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A hypothesis-based reasoning system handles a know- 
ledge base including complete (fact) and incomplete 
(hypothesis) knowledge. The handling of  the incom- 
plete knowledge plays an important role in realizing 
advanced AI  functions such as commonsense, flexible 
matching, learning, etc. From both theoretical and 
practical viewpoints, the hypothesis-based logical 
reasoning system can be considered to be an important 
start point towards a next-generation knowledge base 
architecture. This paper describes an enhanced know- 
ledge representation of  the hypothetical reasoning sys- 
tem designed particularly for interactive diagnosis 
problems. The mechanisms of  two knowledge acquisi- 
tion modules developed for this knowledge base in- 
cluding hypotheses are then described. The first mod- 
ule, which is based on an inductive inference mechan- 
ism for the knowledge including hypotheses, enables 
multiple-concept formation from given examples. The 
key technology of  this mechanism is a minimum 
generalization extended to the knowledge including 
hypotheses. The second module provides knowledge 
assimilation and management functions for the frame 
knowledge base constructed on the hypothetical 
reasoning system. That is, this module enables the 
following functions: (1) the system can assimilate new 
knowledge while maintaining the consistency and non- 
redundancy of  the knowledge base; (2) the system 
rearranges the knowledge base when existing knowlege 
is deleted; and (3) the system can control the inheri- 
tance link of the frame knowledge base in response to 
an input indicating that the property inheritance from 
an upper frame is denied as an exceptional case. The 
nonmonotonicity of  the hypothetical reasoning system 
is considered in these mechanisms. Shapiro's logical 
debugging algorithm is employed effectively to identify 
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the knowledge which causes inconsistency. The whole 
system has been implemented using the meta- 
programming of Prolog. 

Keywords: logical knowledge base, hypothetical 
reasoning, knowledge assimilation, knowledge man- 
agement, inductive inference 

Today's knowledge systems are mostly based on the 
deductive inference mechanism which has thus far been 
explored in the artificial intelligence field. An impor- 
tant theme in the development of future knowledge 
systems is to explore advanced AI mechanisms such as 
recognition, analogy, learning, creative functions, 
abduction, etc. One key area is the handling of 
incomplete knowledge in addition to complete know- 
ledge in a knowledge base. This incomplete knowledge 
includes hypothetical knowledge, knowledge with ex- 
ceptions, commonsense knowledge which works in the 
background in case of need, the knowledge which 
interpretation can generalize in case of need, etc. If we 
write these sorts of incomplete knowledge in a know- 
ledge base, the incomplete knowledge becomes false in 
some situations, and conflicting answers may be de- 
duced from the knowledge base. However, the incom- 
plete knowledge greatly enhances the flexibility of the 
knowledge base, and becomes a key factor in the 
realization of advanced AI mechanisms. 

As one step towards an advanced knowledge base 
capable of handling incomplete knowledge, this paper 
will deal with a hypothesis-based logical reasoning 
system, since this is important from the viewpoints of 
applicability to practical diagnosis and design problems 
as well as theoretical foundation. A hypothetical 
reasoning system in the logic framework has been 
proposed by Pool et al. 1. In this paper it will be 
presented as an enhanced knowledge representation in 
a hypothesis-based logical reasoning system suitable for 
diagnosis or classification problems. An inductive 
inference module will then be presented which gener- 
ates knowledge, including hypotheses (incomplete 
knowledge), from given examples. Also described is a 
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knowledge assimilation and management module for a 
knowledge base including hypothesis knowledge. The 
mechanisms described in this paper have been im- 
plemented as a meta-interpreter on Prolog. Prolog-like 
notations, such as ':-', are used throughout the paper. 

ENHANCED KNOWLEDGE 
REPRESENTATION 

The hypothetical reasoning system on the logic 
framework is described in Reference 1, where the 
fragments of knowledge are classified into two sets: 
facts (complete knowledge) and hypotheses (incom- 
plete knowledge). The set of facts F represents the 
knowledge which is always true in a problem domain, 
while the set of hypotheses H represents the knowledge 
which is not always true and sometimes contradicts 
other knowledge. Figure 1 shows the conceptual 
architecture of the hypothesis-based logical reasoning 
system. 

When a set of observations O is given, the basic 
mechanism of the hypothetical reasoning system tries 
to construct h, which is the subset of H (i.e., h _C H) 
satisfying the following logical relations: 

FUh[-O 
FUh~D 

(O is deducible from FUh) 
(FUh is not inconsistent) 

That is, h is a set of consistent hypotheses to explain the 
observation O. This formalism is also called consistent 
theory formation, which is achieved through a logical 
theorem proving procedure. It is shown that default 
logic in the scope of normal default 2 can be dealt with 
in the framework of this hypothesis-based logical 
reasoning ~. It is important practically that the above 
formalism is well fitted to logical diagnosis or design 

Fact F 

Subset H 

Observation 

0 

Consistent 

Hypothesis H 

Figure 1. Hypothesis-based logical reasoning system 

problems if we regard the possible causes of the fault or 
the possible components of the design as hypotheses. 

More than two subsets of hypotheses often satisfy the 
above condition, so that a process of selecting one 
subset of hypotheses must be invoked. This process 
generates a series of critical questions to distinguish one 
subset from the others. The use of hierarchical relations 
among the hypotheses in the hypothesis formation and 
selection processes is studied in Reference 3. 

Although consistency checking is an essential func- 
tion in hypothetical reasoning, it cannot be simply dealt 
with using Prolog, in which the scope of knowledge 
representation is restricted to Horn clauses and logical 
negation cannot be expressed. The MESON proof 
procedure 4 provides a way to implement full first-order 
predicate logic using Prolog, and since this paper 
emphasizes theoretical aspects, a hypothesis-based 
logical reasoning system will be constructed around 
such an implementation. (One problem of using the 
MESON proof procedure is its slow inference speed). 
The inconsistency in this case is, therefore, the situa- 
tion that P and -~P co-exist in the same world under 
consideration. The logical negation in the current 
system is expressed as n ( ) ,  in contrast to not( ) which 
denotes the negation as failure in usual Prolog. 

