
Knowledge acquisition
mechanisms for a logical
knowledge base including

hypotheses

Mitsuru Ishizuka and Tetsusi Matsuda*

A hypothesis-based reasoning system handles a know-
ledge base including complete (fact) and incomplete
(hypothesis) knowledge. The handling of the incom-
plete knowledge plays an important role in realizing
advanced AI functions such as commonsense, flexible
matching, learning, etc. From both theoretical and
practical viewpoints, the hypothesis-based logical
reasoning system can be considered to be an important
start point towards a next-generation knowledge base
architecture. This paper describes an enhanced know-
ledge representation of the hypothetical reasoning sys-
tem designed particularly for interactive diagnosis
problems. The mechanisms of two knowledge acquisi-
tion modules developed for this knowledge base in-
cluding hypotheses are then described. The first mod-
ule, which is based on an inductive inference mechan-
ism for the knowledge including hypotheses, enables
multiple-concept formation from given examples. The
key technology of this mechanism is a minimum
generalization extended to the knowledge including
hypotheses. The second module provides knowledge
assimilation and management functions for the frame
knowledge base constructed on the hypothetical
reasoning system. That is, this module enables the
following functions: (1) the system can assimilate new
knowledge while maintaining the consistency and non-
redundancy of the knowledge base; (2) the system
rearranges the knowledge base when existing knowlege
is deleted; and (3) the system can control the inheri-
tance link of the frame knowledge base in response to
an input indicating that the property inheritance from
an upper frame is denied as an exceptional case. The
nonmonotonicity of the hypothetical reasoning system
is considered in these mechanisms. Shapiro's logical
debugging algorithm is employed effectively to identify

Institute of Industrial Science, University of Tokyo 7-22-1, Roppon-
gi, Minato-ku, Tokyo 106, Japan
(*Presently with Sumitomo Electric Corp. Ltd)

Paper received 11 November 1988. Accepted 13 September 1989

the knowledge which causes inconsistency. The whole
system has been implemented using the meta-
programming of Prolog.

Keywords: logical knowledge base, hypothetical
reasoning, knowledge assimilation, knowledge man-
agement, inductive inference

Today's knowledge systems are mostly based on the
deductive inference mechanism which has thus far been
explored in the artificial intelligence field. An impor-
tant theme in the development of future knowledge
systems is to explore advanced AI mechanisms such as
recognition, analogy, learning, creative functions,
abduction, etc. One key area is the handling of
incomplete knowledge in addition to complete know-
ledge in a knowledge base. This incomplete knowledge
includes hypothetical knowledge, knowledge with ex-
ceptions, commonsense knowledge which works in the
background in case of need, the knowledge which
interpretation can generalize in case of need, etc. If we
write these sorts of incomplete knowledge in a know-
ledge base, the incomplete knowledge becomes false in
some situations, and conflicting answers may be de-
duced from the knowledge base. However, the incom-
plete knowledge greatly enhances the flexibility of the
knowledge base, and becomes a key factor in the
realization of advanced AI mechanisms.

As one step towards an advanced knowledge base
capable of handling incomplete knowledge, this paper
will deal with a hypothesis-based logical reasoning
system, since this is important from the viewpoints of
applicability to practical diagnosis and design problems
as well as theoretical foundation. A hypothetical
reasoning system in the logic framework has been
proposed by Pool et al. 1. In this paper it will be
presented as an enhanced knowledge representation in
a hypothesis-based logical reasoning system suitable for
diagnosis or classification problems. An inductive
inference module will then be presented which gener-
ates knowledge, including hypotheses (incomplete
knowledge), from given examples. Also described is a

Vol 3 No 2 June 1990 0950-7051/90/020077-10 © 1990 Butterworth & Co (Publishers) Ltd 77

knowledge assimilation and management module for a
knowledge base including hypothesis knowledge. The
mechanisms described in this paper have been im-
plemented as a meta-interpreter on Prolog. Prolog-like
notations, such as ':-', are used throughout the paper.

ENHANCED KNOWLEDGE
REPRESENTATION

The hypothetical reasoning system on the logic
framework is described in Reference 1, where the
fragments of knowledge are classified into two sets:
facts (complete knowledge) and hypotheses (incom-
plete knowledge). The set of facts F represents the
knowledge which is always true in a problem domain,
while the set of hypotheses H represents the knowledge
which is not always true and sometimes contradicts
other knowledge. Figure 1 shows the conceptual
architecture of the hypothesis-based logical reasoning
system.

