, and an insert query to
execute the action part of the rule. These two queries are
constructed directly based on adopted SPAQRL syntax rule
format. Consequently, adding discovered relations to RDF data
is easy to implement and can be executed in a high
performance way.

III. EXPERIMENTS

A prototype for the proposed approach is implemented
using C#. The developed tool can deal with different ontologies
(RDF, DAML, OWL) and different DBMS (MySQL, SQL,
MSAccess). This experiment applied on ISWC DB which is
available on the Internet, http://www4.wiwiss.fu-

berlin.de/bizer/D2RQ/example/iswc-mysql.sql. This DB is used by
D2R tool as an example [7]. ISWC DB contains information
about papers and authors involved in some conferences related
to semantic web research. The first step to convert ISWC DB
to RDF is to map between DB schema and ontology. In this
mapping, we used five different ontologies:

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns:foaf=http://xmlns.com/foaf/0.1/

xmlns:iswc=http://annotation.semanticweb.org/iswc/iswc.daml#

xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#
xmlns:dc=http://purl.org/dc/elements/1.1/

A part of the mapping result is shown in Fig. 4. In this
mapping, DB table papers is mapped to Inproceedings class in
iswc ontology. The fields of the papers table are mapped to
ontology properties as shown in Fig. 4. For example, the field
title in the table papers mapped to Title property in Dublin Core
ontology.

In addition, we add user-defined rules to the mapping file to
be used as an extension to the original data. According to the
meaning of iswc DB and the queries to be asked, we added
some rules to the mapping file. The following rules are added
during the experiment.

1. If a person A is an author to a paper Y, and a person B is

an author to the paper Y then A knows B.

2. If a person A is an author to a paper Y, and the main

subject of Y is T A is interested in T.

3. If a person A is an author for three papers that have same

topic T A is expert in T

The first rule adds knows relation information to the DB.
Knows is a relation in foaf standard ontology that relates two
people. ISWC DB does not contain data about relations
between people. The second rule adds author’s interest points
relation which relates between person and topic. The original
data contains some data about the interest points of the authors.
However, the rule adds more inferred data to the original data.

<DB>
 <bridge_table name="rel_person_paper">

 <foreignkey field="PersonID"
belongToClass="InProceedings" mapToProp="Creator"

refToClass="persons" corespondFK="PaperID"

ontoIndex="dc" />
 </bridge_table>

 <table name="papers" RTClass="InProceedings"

ontoIndex="iswc">
 <primarykey>

 <field name="PaperID" />

 </primarykey>
 <foreignkey name="Conference" RTProperty="conference"

RTTable="conferences" ontoIndex="iswc" />

 <field name="Title" RTProperty="Title" ontoIndex="dc" />
 <field name="Abstract" RTProperty="Abstract"

ontoIndex="dc" />

 <field name="Year" RTProperty="Date" ontoIndex="dc" />
 </table>

….

Figure 4. Mapping between DB and ontology

182 2012 Japan-Egypt Conference on Electronics, Communications and Computers

By applying the algorithm of adding inferred data to RDF,
more relations are added to the original data. This extra data
should improve query answering process and enable web agent
to get implicit information. For example, the following
SPARQL query asks about people who know Prof.
Bergamaschi.

SELECT distinct ?x
WHERE
 {
 ?x foaf:knows <http://mamdouh:2020/persons/10> .
 }
By running this query on the original data, no result will be

returned. However, after applying our approach the query
returns the following results:
<http://mamdouh:2020/persons/11>. This means that the
person with the previous URI, Francesco Guerra, knows Prof.
Bergamaschi

 Comparing to D2R approach, our approach provides
conversion from relational DB to RDF. In addition, it uses
extra user-defined rules to generate more RDF data. Finally,
our approach generates more information represented into RDF
that helps semantic search engines to answer more queries.

IV. CONCLUSION

All web data should be available into semantic languages
even implicit data because this datasets should be machine
understandable. Mapping between DB to RDF is very
important and many researches investigate this point. However,
this paper proposes a new approach that adds extra user-
defined rules to the mapping between DB and web ontologies.
These rules that add the implicit data are considered as an
extension to the DB. A prototype is implemented to show the
feasibility and effectiveness of the proposed idea. Experiment

shows that using the proposed approach adds more relations,
which are useful to facilitate query answering.

V. REFERENCES

[1] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web,” Scientific
American, Vol. 284, No. 5, 2001, pp. 34-43.

[2] Siegfried Handschuh, Raphael Volz, Steffen Staab, Annotation for the
Deep Web, IEEE Intelligent Systems, v.18 n.5, September 2003, pp.42-
48.

[3] Zhuoming Xu, Shichao Zhang, and Yisheng Dong, Mapping between
Relational Database Schema and Owl Ontology for Deep Annotation,
WI'06: Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, IEEE Computer Society, 2006, pp.
548-552.

[4] Svihla, M., Jelinek, I.: The Database to RDF Mapping Model for an
Easy Semantic Extending of Dynamic Web Sites. Proceedings of IADIS
International Conference WWW/Internet, Lisbon, Portugal, 2005, pp.27-
34

[5] Pan, Z. and Heflin, J.: DLDB: Extending Relational Databases to
Support Semantic Web Queries, In Workshop on Practical and Scaleable
Semantic Web Systems, The 2nd International Semantic Web
Conference (ISWC2003) (2003).

[6] Mamdouh Farouk, Samhaa R. El-Beltagy, Mahmoud Rafea, "On-the Fly
Annotation of Dynamic Web ,” Proceedings of the First International
Conference on Web Information Systems and Technologies (WEBIST
2005),” Miami (USA), may 2005, pp 327-332.

[7] Chris Bizer, and Richard Cyganiak :D2R server Publishing Relational
Databases on the Semantic Web , www4.wiwiss.fu-berlin.de/bizer/d2r-
server/ , 2010

[8] Ismael Navas Delgado, Nathalie Moreno Vergara, Antonio C. Gomez
Lora, María del Mar Roldán García, Iván Ruiz Mostazo, José Francisco
Aldana Montes: “Embedding Semantic Annotations into Dynamic Web
Contents”. Proceeding of 15th international workshop on database and
Expert Systems Applications, 2004, pp. 231-235

[9] Holger Knublauch, James A. Hendler, Kingsley Idehen “SPIN -
Overview and Motivation”,
http://www.w3.org/Submission/2011/SUBM-spin-overview-20110222/ ,
February 2011

2012 Japan-Egypt Conference on Electronics, Communications and Computers 183

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