Considering the application of the hypothetical 
reasoning system particularly to diagnosis problems, 
the knowledge representation format is defined as: 

fact (ID, NID, PREC, logical-form knowledge) 
for fact knowledge. 

hyp(Name, ID, NID, PREC, logical-form know- 
ledge) 

for hypothesis knowledge. 

where 

ID = identifier of the knowledge (usually numeric- 
al). 
NID = list of ID which cannot be used together with 
its knowledge. This is used to express exclusive 
knowledge. 
PREC = preconditions that have to be set before the 
use of the knowledge. 
Name = name of hypothesis. This takes a predicate 
form in which arguments denote the variables 
appearing in the hypothesis knowledge. 

The following shows some examples of this knowledge 
representation format: 

fact(i,[2],[ ],(q:-p)) 
fact(2,[1],[ ],(r:-p)) 
hyp(nml,3,[ ],[temp_pointl (T1)],(T1 >80:-p)) 

The ID, NID and PREC are introduced to express and 
utilize the knowledge of ((symptoms) :- (cause)) type, 
particularly in diagnosis problems. 

PREC is introduced to treat the case that, for 
example, if part_A is a fault (fault(part__A)), then the 
temperature of point1 is higher that 80°C. The 
knowledge may be interpreted as: 

T1 > 80:-fault(part_A) where temp_pointl(T1) 

Here, the 'where' part denotes the precondition that 
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the knowledge becomes usable. If we express it in logic, 
it becomes: 

T1 >80:-fault(part__A),temp_point I(T1) 

In the application of the hypothetical reasoning system, 
it is desirable to express the knowledge uniformly as: 

(observations) :-(hypothesis> 

To maintain this uniformity, we express the precondi- 
tions of the 'where' part in PREC in our knowledge 
format. This separation of the knowledge expression 
can be effectively utilized in the hypothesis selection 
process. When the knowledge seems to be useful in the 
inference process and the truth value of PREC is not 
known, the system first asks for the argument value of 
the predicate expressed in PREC. 

ID and NID are introduced mainly to clarify the 
meaning of the knowledge which has disjunction (v)  in 
its head part. For example, the knowledge qlvq2:--p 
can be represented, if we express all its contrapositives 
which will be used in the MESON proof procedure, as: 

(ql :-p,--N2) A (q2:-p,---7ql) A (---7p :-----N 1,q2). 

In this case, we cannot prove either ql or q2 if we 
assume only p. This is inconvenient, since the intended 
meaning of ql vq2:-p in ordinary cases is that ql or q2 
is true if p is true. This problem will be overcome as 
follows. The disjunctive formula can be dissolved into 
the disjunction of mutually contradicting conjunctive 
formulae. For example, ql vq2 can be expressed as: 

(q 1 ̂  q2) v (q 1 ̂ ---7q2) v (---7q 1 A q2) 

This exclusive knowledge is expressed using ID and 
NID. If q lvq2 : -p  is fact knowledge, then it will be 
expressed in our system as: 

fact(i,[2,3],[ ],(ql&q2:-p)) 
fact(2,[1,3],[ ],(ql&n(q2):-p)) 
fact(3,[1,2],[ ],(n(ql)&q2:-p)) 

where n( ) denotes the logical negation. The conjunc- 
tion in the head part and the disjunction in the body 
part are eventually removed by logical transformations. 

HYPOTHESIS SELECTION AND 
ASSOCIATED FUNCTIONS 

In order to understand the practical usefulness of the 
hypothesis-based logical reasoning system, its applica- 
tion to a fault diagnosis problem will now be shown. 

The hypothesis selection mechanism implemented in 
the current system is the following general one. That is, 
observable data in a problem domain is predefined as 

observable([predicate-list]) 

When more than two sets of hypotheses are formed, 
the system generates a question to obtain a critical 
additional observation among the predefined observ- 
able data for eliminating a part of the hypothesis sets. 
Suppose two sets of hypotheses, hl and h2, remain as a 

possible answer. The system tries to find an instantiated 
observation O' satisfying 

FUhl[-O' and FUh2 ~/O' (or vice versa) 

To eliminate either hl or h2 it then asks the user 
whether or not O' is true. 

The amount of observable data is limited and 
sometimes not enough. On the other hand, in some 
cases there are controllable input points to which 
various signals can be applied to obtain necessary 
additional observations. Therefore, our hypothetical 
reasoning system allows the declaration of such con- 
trollable input points as 

askable([predicate-list]) 

According to this declaration and the related 
predicate-argument type declaration being written 
elsewhere, the system generates, if necessary, instanti- 
ated input patterns in the hypothesis selection process 
to obtain useful observations. 

An optimal strategy for the hypothesis selection is to 
choose the question which can discriminate two groups 
of the hypothesis set with balanced numbers, since it 
makes it possible to reach a conclusion with the 
minimum number of questions. The current system, 
however, has not been equipped with this strategy. In 
Reference 5, an efficient method of generating ques- 
tions with which to select either set of hypotheses hl or 
h2 is presented for the case when there is an observa- 
tion which can be derived from (hlUh2) but not from 
either hl or h2. This is, however, a very special case. 

Figure 2 shows an application of the current system 
to the fault diagnosis of a digital circuit. Two types of 
fault are assumed at each gate, namely stuck-on and 
stuck-off, in which the output is stuck at 1 and 0, 
respectively. Since the function of each gate is either 
normal (ok) or fault (stuckon, stuckoff), these func- 
tions are expressed as exclusive hypotheses. On the 
other hand, the connections between gates and termin- 
als are expressed as fact knowledge because they are 
assumed never to be in fault. 