When a set of observations O is given, the basic
mechanism of the hypothetical reasoning system tries
to construct h, which is the subset of H (i.e., h _C H)
satisfying the following logical relations:

FUh[-O
FUh~D

(O is deducible from FUh)
(FUh is not inconsistent)

That is, h is a set of consistent hypotheses to explain the
observation O. This formalism is also called consistent
theory formation, which is achieved through a logical
theorem proving procedure. It is shown that default
logic in the scope of normal default 2 can be dealt with
in the framework of this hypothesis-based logical
reasoning ~. It is important practically that the above
formalism is well fitted to logical diagnosis or design

Fact F

Subset H

Observation

0

Consistent

Hypothesis H

Figure 1. Hypothesis-based logical reasoning system

problems if we regard the possible causes of the fault or
the possible components of the design as hypotheses.

More than two subsets of hypotheses often satisfy the
above condition, so that a process of selecting one
subset of hypotheses must be invoked. This process
generates a series of critical questions to distinguish one
subset from the others. The use of hierarchical relations
among the hypotheses in the hypothesis formation and
selection processes is studied in Reference 3.

Although consistency checking is an essential func-
tion in hypothetical reasoning, it cannot be simply dealt
with using Prolog, in which the scope of knowledge
representation is restricted to Horn clauses and logical
negation cannot be expressed. The MESON proof
procedure 4 provides a way to implement full first-order
predicate logic using Prolog, and since this paper
emphasizes theoretical aspects, a hypothesis-based
logical reasoning system will be constructed around
such an implementation. (One problem of using the
MESON proof procedure is its slow inference speed).
The inconsistency in this case is, therefore, the situa-
tion that P and -~P co-exist in the same world under
consideration. The logical negation in the current
system is expressed as n () , in contrast to not() which
denotes the negation as failure in usual Prolog.

Considering the application of the hypothetical
reasoning system particularly to diagnosis problems,
the knowledge representation format is defined as:

fact (ID, NID, PREC, logical-form knowledge)
for fact knowledge.

hyp(Name, ID, NID, PREC, logical-form know-
ledge)

for hypothesis knowledge.

where

ID = identifier of the knowledge (usually numeric-
al).
NID = list of ID which cannot be used together with
its knowledge. This is used to express exclusive
knowledge.
PREC = preconditions that have to be set before the
use of the knowledge.
Name = name of hypothesis. This takes a predicate
form in which arguments denote the variables
appearing in the hypothesis knowledge.

The following shows some examples of this knowledge
representation format:

fact(i,[2],[],(q:-p))
fact(2,[1],[],(r:-p))
hyp(nml,3,[],[temp_pointl (T1)],(T1 >80:-p))

The ID, NID and PREC are introduced to express and
utilize the knowledge of ((symptoms) :- (cause)) type,
particularly in diagnosis problems.

PREC is introduced to treat the case that, for
example, if part_A is a fault (fault(part__A)), then the
temperature of point1 is higher that 80°C. The
knowledge may be interpreted as:

T1 > 80:-fault(part_A) where temp_pointl(T1)

Here, the 'where' part denotes the precondition that

78 Knowledge-Based Systems

the knowledge becomes usable. If we express it in logic,
it becomes:

T1 >80:-fault(part__A),temp_point I(T1)

In the application of the hypothetical reasoning system,
it is desirable to express the knowledge uniformly as:

(observations) :-(hypothesis>

To maintain this uniformity, we express the precondi-
tions of the 'where' part in PREC in our knowledge
format. This separation of the knowledge expression
can be effectively utilized in the hypothesis selection
process. When the knowledge seems to be useful in the
inference process and the truth value of PREC is not
known, the system first asks for the argument value of
the predicate expressed in PREC.

ID and NID are introduced mainly to clarify the
meaning of the knowledge which has disjunction (v) in
its head part. For example, the knowledge qlvq2:--p
can be represented, if we express all its contrapositives
which will be used in the MESON proof procedure, as:

(ql :-p,--N2) A (q2:-p,---7ql) A (---7p :-----N 1,q2).

In this case, we cannot prove either ql or q2 if we
assume only p. This is inconvenient, since the intended
meaning of ql vq2:-p in ordinary cases is that ql or q2
is true if p is true. This problem will be overcome as
follows. The disjunctive formula can be dissolved into
the disjunction of mutually contradicting conjunctive
formulae. For example, ql vq2 can be expressed as:

(q 1 ̂ q2) v (q 1 ̂ ---7q2) v (---7q 1 A q2)

This exclusive knowledge is expressed using ID and
NID. If q lvq2 : -p is fact knowledge, then it will be
expressed in our system as:

fact(i,[2,3],[],(ql&q2:-p))
fact(2,[1,3],[],(ql&n(q2):-p))
fact(3,[1,2],[],(n(ql)&q2:-p))

where n() denotes the logical negation. The conjunc-
tion in the head part and the disjunction in the body
part are eventually removed by logical transformations.

HYPOTHESIS SELECTION AND
ASSOCIATED FUNCTIONS

In order to understand the practical usefulness of the
hypothesis-based logical reasoning system, its applica-
tion to a fault diagnosis problem will now be shown.