Once a set of malfunctions is given as an observation, 
the system first forms 14 sets of hypotheses including 
multiple faults as shown in Figure 2. By obtaining 
additional observations through the interactive 
hypothesis-selection process, the system eventually 
determines the fault to be that the exlusive-OR gate is 
stuck-off. 

An important point here is that the diagnosis system 
can be built by describing the knowledge system- 
atically, rather than by describing causal relations 
and/or heuristic knowledge as in existing expert sys- 
tems. Thus the system components with no fault 
possibility and with fault possibility are described as 
fact (complete) knowledge and hypothesis (incom- 
plete) knowledge, respectively. This approach enables 
expert systems to be built using deep knowledge. 
Heuristic knowledge may be incorporated as meta- 
knowledge to achieve efficient inference. This 
hypothesis-based logical reasoning system can also be 
applied to design problems if we regard given specifica- 
tions and possible design components as given observa- 
tions and hypotheses, respectively. The effective use of 
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in(1,f l) _ ~  
in(2,fl ) 

in(3,f l) 

L ) ~  out(1,fl) 

out(2, fl ) 

Digital circuit (full adder, name: f l) 

I ?-hypoth. 
Hypothesis formation starts. 
Please input knowledge base name 
>'exl.11'. 
ex1.11 reconsulted 4552 bytes 0.763003 sec. 
Please input symptoms 
>((val(out(1,fl),0)&val(out(2,fl),0):-val(in(1,fl),0)&val(in(2,fl ),0)&val(in(3,fl),0)) 
&(val(•ut(1•f1)••)&va•(•ut(2•f1)••):•Va•(in(1•f1)••)&va•(in(2•f1),1)&Va•(in(3•f1)••)) 
&(va•(•ut(1•f1)••)&va•(•ut(2•f1)••):-Va•(in(1•f1),1)&va•(in(2•f1)••)&va•(in(3•f1)••)))• 
Forming hypotheses... 
Formed hypotheses are: 
(stat(a 1 ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok)) 
stat(a 1 ,stuckoff) & stat(a2,ok) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok)) 
stat(al ,ok) & stat(a2,stuckoff) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok) 

(stat(a 1 ,stuckoff) & stat(a2,stuckoff) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok)) 
stat(ol ,stuckoff) & stat(xl ,stuckoff) & stat(x2,ok) 
stat(a 1 ,ok) & stat(xl ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff) 

(stat(a 1 ,stuckoff) & stat(xl ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff) 
(stat(a 1 ,ok) & stat(xl ,stuckon) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff) 
(stat(al ,stuckoff) & stat(xl ,stuckon) & stat(a2,ok) & stat(o 1 ,ok) & stat(x2,stuckoff)) 
(stat(al,ok) & stat(xl,stuckoff) & stat(a2,ok) & stat(ol,ok) & stat(x2,stuckoff) 
(stat(a 1 ,stuckoff) & stat(x 1 ,stuckoff) & stat(a2,ok) & stat(o 1 ,ok) & stat(x2,stu ckoff) ) 
stat(a 1 ,ok) & stat(a2,stuckoff) & stat(o 1 ,ok) & stat(x2,stuckoff) 
stat(al ,stuckoff) & stat(a2,stuckoff) & stat(ol ,ok) & stat(x2,stuckoff) 
stat(o 1 ,stuckoff) & stat(x2,stuckoff) 

Observation: 
val(out(1,fl ),1 ):-val(in(3;fl),l ) 
is right?(y/n) 
>n. 
Observation: 
val(out(2,fl ),1 ):-val(in(2,fl ),I )&val(in(1,fl ),1 )&val(in(3,fl ),0) 
is right?(y/n) 
>y. 
Observation: 
val(out(2,fl ),O):-val(in(2,fl ),0)&val(in(1 ,fl ),O)&val(in(3,fl ),1 ) 
is right?(y/n) 
>y. 
Observation: 
val(out(2,fl),l ):-val(in(2,fl),l)&val(in(1,fl ),0)&val(in(3,fl ),1 ) 
is right?(y/n) 
>y. 
Verified hypothesis is: 
(stat(a 1 ,ok) & stat(xl ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff)) 

Do you continue?(y/n) 
~>n. 
yes 

Observation 

Hypotheses formation 

14 hypotheses formed 
at first step 

Question-answering for 
hypothesis selection 

Figure 2. An application of  the hypothesis-based reasoning system to the fault diagnosis of  a digital circuit. 
val(out(1,fl),O) means that the value of  the node out (1,fl) is O, and stat(al,ok) means that the status of the al gate is 
OK 

constraint knowledge becomes crucial, particularly in 
design problems, in narrowing down the search space. 

INDUCTIVE CONCEPT LEARNING 
MECHANISM 

The knowledge acquisition support or learning capabil- 
ity is important for next-generation knowledge systems. 
Two knowledge acquisition modules have been added 
to the current hypothesis-based logical reasoning sys- 
tem as shown in Figure 3. The first module, which is 

based on an inductive inference extended to deal with 
the knowledge base with hypotheses, enables concept 
learning from given examples. The second module 
provides knowledge assimilation and management 
functions for the frame knowledge base with hypoth- 
eses. The redundant knowledge base is attached in 
Figure 3 to cope with the nonmonotonicity of the 
hypothetical reasoning system. These knowledge ac- 
quisition mechanisms will be seen in the following. 

An overview of inductive concept learning methods 
for complete knowledge is described in Reference 6. 
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Knowledge 
acquisition 
modules 

Examples _ ] ~  Concepts 
for learning 
learning / I  module from 

examples 

Input new [ 
kn°wledgeA k I Knowledge or assimilation 
erase ~ _ ~  and 

management existing knowledge " j module 

Knowledge- base 
including hypothesis 

Fact J knowledge-base 

Hypothesis I 
knowledge-base 

I I 
I Redundant ] 

knowledge-base 

Figure 3. Knowledge acquisition modules for the know- 
ledge base including hypotheses 

Considered here will be the knowledge-base case 
including hypotheses, which allows the acceptance of 
even contradicting examples. 