The hypothesis selection mechanism implemented in
the current system is the following general one. That is,
observable data in a problem domain is predefined as

observable([predicate-list])

When more than two sets of hypotheses are formed,
the system generates a question to obtain a critical
additional observation among the predefined observ-
able data for eliminating a part of the hypothesis sets.
Suppose two sets of hypotheses, hl and h2, remain as a

possible answer. The system tries to find an instantiated
observation O' satisfying

FUhl[-O' and FUh2 ~/O' (or vice versa)

To eliminate either hl or h2 it then asks the user
whether or not O' is true.

The amount of observable data is limited and
sometimes not enough. On the other hand, in some
cases there are controllable input points to which
various signals can be applied to obtain necessary
additional observations. Therefore, our hypothetical
reasoning system allows the declaration of such con-
trollable input points as

askable([predicate-list])

According to this declaration and the related
predicate-argument type declaration being written
elsewhere, the system generates, if necessary, instanti-
ated input patterns in the hypothesis selection process
to obtain useful observations.

An optimal strategy for the hypothesis selection is to
choose the question which can discriminate two groups
of the hypothesis set with balanced numbers, since it
makes it possible to reach a conclusion with the
minimum number of questions. The current system,
however, has not been equipped with this strategy. In
Reference 5, an efficient method of generating ques-
tions with which to select either set of hypotheses hl or
h2 is presented for the case when there is an observa-
tion which can be derived from (hlUh2) but not from
either hl or h2. This is, however, a very special case.

Figure 2 shows an application of the current system
to the fault diagnosis of a digital circuit. Two types of
fault are assumed at each gate, namely stuck-on and
stuck-off, in which the output is stuck at 1 and 0,
respectively. Since the function of each gate is either
normal (ok) or fault (stuckon, stuckoff), these func-
tions are expressed as exclusive hypotheses. On the
other hand, the connections between gates and termin-
als are expressed as fact knowledge because they are
assumed never to be in fault.

Once a set of malfunctions is given as an observation,
the system first forms 14 sets of hypotheses including
multiple faults as shown in Figure 2. By obtaining
additional observations through the interactive
hypothesis-selection process, the system eventually
determines the fault to be that the exlusive-OR gate is
stuck-off.

An important point here is that the diagnosis system
can be built by describing the knowledge system-
atically, rather than by describing causal relations
and/or heuristic knowledge as in existing expert sys-
tems. Thus the system components with no fault
possibility and with fault possibility are described as
fact (complete) knowledge and hypothesis (incom-
plete) knowledge, respectively. This approach enables
expert systems to be built using deep knowledge.
Heuristic knowledge may be incorporated as meta-
knowledge to achieve efficient inference. This
hypothesis-based logical reasoning system can also be
applied to design problems if we regard given specifica-
tions and possible design components as given observa-
tions and hypotheses, respectively. The effective use of

Vol 3 No 2 June 1990 79

in(1,f l) _ ~
in(2,fl)

in(3,f l)

L) ~ out(1,fl)

out(2, fl)

Digital circuit (full adder, name: f l)

I ?-hypoth.
Hypothesis formation starts.
Please input knowledge base name
>'exl.11'.
ex1.11 reconsulted 4552 bytes 0.763003 sec.
Please input symptoms
>((val(out(1,fl),0)&val(out(2,fl),0):-val(in(1,fl),0)&val(in(2,fl),0)&val(in(3,fl),0))
&(val(•ut(1•f1)••)&va•(•ut(2•f1)••):•Va•(in(1•f1)••)&va•(in(2•f1),1)&Va•(in(3•f1)••))
&(va•(•ut(1•f1)••)&va•(•ut(2•f1)••):-Va•(in(1•f1),1)&va•(in(2•f1)••)&va•(in(3•f1)••)))•
Forming hypotheses...
Formed hypotheses are:
(stat(a 1 ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok))
stat(a 1 ,stuckoff) & stat(a2,ok) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok))
stat(al ,ok) & stat(a2,stuckoff) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok)

(stat(a 1 ,stuckoff) & stat(a2,stuckoff) & stat(ol ,ok) & stat(xl ,stuckoff) & stat(x2,ok))
stat(ol ,stuckoff) & stat(xl ,stuckoff) & stat(x2,ok)
stat(a 1 ,ok) & stat(xl ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff)

(stat(a 1 ,stuckoff) & stat(xl ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff)
(stat(a 1 ,ok) & stat(xl ,stuckon) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff)
(stat(al ,stuckoff) & stat(xl ,stuckon) & stat(a2,ok) & stat(o 1 ,ok) & stat(x2,stuckoff))
(stat(al,ok) & stat(xl,stuckoff) & stat(a2,ok) & stat(ol,ok) & stat(x2,stuckoff)
(stat(a 1 ,stuckoff) & stat(x 1 ,stuckoff) & stat(a2,ok) & stat(o 1 ,ok) & stat(x2,stu ckoff))
stat(a 1 ,ok) & stat(a2,stuckoff) & stat(o 1 ,ok) & stat(x2,stuckoff)
stat(al ,stuckoff) & stat(a2,stuckoff) & stat(ol ,ok) & stat(x2,stuckoff)
stat(o 1 ,stuckoff) & stat(x2,stuckoff)