Let learning examples be given in the form of 

obs_a & obs_b & ...... :-concept_l 

where the body and head parts are the concept and its 
associated observations. ('&' in the head part may be 
replaced by ',' in our system.) In the fault diagnosis 
system, the cause and symptoms correspond to the 
concept and observations, respectively, in the above 
formalism. 

We assume here that all the given examples are 
correct; i.e., no erroneous example is involved. We 
also assume that all the necessary observations are 
given for concluding one concept. (For example, the 
learning examples are collected from the diagnoses of 
medical doctors, whose decisions always rely on suffi- 
cient observations.) 

The current system allows a hierarchical frame- 
structured organization of the concepts as shown in the 
next section. However, the automatic learning of the 
hierarchical organization is not supported at present, 
since it requires prior knowledge about concept hierar- 
chy. Thus inductive learning here is to acquire decision 
rules which show causal relations between the target 
concept and observations. Since all the possible 
observations are to be explainable from fact and 
hypothesis knowledge in the hypothesis-based reason- 
ing system, the learning module forms as many as 
generalized knowledge, mostly as hypotheses. 

The basic strategy of the inductive learning module is 
to proceed the generalization of observations regarding 
one concept while excluding the observations of other 
concepts in the given examples. The key technology 
here is an extended version of minimum generalization 
in a logic framework 7. 

The argument of the predicate is chosen as the target 
item of the generalization. To perform the generaliza- 
tion, the system has to know the type of the argument. 
The type is indicated in some place, for example, as: 

defgentype(p(ord, dis)) 
defgentype(r(any)) 

where the first and second arguments of predicate p are 
defined as ordered number and disjoint entity, respec- 
tively, and the argument of predicate r is defined as any 
entity. The following exemplifies the minimum gener- 
alization according to this type declaration: 

[Ex] Knowledge formation by the minimum generaliza- 
tion regarding r(s) and r(t) when r(s):-c arid r(t):-c are 
given as learning examples. 
• if defgentype(r(ord)) and s<t,  then 

fact(IO,[ ],[r(X)],(s= < X <  =t :-c.)) 
• if defgentype(r(dis)) and s4=t, then 

fact(ID,[ ],[r(X)],(X= s;t:-c.)) 
• if defgentype(r(any)) and s~t,  then 

fact(ID,[ ],[ ],(r(X):-c.)) 

The extended minimum generalization for the know- 
ledge including hypotheses is as follows, where lst-3rd 
arguments of fact ( ) and lst-4th arguments of hyp( ) 
in the knowledge representation described earlier are 
omitted for simplicity. 

Extended minimum generalization 

When fact(A1 . . . . .  At:-c) and hyp(At+l, • . . ,  Am:'-c) 
already exist with respect to the concept c, the 
procedure of the extended minimum generalization 
with the new input example al . . . . .  am:-C is as follows: 

(where i, ], k, 1, m, n are 1, 2, 3 . . . . .  and n( ) denotes 
logical negation) 
• for j =  l t o j = m  

if aj is comparable* with Ak(1 ~< k ~< n) 
then replace A k with the minimum generalization of 

(Ak, aj) 
else if aj is comparable with n(Ak) 

then remove Ak from the head of 
fact(A1, . . . ,  At:--c) and 
add Ak and aj to the head of 
hyp(A/+l . . . . .  A~:-c) 

else add aj to the head of 
hyp(At+l . . . . .  A ,  :-c) 

• f o r / =  l t o j = l  
if Aj is not comparable with either al . . . .  , am 
then remove Aj from the head of fact(A1 . . . . .  At : -  

c) and 
add Aj to the head of h y p ( A t + l , . . . ,  A, : -c)  

Using this extended minimum generalization, we can 
construct our inductive learning mechanism. The 
generalization sometimes results in over-general- 
ization, in which the knowledge induced with respect to 
one concept becomes able to explain an example 
belonging to another concept (counter example). In 
this case, we have to find an adequate splitting of the 
input examples into more than two groups such that 
extended minimum generalization does not conflict 
with counter examples. The knowledge induced from 
each split group is combined in an exclusive-OR 
relation. (The smaller the number of split groups the 
better.) To realize this procedure efficiently, we first 

*If A I and A2 are literals with the same predicate symbol and the 
same logical symbol (negation symbol), we call them comparable. 
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construct the lattice (all the subsets) of the input 
examples with respect to one concept. Then we check 
the subset of the input examples in order, starting with 
the largest subset, to find out whether or not its 
extended minimum generalization is over-general- 
ization. If not over-generalization, the induced know- 
ledge from the subset is established. The check of a 
subset included in the larger subset from which the 
induced knowledge is already established is then 
skipped. 

Usually in multiple-concept learning for classification 
or diagnosis problems, the goal is to generate the 
minimum knowledge necessary for discriminating an 
observation associated with another concept (counter 
example). Thus the procedure which keeps only the 
minimum fact knowledge necessary for discriminating 
counter examples as fact knowledge, changing other 

fact knowledge to hypothesis knowledge, is attached at 
the final phase of the inductive concept learning 
process. The discriminating fact knowledge pertaining 
to a particular concept indicates that the observation 
will always appear along with the concept. Conversely, 
all the fact knowledge of one concept can never be true 
in observations from other concepts. 

Examples of the above inductive concept learning 
are shown in Figures 4a and b, where diagnosis 
knowledge for identifying the cause of food poisoning 
(Bacillus botulinus, Staphylococcus, Vibrio enteritis or 
Salmonella) is induced from input examples represent- 
ing their observations. 