Observation:
val(out(1,fl),1):-val(in(3;fl),l)
is right?(y/n)
>n.
Observation:
val(out(2,fl),1):-val(in(2,fl),I)&val(in(1,fl),1)&val(in(3,fl),0)
is right?(y/n)
>y.
Observation:
val(out(2,fl),O):-val(in(2,fl),0)&val(in(1 ,fl),O)&val(in(3,fl),1)
is right?(y/n)
>y.
Observation:
val(out(2,fl),l):-val(in(2,fl),l)&val(in(1,fl),0)&val(in(3,fl),1)
is right?(y/n)
>y.
Verified hypothesis is:
(stat(a 1 ,ok) & stat(xl ,ok) & stat(a2,ok) & stat(ol ,ok) & stat(x2,stuckoff))

Do you continue?(y/n)
~>n.
yes

Observation

Hypotheses formation

14 hypotheses formed
at first step

Question-answering for
hypothesis selection

Figure 2. An application of the hypothesis-based reasoning system to the fault diagnosis of a digital circuit.
val(out(1,fl),O) means that the value of the node out (1,fl) is O, and stat(al,ok) means that the status of the al gate is
OK

constraint knowledge becomes crucial, particularly in
design problems, in narrowing down the search space.

INDUCTIVE CONCEPT LEARNING
MECHANISM

The knowledge acquisition support or learning capabil-
ity is important for next-generation knowledge systems.
Two knowledge acquisition modules have been added
to the current hypothesis-based logical reasoning sys-
tem as shown in Figure 3. The first module, which is

based on an inductive inference extended to deal with
the knowledge base with hypotheses, enables concept
learning from given examples. The second module
provides knowledge assimilation and management
functions for the frame knowledge base with hypoth-
eses. The redundant knowledge base is attached in
Figure 3 to cope with the nonmonotonicity of the
hypothetical reasoning system. These knowledge ac-
quisition mechanisms will be seen in the following.

An overview of inductive concept learning methods
for complete knowledge is described in Reference 6.

80 Knowledge-Based Systems

Knowledge
acquisition
modules

Examples _] ~ Concepts
for learning
learning / I module from

examples

Input new [
kn°wledgeA k I Knowledge or assimilation
erase ~ _ ~ and

management existing knowledge " j module

Knowledge- base
including hypothesis

Fact J knowledge-base

Hypothesis I
knowledge-base

I I
I Redundant]

knowledge-base

Figure 3. Knowledge acquisition modules for the know-
ledge base including hypotheses

Considered here will be the knowledge-base case
including hypotheses, which allows the acceptance of
even contradicting examples.

Let learning examples be given in the form of

obs_a & obs_b & :-concept_l

where the body and head parts are the concept and its
associated observations. ('&' in the head part may be
replaced by ',' in our system.) In the fault diagnosis
system, the cause and symptoms correspond to the
concept and observations, respectively, in the above
formalism.

We assume here that all the given examples are
correct; i.e., no erroneous example is involved. We
also assume that all the necessary observations are
given for concluding one concept. (For example, the
learning examples are collected from the diagnoses of
medical doctors, whose decisions always rely on suffi-
cient observations.)

The current system allows a hierarchical frame-
structured organization of the concepts as shown in the
next section. However, the automatic learning of the
hierarchical organization is not supported at present,
since it requires prior knowledge about concept hierar-
chy. Thus inductive learning here is to acquire decision
rules which show causal relations between the target
concept and observations. Since all the possible
observations are to be explainable from fact and
hypothesis knowledge in the hypothesis-based reason-
ing system, the learning module forms as many as
generalized knowledge, mostly as hypotheses.

The basic strategy of the inductive learning module is
to proceed the generalization of observations regarding
one concept while excluding the observations of other
concepts in the given examples. The key technology
here is an extended version of minimum generalization
in a logic framework 7.

The argument of the predicate is chosen as the target
item of the generalization. To perform the generaliza-
tion, the system has to know the type of the argument.
The type is indicated in some place, for example, as:

defgentype(p(ord, dis))
defgentype(r(any))

where the first and second arguments of predicate p are
defined as ordered number and disjoint entity, respec-
tively, and the argument of predicate r is defined as any
entity. The following exemplifies the minimum gener-
alization according to this type declaration:

[Ex] Knowledge formation by the minimum generaliza-
tion regarding r(s) and r(t) when r(s):-c arid r(t):-c are
given as learning examples.
• if defgentype(r(ord)) and s<t, then

fact(IO,[],[r(X)],(s= < X < =t :-c.))
• if defgentype(r(dis)) and s4=t, then

fact(ID,[],[r(X)],(X= s;t:-c.))
• if defgentype(r(any)) and s~t, then

fact(ID,[],[],(r(X):-c.))

The extended minimum generalization for the know-
ledge including hypotheses is as follows, where lst-3rd
arguments of fact () and lst-4th arguments of hyp()
in the knowledge representation described earlier are
omitted for simplicity.

Extended minimum generalization

When fact(A1 At:-c) and hyp(At+l, • . . , Am:'-c)
already exist with respect to the concept c, the
procedure of the extended minimum generalization
with the new input example al am:-C is as follows:

(where i,], k, 1, m, n are 1, 2, 3 and n() denotes
logical negation)
• for j = l t o j = m

if aj is comparable* with Ak(1 ~< k ~< n)
then replace A k with the minimum generalization of

(Ak, aj)
else if aj is comparable with n(Ak)

then remove Ak from the head of
fact(A1, . . . , At:--c) and
add Ak and aj to the head of
hyp(A/+l A~:-c)

else add aj to the head of
hyp(At+l A , :-c)

• f o r / = l t o j = l
if Aj is not comparable with either al , am
then remove Aj from the head of fact(A1 At : -

c) and
add Aj to the head of h y p (A t + l , . . . , A, : -c)

Using this extended minimum generalization, we can
construct our inductive learning mechanism. The
generalization sometimes results in over-general-
ization, in which the knowledge induced with respect to
one concept becomes able to explain an example
belonging to another concept (counter example). In
this case, we have to find an adequate splitting of the
input examples into more than two groups such that
extended minimum generalization does not conflict
with counter examples. The knowledge induced from
each split group is combined in an exclusive-OR
relation. (The smaller the number of split groups the
better.) To realize this procedure efficiently, we first

*If A I and A2 are literals with the same predicate symbol and the
same logical symbol (negation symbol), we call them comparable.

Vol 3 No 2 June 1990 81

construct the lattice (all the subsets) of the input
examples with respect to one concept. Then we check
the subset of the input examples in order, starting with
the largest subset, to find out whether or not its
extended minimum generalization is over-general-
ization. If not over-generalization, the induced know-
ledge from the subset is established. The check of a
subset included in the larger subset from which the
induced knowledge is already established is then
skipped.

Usually in multiple-concept learning for classification
or diagnosis problems, the goal is to generate the
minimum knowledge necessary for discriminating an
observation associated with another concept (counter
example). Thus the procedure which keeps only the
minimum fact knowledge necessary for discriminating
counter examples as fact knowledge, changing other

fact knowledge to hypothesis knowledge, is attached at
the final phase of the inductive concept learning
process. The discriminating fact knowledge pertaining
to a particular concept indicates that the observation
will always appear along with the concept. Conversely,
all the fact knowledge of one concept can never be true
in observations from other concepts.

Examples of the above inductive concept learning
are shown in Figures 4a and b, where diagnosis
knowledge for identifying the cause of food poisoning
(Bacillus botulinus, Staphylococcus, Vibrio enteritis or
Salmonella) is induced from input examples represent-
ing their observations.

When compared with the inductive concept learning
on version space 9, the mechanism presented here
allows the formation of concept description in logical
OR relation in addition to AND relation.

/* file name exg5 , /
ex(pain(stomach),nausea(nauseating),nervous_paralysis(eye),diarrhea,n(fever).

latenLhour(6),food(boiled_fishpast):- botulinus_bacillus).
ex(nauseating(vomiting),nervous_paralysis(th roat),diarrhea,n(fever),pain(upper_abdomen).

latent_hour(2),food(salad):- botulinus_bacillus).
ex(nausea(nauseating),nervous_paralysis(eye),diarrhea,n(fever),pain(stomach).

latenLhour(8),food(box_lu nch):- botulinus_bacillus).
ex(pain(upper_abdomen),nausea(nauseating),food(cream_puff),diarrhea.

n(fever),latenLhour(3),nervous_paralysis(none):- staphylococcus).
ex(pain(stomach),food(rice_ball),diarrhea,n(fever),latenLhou r(1).

nervous_paralysis(none):- staphylococcus).
ex(pain(upper_abdomen),nausea(vomiting),food(pudding),nervous_paralysis(none).

diarrhea,n(fever),latent_hour(2):- staphylococcus).
ex(pain(upper_abdomen),nausea(nauseating),food(salad),diarrhea,n(fever).

latenLhour(6),nervous_paralysis(none):- staphylococcus).
ex(pain(stomach),nausea(nauseating),food(boiled_fishpast),diarrhea,n(fever).

latenkhour(4),nervous_paralysis(none):- staphylococcus).
ex(pain(stomach),nausea(nauseating),food(shrimp),diarrhea,fever.