When compared with the inductive concept learning 
on version space 9, the mechanism presented here 
allows the formation of concept description in logical 
OR relation in addition to AND relation. 

/* file name exg5 , /  
ex(pain(stomach),nausea(nauseating),nervous_paralysis(eye),diarrhea,n(fever). 

latenLhour(6),food(boiled_fishpast):- botulinus_bacillus). 
ex(nauseating(vomiting),nervous_paralysis(th roat),diarrhea,n(fever),pain(upper_abdomen). 

latent_hour(2),food(salad):- botulinus_bacillus). 
ex(nausea(nauseating),nervous_paralysis(eye),diarrhea,n(fever),pain(stomach). 

latenLhour(8),food(box_lu nch):- botulinus_bacillus). 
ex(pain(upper_abdomen),nausea(nauseating),food(cream_puff),diarrhea. 

n(fever),latenLhour(3),nervous_paralysis(none):- staphylococcus). 
ex(pain(stomach),food(rice_ball),diarrhea,n(fever),latenLhou r(1). 

nervous_paralysis(none):- staphylococcus). 
ex(pain(upper_abdomen),nausea(vomiting),food(pudding),nervous_paralysis(none). 

diarrhea,n(fever),latent_hour(2):- staphylococcus). 
ex(pain(upper_abdomen),nausea(nauseating),food(salad),diarrhea,n(fever). 

latenLhour(6),nervous_paralysis(none):- staphylococcus). 
ex(pain(stomach),nausea(nauseating),food(boiled_fishpast),diarrhea,n(fever). 

latenkhour(4),nervous_paralysis(none):- staphylococcus). 
ex(pain(stomach),nausea(nauseating),food(shrimp),diarrhea,fever. 

latenLhour(12),nervous_paralysis(none):- enteritis_vibrio). 
ex(pain(upper_abdomen),nausea(vomiting),food(cuttlefish),diarrhea,fever. 

latenLhour(18),nervous_paralysis(none):- enteritis_vibrio). 
ex(pain(stomach),food(sushi),diarrhea,fever,latenLhou r(16). 

nervous_paralysis(none),nausea(none):- enteritis_vibrio). 
ex(pain(upper_abdomen),food(box_lunch),diarrhea,fever,latenLhour(12). 

nervous_paralysis(none),nausea(none):- enteritis_vibrio). 
ex(pain(stomach),nausea(nauseating),food(raw_tuna),diarrhea,fever. 

latenLhour(20),nervous_paralysis(none):- enteritis_vibrio). 
ex(pain(stomach),food(salad),diarrhea,fever,latenLhour(18). 

nervous_paralysis(none),nausea(none):- salmonella). 
ex(food(box_lunch),diarrhea,fever,latenLhour(12),pain(stomach). 

nervous_paralysis(none),nausea(none):- salmonella). 
ex(pain(upper_abdomen),food(steamed_fishpast),diarrhea,fever,latenLhour(20). 

nervous_paralysis(none),nausea(none):- salmonella). 
ex(nausea(nauseating),food(raw_oyster),diarrhea,fever,latent-hour(16). 

nervous_paralysis(none),pain(stomach):- salmonella). 
ex(food(cooled_tofu),diarrhea,fever,latent_hour(22),nervous_paralysis(none). 

nausea(none),pain(upper_abdomen):- salmonella). 

defgentype(pain(dis)). 
defgentype(latenLhour(ord)). 
defgentype(food(dis)). 
defgentype(nausea(dis)). 
defgentype(diarrhea). 
defgentype(fever). 
defgentype(nervous_pa ralysis(dis)). 