latenLhour(12),nervous_paralysis(none):- enteritis_vibrio).
ex(pain(upper_abdomen),nausea(vomiting),food(cuttlefish),diarrhea,fever.

latenLhour(18),nervous_paralysis(none):- enteritis_vibrio).
ex(pain(stomach),food(sushi),diarrhea,fever,latenLhou r(16).

nervous_paralysis(none),nausea(none):- enteritis_vibrio).
ex(pain(upper_abdomen),food(box_lunch),diarrhea,fever,latenLhour(12).

nervous_paralysis(none),nausea(none):- enteritis_vibrio).
ex(pain(stomach),nausea(nauseating),food(raw_tuna),diarrhea,fever.

latenLhour(20),nervous_paralysis(none):- enteritis_vibrio).
ex(pain(stomach),food(salad),diarrhea,fever,latenLhour(18).

nervous_paralysis(none),nausea(none):- salmonella).
ex(food(box_lunch),diarrhea,fever,latenLhour(12),pain(stomach).

nervous_paralysis(none),nausea(none):- salmonella).
ex(pain(upper_abdomen),food(steamed_fishpast),diarrhea,fever,latenLhour(20).

nervous_paralysis(none),nausea(none):- salmonella).
ex(nausea(nauseating),food(raw_oyster),diarrhea,fever,latent-hour(16).

nervous_paralysis(none),pain(stomach):- salmonella).
ex(food(cooled_tofu),diarrhea,fever,latent_hour(22),nervous_paralysis(none).

nausea(none),pain(upper_abdomen):- salmonella).

defgentype(pain(dis)).
defgentype(latenLhour(ord)).
defgentype(food(dis)).
defgentype(nausea(dis)).
defgentype(diarrhea).
defgentype(fever).
defgentype(nervous_pa ralysis(dis)).