a 

Figure 4a. An example of inductive concept learning; input examples for learning 
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I ?-learn. 
Learning sessions s tar ts . . .  
Please input example database name 
>exgS. 
Learned rules are as be low 
fact(1 ,[],[nervous_paralysis(Y_545)],((Y_545= =eye;Y_545= =throat):-botul inus_baci l lus)) 
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[nausea(Y_489)]. 
((Y_489= = nausea ;Y_489 = =vomit ing):-botul inus_baci l lus))  
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774),l,[],[],(diarrhea :-botulinus_bacil lus)) 
h yp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[],(n(fever):-botulin us_bacillus)) 
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[pain(Y_665)]. 
((Y_665= =stomach;Y_665=--  upper_abdomen):-botul inus_baci l lus)) 
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 , [ ] , [ latenLhou r(Y_719)]. 
(2= <Y_719,Y_719= <8:-botul inus_bacil lus)) 
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[food(Y_774)]. 
((Y_774= = box_lunch;Y_774= = boiled_fishpast;Y_774= =salad):-botul inus_bacil lus)) 
fact(2,[],[],(n(fever):-staphylococcus)) 
fact(2,[],[],(nervous_pa ralysis(none):-sta phylococcus)) 
hyp(s#O01 (Y_2098,Y_2154,Y_2276,Y_2740),2,[],[pain(Y_2098)]. 
((Y_2098= = upper_abdomen;Y_2098 = = stomach) :-staphylococcus)) 
hyp(s#O01 (Y_2098,Y_2154,Y_2276,Y_2740),2,[],[food(Y_2154)]. 
((Y_2154= =boi led_fishpast;Y_2154= =salad;Y_2154= =pudding;Y_2154= =cream_puff ;Y_ 
2154= = rice_ball):-staphylococcus)) 
hyp(s#O01 (Y_2098,Y_2154,Y_2276,Y_2740),2,[],[],(diarrhea :-staphylococcus)) 
hyp(s#O01 (Y-2098,Y_2154,Y_2276,Y_2740),2,[],[],[latenLhou r(Y_2276)]. 
((1 = <Y_2276,Y_2276= <6:-staphylococcus) ) 
hyp(s#O01 (Y_2098,Y_2164,Y_2276,Y_2740),2,[],[nausea(Y_2740)]. 
((Y_2740 = = nauseating;Y_2740= =vomit ing):-staphylococcus)) 
fact(3,[4],[] ,(pain(upper_abdomen):-enterit is_vibrio)) 
fact(3,[4],[food(Y_5834)],((Y_5834= =cutt lef ish;Y_5834= = box-lunch):-enteri t is_vibrio)) 
hyp(s#OO2(Y_5956,Y_6061 ),3[4],[],(dia rrhea :-enterit is_vibrio)) 
hyp(s#OO2(Y_5956,Y_6061 ),3,[4},[],(fever:-enteritis_vibrio)) 
hyp(s#OO2(Y_5956,Y_6061 ),3,[4],[latenLhour(Y_5956)]. 
(12 = <Y_5956,Y_5956 = < 18:-enteritis_vibrio)) 
hyp(s#OO2(Y_5956,Y_6061 ),3,[4],[],(nervous_pa ralysis(none):-enterit is_vibrio)) 
hyp(s#OO2(Y_5956,Y_6061 ),3,[4],[nausea(Y_6061 )]. 
((Y_6061 = =vomit ing;Y_6061 = =none): = enterit is_vibrio)) 
fact(4,[3],[food(Y_4604)}. 
((Y_4604= = raw_tuna;Y_4604= =sushi;Y_4604= = shrimp;Y_4604= =cutt lef ish):-enterit is_ 
vibrio)) 
hyp(s#OO3(Y_4496,Y_4550,Y_4720),4,[3],[pa i n (Y_4496)]. 
((Y_4496= = stomach ;Y_4496= = upper_abdomen):-enteri t is_vibrio)) 
hyp(s#OO3(Y-4496,Y_4550,Y_4720),4,[3],[na u sea(Y_4650)]. 
((Y_4550= = none;Y_4550= = nauseating;Y_4550= =vomit ing):-enter i t is_vibr io))  
hyp(s#OO3(Y_4496,Y_4550,Y_4720),4,[3],[],(dia rrhea :-enterit is_vibrio)) 
hyp(s#OO3(Y_4496,Y_4550,Y_4720),4,[3],[],(fever:-enteritis_vibrio)) 
hyp(s#003(Y_4496,Y_4550,Y_4720),4,[3],[],(latenLhou r(Y_4720)]. 
(12 = <Y_4720,Y_4720= <20:-enterit is_vibrio)) 
hyp(s#003(Y_4496,Y_4550,Y_4720),4,[3],[],(nervous_paralysis(none) :-enterit is_vibrio)) 
fact(5,[6],[food(Y_8373)]. 
((Y_8373= = raw_oyster;Y_8373= =salad; Y_8373= = box_lunch):-salmonella)) 
fact(5,[6],[],(fever :-salmonella)) 
fact(5,[6],[],(pain(stomach):-salmonella)) 
hyp(s#004(Y_8754,Y_8495),5,[6],[na usea(Y_8754)]. 
((Y-8754= = none;Y_8754= = nauseating):-salmonella)) 
hyp(s#004(Y_8754,Y_8495),5,[6],[],)dia rrhea :-salmonella)) 
hyp(s#004(Y_8754,Y_8495),5,[6],[latenLhou r(Y_8495)],(12 = <Y_8495,Y_ 
8495= < 18: =salmonel la))  
hyp(s#004(Y_8754,Y_8495),5,[6],(nervous_pa ralysis(none):-salmonella)) 
fact(6,[5],[food(Y_7116)],. 
((Y_7116 = = cooled_tofu; Y_7116 = = raw_oyster; Y_7116 = = sala d; Y_7116 = = stea med_fish past) :- 
salmonella)) 
fact(6,[5],[],(fever :-salmonella)) 
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[],(dia rrhea :-salmonella)) 
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[latent_hou r(Y_7232)]. 
(16= <Y_7232,Y_7232 = <22:-salmonel la)) 
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[],(nervous_pa ralysis(none):-salmonella)) 
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[nausea(Y_7446)]. 
((Y_7446= = none;Y_7446= = nauseating):-salmonella)) 
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[pain(Y_7062)]. 
((Y-7062= =stomach;Y_7062 = = upper_abdomen):-salmonel la))  
Do you continue? 
>n .  

Figure 4b. An example of inductive concept learning; induced knowledge from examples 
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KNOWLEDGE ASSIMILATION AND 
MANAGEMENT FOR FRAME KNOWLEDGE 
BASE INCLUDING HYPOTHESES 

The mechanisms of knowledge assimilation and man- 
agement have been presented for a logical knowledge 
base ~0. The logical deductive inference power of Prolog 
facilitates the detection of redundancy and inconsisten- 
cy of the knowledge base. This section constitutes a 
brief description of the mechanism of a knowledge 
assimilation and management module for the frame 
knowledge base including hypotheses. 

One of the distinctive features of this knowledge base 
is that it can accept knowledge with exceptions or even 
contradicting knowledge as hypotheses. However, 
problems resulting from nonmonotonicity of the infer- 
ence also have to be dealt with. The redundant 
knowledge base shown in Figure 3 is a place to keep 
redundant knowledge temporarily as it may become 
nonredundant when new knowledge is entered. The 
knowledge base including only complete knowledge 
does not need such a store if the manner of knowledge 
acquisition is incremental. The knowledge in the 
redundant knowledge base is written in the current 
system as: 

red_db([list-of-[frame-name,knowledge]]). 