a

Figure 4a. An example of inductive concept learning; input examples for learning

82 Knowledge-Based Systems

I ?-learn.
Learning sessions s tar ts . . .
Please input example database name
>exgS.
Learned rules are as be low
fact(1 ,[],[nervous_paralysis(Y_545)],((Y_545= =eye;Y_545= =throat):-botul inus_baci l lus))
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[nausea(Y_489)].
((Y_489= = nausea ;Y_489 = =vomit ing):-botul inus_baci l lus))
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774),l,[],[],(diarrhea :-botulinus_bacil lus))
h yp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[],(n(fever):-botulin us_bacillus))
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[pain(Y_665)].
((Y_665= =stomach;Y_665=-- upper_abdomen):-botul inus_baci l lus))
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 , [] , [latenLhou r(Y_719)].
(2= <Y_719,Y_719= <8:-botul inus_bacil lus))
hyp(s#OOO(Y_489,Y_665,Y_719,Y_774), 1 ,[],[food(Y_774)].
((Y_774= = box_lunch;Y_774= = boiled_fishpast;Y_774= =salad):-botul inus_bacil lus))
fact(2,[],[],(n(fever):-staphylococcus))
fact(2,[],[],(nervous_pa ralysis(none):-sta phylococcus))
hyp(s#O01 (Y_2098,Y_2154,Y_2276,Y_2740),2,[],[pain(Y_2098)].
((Y_2098= = upper_abdomen;Y_2098 = = stomach) :-staphylococcus))
hyp(s#O01 (Y_2098,Y_2154,Y_2276,Y_2740),2,[],[food(Y_2154)].
((Y_2154= =boi led_fishpast;Y_2154= =salad;Y_2154= =pudding;Y_2154= =cream_puff ;Y_
2154= = rice_ball):-staphylococcus))
hyp(s#O01 (Y_2098,Y_2154,Y_2276,Y_2740),2,[],[],(diarrhea :-staphylococcus))
hyp(s#O01 (Y-2098,Y_2154,Y_2276,Y_2740),2,[],[],[latenLhou r(Y_2276)].
((1 = <Y_2276,Y_2276= <6:-staphylococcus))
hyp(s#O01 (Y_2098,Y_2164,Y_2276,Y_2740),2,[],[nausea(Y_2740)].
((Y_2740 = = nauseating;Y_2740= =vomit ing):-staphylococcus))
fact(3,[4],[] ,(pain(upper_abdomen):-enterit is_vibrio))
fact(3,[4],[food(Y_5834)],((Y_5834= =cutt lef ish;Y_5834= = box-lunch):-enteri t is_vibrio))
hyp(s#OO2(Y_5956,Y_6061),3[4],[],(dia rrhea :-enterit is_vibrio))
hyp(s#OO2(Y_5956,Y_6061),3,[4},[],(fever:-enteritis_vibrio))
hyp(s#OO2(Y_5956,Y_6061),3,[4],[latenLhour(Y_5956)].
(12 = <Y_5956,Y_5956 = < 18:-enteritis_vibrio))
hyp(s#OO2(Y_5956,Y_6061),3,[4],[],(nervous_pa ralysis(none):-enterit is_vibrio))
hyp(s#OO2(Y_5956,Y_6061),3,[4],[nausea(Y_6061)].
((Y_6061 = =vomit ing;Y_6061 = =none): = enterit is_vibrio))
fact(4,[3],[food(Y_4604)}.
((Y_4604= = raw_tuna;Y_4604= =sushi;Y_4604= = shrimp;Y_4604= =cutt lef ish):-enterit is_
vibrio))
hyp(s#OO3(Y_4496,Y_4550,Y_4720),4,[3],[pa i n (Y_4496)].
((Y_4496= = stomach ;Y_4496= = upper_abdomen):-enteri t is_vibrio))
hyp(s#OO3(Y-4496,Y_4550,Y_4720),4,[3],[na u sea(Y_4650)].
((Y_4550= = none;Y_4550= = nauseating;Y_4550= =vomit ing):-enter i t is_vibr io))
hyp(s#OO3(Y_4496,Y_4550,Y_4720),4,[3],[],(dia rrhea :-enterit is_vibrio))
hyp(s#OO3(Y_4496,Y_4550,Y_4720),4,[3],[],(fever:-enteritis_vibrio))
hyp(s#003(Y_4496,Y_4550,Y_4720),4,[3],[],(latenLhou r(Y_4720)].
(12 = <Y_4720,Y_4720= <20:-enterit is_vibrio))
hyp(s#003(Y_4496,Y_4550,Y_4720),4,[3],[],(nervous_paralysis(none) :-enterit is_vibrio))
fact(5,[6],[food(Y_8373)].
((Y_8373= = raw_oyster;Y_8373= =salad; Y_8373= = box_lunch):-salmonella))
fact(5,[6],[],(fever :-salmonella))
fact(5,[6],[],(pain(stomach):-salmonella))
hyp(s#004(Y_8754,Y_8495),5,[6],[na usea(Y_8754)].
((Y-8754= = none;Y_8754= = nauseating):-salmonella))
hyp(s#004(Y_8754,Y_8495),5,[6],[],)dia rrhea :-salmonella))
hyp(s#004(Y_8754,Y_8495),5,[6],[latenLhou r(Y_8495)],(12 = <Y_8495,Y_
8495= < 18: =salmonel la))
hyp(s#004(Y_8754,Y_8495),5,[6],(nervous_pa ralysis(none):-salmonella))
fact(6,[5],[food(Y_7116)],.
((Y_7116 = = cooled_tofu; Y_7116 = = raw_oyster; Y_7116 = = sala d; Y_7116 = = stea med_fish past) :-
salmonella))
fact(6,[5],[],(fever :-salmonella))
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[],(dia rrhea :-salmonella))
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[latent_hou r(Y_7232)].
(16= <Y_7232,Y_7232 = <22:-salmonel la))
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[],(nervous_pa ralysis(none):-salmonella))
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[nausea(Y_7446)].
((Y_7446= = none;Y_7446= = nauseating):-salmonella))
hyp(s#005(Y_7232,Y_7446,Y_7062),6,[5],[pain(Y_7062)].
((Y-7062= =stomach;Y_7062 = = upper_abdomen):-salmonel la))
Do you continue?
>n .

Figure 4b. An example of inductive concept learning; induced knowledge from examples

Vol 3 No 2 June 1990 83

KNOWLEDGE ASSIMILATION AND
MANAGEMENT FOR FRAME KNOWLEDGE
BASE INCLUDING HYPOTHESES

The mechanisms of knowledge assimilation and man-
agement have been presented for a logical knowledge
base ~0. The logical deductive inference power of Prolog
facilitates the detection of redundancy and inconsisten-
cy of the knowledge base. This section constitutes a
brief description of the mechanism of a knowledge
assimilation and management module for the frame
knowledge base including hypotheses.

One of the distinctive features of this knowledge base
is that it can accept knowledge with exceptions or even
contradicting knowledge as hypotheses. However,
problems resulting from nonmonotonicity of the infer-
ence also have to be dealt with. The redundant
knowledge base shown in Figure 3 is a place to keep
redundant knowledge temporarily as it may become
nonredundant when new knowledge is entered. The
knowledge base including only complete knowledge
does not need such a store if the manner of knowledge
acquisition is incremental. The knowledge in the
redundant knowledge base is written in the current
system as:

red_db([list-of-[frame-name,knowledge]]).