The hierarchical knowledge representation of the 
frame and its property inheritance function through the 
'isa' link can be easily realized using logic program- 
ming. The special operator 'isa' in the system is 
introduced to denote 'is a relation'. The logical 
meaning of this 'isa' is logical implication (~) .  For 
example, the frame hierarchy of ' t om ' s ' cock ' s ' b i rd '  
is defined with contrapositives to be used in the 
MESON proof procedure as: 

tom isa cock 
cock isa bird 
n(cock) isa n(tom) 
n(bird) isa n(cock) 

Knowledge assimilation 

The features of the knowledge assimilation mechanism 
are as follows: 

(a) Even if the new knowledge is inconsistent with 
existing knowledge, it can be assimilated by chang- 
ing the existing fact knowledge to hypotheses. 
Shapiro's logical debugging algorithm H is effective- 
ly employed to identify the inconsistent existing 
knowledge. 

(b) The system keeps redundant knowledge in a 
separate place, and tries to re-assimilate it when its 
redundancy changes due to the nonmonotonicity of 
the inference. 

Suppose that the user is trying to assimilate new 
knowledge K to a frame Fr. Here the frames and their 
hierarchy are assumed to be predefined. The know- 
ledge assimilation module executes the following proc- 
edure: 

1 The set of fact (F) and hypotheses (H) knowledge 
which can be accessed through the isa link from 
frame Fr is collected. 

2 If Ft_JhFK, where h is a consistent subset of H, K is 
redundant and is put into the redundant knowledge 
base red_db() ,  and the procedure stopped. Even if 
K is rule knowledge including body part, it can be 
checked L0 

3 If F~ K with an instantiation of the variables in K, 
K is inconsistent. Then, by an inconsistent know- 
ledge tracing algorithm (described below), the fact 
knowledge Fh (CF) which causes inconsistency with 
K is found. Fh is changed to hypothesis. If Fh is 
knowledge stored directly in Fr, then K is stored as 
hypothesis knowledge in Fr. 

4 The redundancy of K is again checked as in 1 above. 
5 If K does not cause inconsistency in the lower frames 

of Fr, it is assimilated as fact knowledge; otherwise, 
K is assimilated as hypothesis knowledge. 

6 [Recheck of the redundant knowledge base.] The 
redundancy of the knowledge in the redundant 
knowledge base may change in this system only when 
(a) new fact knowledge is assimilated, (b) knowledge 
is deleted, or (c) the content of NID is modified. The 
redundancy of the knowledge in the redundant 
knowledge base is then rechecked. If nonredundant, 
attempts should be made to assimilate it by the above 
procedure (1-5). 

Knowledge management 

The inconsistent knowledge tracing algorithm is de- 
signed on the basis of Shapiro's logical debugging 
algorithm II, which identifies bug knowledge through a 
question-answer procedure when an incorrect answer 
is deduced from the knowledge base. This algorithm is 
modified to work in the current hypothetical reasoning 
system based on the MESON proof procedure. 

The knowledge management for knowledge deletion 
is relatively simple. That is, delete the designated 
knowledge from the frame, and execute the recheck of 
the redundant knowledge base as described in 6 above. 

The management of the frame system including 
hypothesis knowledge with exceptions is complicated 
where a semantic network having an isa link with 
exceptions is studied 12,13. Here the management 
mechanism of the isa link with exceptions in the current 
system is described. This mechanism is invoked in 
response to the user's request for erasing an inherited 
knowledge at a frame Ft. The exception of the isa 
inheritance link is represented in the current system by 
adding not(Fr) to the body of the related knowledge, 
where not( ) denotes the negation as failure as used in 
ordinary Prolog. This is a way for expressing an 
exceptional case explicitly. 

In order to identify the knowledge to which the 
exception is attached, the modification of Shapiro's 
debugging algorithm is employed, where in this case 
hypothesis knowledge as well as fact knowledge becom- 
es the possible target items to identify. As for the use of 
the hypothesis knowledge, it is necessary to check its 
consistency with other knowledge. Once the appropri- 
ate knowledge is identified, not(Fr) is added to its 
body. Then the recheck of the redundancy of know- 
ledge stored in the redundant knowledge base is 
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t ?-Iisting(fact),listing(hyp),listing(red_db). 
fact(a,[],[],cock isa bird). 
fact(b,[],[],tom isa cock). 
fact(a,[],[],n(bird)isa n(cock)). 
fact(b,[],[],n(cock)isa n(tom)). 
red_db([]). 
yes 
I ?-acq(bird,fly). 
yes 
J ?-Iisting(fact),listing(hyp),listing(red_db). 
fact(1 ,[],[],(fly:-bird)). 
fact(1,[],[],(n(bird):-n(fly))). } 
fact(a,[],[l,cock isa bird). 
fact(b,[],[],tom isa cock). 
fact(a,[],[],n(bird)isa n(cock)). 
fact(b,[],[],n(cock)isa n(tom)). 
red_db([]). 
yes 

J ?-acq(tom,fly). 
yes 
I ?-Iisting(fact),listing(hyp),listing(red_db). 
fact(1 ,[],[],(fly:-bird)). 
fact(1 ,[],[],(n(bird):-n(fly))). 
fact(a,l],[],cock isa bird). 
fact(b,[],[],tom isa cock). 
fact(a,[],[],n(bird)isa n(cock)). 
fact(b,[],[],n(cock)ias n(tom)). 
red_db([[tom,fly]]). 
yes 

j ?-acq(cock,(n(fly):-wing_wea k)). 
yes 
I ?-Iisting(fact),listing(hyp),listing(red-db). 
fact(2,[],[],(n(fly) :-cock&wing_weak)). 1 
fact(2,[],[],(n(cock):-fly&wing_weak)). ~ -  
fact(2,[],[],(n(wing_weak):-cock&fly)). J 
fact(1 ,[],[],(fly:-bird)). 
fact(1,[],[],(n(bird):-n(fly))). 
fact(a,[],[],cock isa bird]. 
fact(b,[],[],tom isa cock). 
fact(a,[],[],n(bird)isa n(cock)). 
fact(b,[],[],n(cock)isa n(tom)). 
red_db([[tom,fly]]). 
yes 

Acquired as 
fact knowledge 

(a) 

Stored in redundant 
knowledge-base 

(b) 

Assimilated as 
fact knowledge 

(c) 

I ?-acq(cock,wing_weak). - ............ Occurrence of inconsistency 
"right" in Query means "always right" 1 
In the frame [cock] 

I 
Query: 
fly is right?(y/n)>>n. Question-answering 
"right" in Query means "always right" . according to 
In the frame [tom] inconsistent knowledge 
Query: tracing algorithm 
wing_weak is right?(y/n)>>n. 
yes 
I ?-Iisting(fact),listing(hyp),listing(red_db). 
fact(2,[],[],(n(fly):-cock&wing_weak)). 
fact(2,[],[],(n(cock):-fly&wing_weak)). 
fact(2,[l,[],(n(wing_weak) :-cock&fly)). 
fact(a,[],H,cock isa bird). 
fact(b,[],[],tom isa cock). 
fact(a,[],[],n(bird)isa n(cock)). 
fact(b,[],[],n(cock)isa n(tom)). " t  

hyp('s#001',3,[],[],(wing_weak:-cock)). / Changeto 
hyp('s#001',3,[],[],(n(cock):-n(wing_weak))). =i hypothesis 
hyp('s#000',l ,[],[],(fly:-bird)). knowledge 
hyp('s#000',l ,[],[],(n(bird):-n(fly))). 
red_db([[tom,fly]]). 
yes 

(d) 
J ?-inq(cock,n(fly)). 
yes 
J ?-inq(cock,fly). 
yes 
I ?-era(cock,fly). Erase inherited knowledge 
In the frame [cock] from a frame 
Query: 
fly is right?(y//n)>>n. 
yes 
I ?-Iisting(fact),listing(hyp),listing(red_db). 
fact(4,[],[],(fly:-tom)), l Acquired from 
fact(4,[],[],(n(tom):-n(fly))). J ~ redundant knowledge-base 
fact(2,[],[],(n(fly):-cock&wing_weak)). 
fact(2,[].[],(n(cock):-fly&wing_weak)). 
fact(2,[],[],(n(wing_weak):-cock&fly)). 
fact(a,[],[],cock isa bird). 
fact(b,[],[],tom isa cock). 
fact(a,[],[],n(bird)isa n(cock)). 
fact(b,[],[],n(cock)isa n(tom)). 
hyp('s#000',l,[],[],(fly:-bird&not(cock))). "[ Cut of 
hyp('s#000',l,[],[],(n(bird):-n(fly)&not(cock))). J inheritance 
hyp('s#001 ',3,[],[],(wing_weak:-cock)). 
hyp('s#001 ',3,[],[],(n(cock):-n(wing_weak))). 
red_db([]). 
yes 
I ?-inq(cock,fly). 
no 
I ?-inq(tom,fly). 
yes 
I ?-nolog. 

(e) 

Figure 5. An example of knowledge assimilation and management processes 

invoked. In this way, the isa link with exceptions can be 
adjusted semi-automatically. 

The following predicates are implemented for execut- 
ing the above-mentioned knowledge assimilation and 
management procedures: 

acq(frame-name, new-knowledge) 
for assimilating new knowledge into the frame, 

del(frame-name, delete-knowledge) 
for deleting the knowledge from the frame, 

era(frame-name, knowledge-to-deny-its- 
inheritance) 

for adjusting the isa link by adding an exception, 
and 

inq(frame-name, knowledge) 
for inquiring whether the knowledge exists in the 
frame or is inherited from the upper frame. 

An example of the behaviour of these mechanisms is 
shown in Figure 5, where the frame hierarchy of 
tom~cock---~bird is predefined. In Figure 5a, the 
knowledge 'fly' is given to the 'bird' frame as new 
knowledge. Since it is neither inconsistent nor redun- 
dant, it is assimilated with corresponding contraposi- 
tives as fact knowledge. In Figure 5b, the knowledge 
'fly' is given to the 'tom' frame; however, it is placed in 
the redundant knowledge base since it is redundant at 
this moment. In Figure 5c, the knowledge 'n(fly):- 
wing_weak' is given to the 'cock' frame; it is assimilated 
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as fact knowledge. In Figure 5d, the knowledge 
'wing_weak' is given to the 'cock' frame. This gives rise 
to an inconsistency, because 'n(fly)' and the inherited 
'fly' co-exist in the 'cock' frame. Therefore the inconsis- 
tent knowledge tracing algorithm is invoked. As the 
result of question answering, the knowledge 'fly' in the 
'bird' frame is changed from fact to hypothesis know- 
ledge, and the knowledge 'wing_weak' is assimilated as 
hypothesis knowledge in the 'cock' frame. 

In Figure 5e, the knowledge 'fly' is denied in the 
'cock' frame. Then, through question answering gener- 
ated by the modified debugging algorithm, the express- 
ion of exception 'not(cock)' is added to the body of the 
knowledge 'fly' in the 'bird' frame. In addition, through 
the recheck of the redundant knowledge base, the 
knowledge 'fly' is assimilated into the 'tom' frame. 

CONCLUSIONS 

The mechanisms of two knowledge acquisition modules 
have been described for the hypothesis-based logical 
reasoning system, which is very important from the 
viewpoints both of the theoretical foundation of hand- 
ling incomplete knowledge and of practical usefulness. 
Based on this system, the authors are now constructing 
a next-generation knowledge-based system in- 
crementally to support advanced AI functions such as 
analogy, commonsense, creative design, learning, etc. 
From a practical viewpoint, the improvement of 
inference speed is crucial. To this end we shall have to 
exploit a mechanism similar to ATMS14: while it is 
necessary for us to treat the knowledge represented in 
predicate logic with variables, the knowledge in ATMS 
is restricted to propositional logic with no variable. 
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