The hierarchical knowledge representation of the
frame and its property inheritance function through the
'isa' link can be easily realized using logic program-
ming. The special operator 'isa' in the system is
introduced to denote 'is a relation'. The logical
meaning of this 'isa' is logical implication (~) . For
example, the frame hierarchy of ' t om ' s ' cock ' s ' b i rd '
is defined with contrapositives to be used in the
MESON proof procedure as:

tom isa cock
cock isa bird
n(cock) isa n(tom)
n(bird) isa n(cock)

Knowledge assimilation

The features of the knowledge assimilation mechanism
are as follows:

(a) Even if the new knowledge is inconsistent with
existing knowledge, it can be assimilated by chang-
ing the existing fact knowledge to hypotheses.
Shapiro's logical debugging algorithm H is effective-
ly employed to identify the inconsistent existing
knowledge.

(b) The system keeps redundant knowledge in a
separate place, and tries to re-assimilate it when its
redundancy changes due to the nonmonotonicity of
the inference.

Suppose that the user is trying to assimilate new
knowledge K to a frame Fr. Here the frames and their
hierarchy are assumed to be predefined. The know-
ledge assimilation module executes the following proc-
edure:

1 The set of fact (F) and hypotheses (H) knowledge
which can be accessed through the isa link from
frame Fr is collected.

2 If Ft_JhFK, where h is a consistent subset of H, K is
redundant and is put into the redundant knowledge
base red_db() , and the procedure stopped. Even if
K is rule knowledge including body part, it can be
checked L0

3 If F~ K with an instantiation of the variables in K,
K is inconsistent. Then, by an inconsistent know-
ledge tracing algorithm (described below), the fact
knowledge Fh (CF) which causes inconsistency with
K is found. Fh is changed to hypothesis. If Fh is
knowledge stored directly in Fr, then K is stored as
hypothesis knowledge in Fr.

4 The redundancy of K is again checked as in 1 above.
5 If K does not cause inconsistency in the lower frames

of Fr, it is assimilated as fact knowledge; otherwise,
K is assimilated as hypothesis knowledge.

6 [Recheck of the redundant knowledge base.] The
redundancy of the knowledge in the redundant
knowledge base may change in this system only when
(a) new fact knowledge is assimilated, (b) knowledge
is deleted, or (c) the content of NID is modified. The
redundancy of the knowledge in the redundant
knowledge base is then rechecked. If nonredundant,
attempts should be made to assimilate it by the above
procedure (1-5).

Knowledge management

The inconsistent knowledge tracing algorithm is de-
signed on the basis of Shapiro's logical debugging
algorithm II, which identifies bug knowledge through a
question-answer procedure when an incorrect answer
is deduced from the knowledge base. This algorithm is
modified to work in the current hypothetical reasoning
system based on the MESON proof procedure.

The knowledge management for knowledge deletion
is relatively simple. That is, delete the designated
knowledge from the frame, and execute the recheck of
the redundant knowledge base as described in 6 above.

The management of the frame system including
hypothesis knowledge with exceptions is complicated
where a semantic network having an isa link with
exceptions is studied 12,13. Here the management
mechanism of the isa link with exceptions in the current
system is described. This mechanism is invoked in
response to the user's request for erasing an inherited
knowledge at a frame Ft. The exception of the isa
inheritance link is represented in the current system by
adding not(Fr) to the body of the related knowledge,
where not() denotes the negation as failure as used in
ordinary Prolog. This is a way for expressing an
exceptional case explicitly.

In order to identify the knowledge to which the
exception is attached, the modification of Shapiro's
debugging algorithm is employed, where in this case
hypothesis knowledge as well as fact knowledge becom-
es the possible target items to identify. As for the use of
the hypothesis knowledge, it is necessary to check its
consistency with other knowledge. Once the appropri-
ate knowledge is identified, not(Fr) is added to its
body. Then the recheck of the redundancy of know-
ledge stored in the redundant knowledge base is

84 Knowledge-Based Systems

t ?-Iisting(fact),listing(hyp),listing(red_db).
fact(a,[],[],cock isa bird).
fact(b,[],[],tom isa cock).
fact(a,[],[],n(bird)isa n(cock)).
fact(b,[],[],n(cock)isa n(tom)).
red_db([]).
yes
I ?-acq(bird,fly).
yes
J ?-Iisting(fact),listing(hyp),listing(red_db).
fact(1 ,[],[],(fly:-bird)).
fact(1,[],[],(n(bird):-n(fly))). }
fact(a,[],[l,cock isa bird).
fact(b,[],[],tom isa cock).
fact(a,[],[],n(bird)isa n(cock)).
fact(b,[],[],n(cock)isa n(tom)).
red_db([]).
yes

J ?-acq(tom,fly).
yes
I ?-Iisting(fact),listing(hyp),listing(red_db).
fact(1 ,[],[],(fly:-bird)).
fact(1 ,[],[],(n(bird):-n(fly))).
fact(a,l],[],cock isa bird).
fact(b,[],[],tom isa cock).
fact(a,[],[],n(bird)isa n(cock)).
fact(b,[],[],n(cock)ias n(tom)).
red_db([[tom,fly]]).
yes

j ?-acq(cock,(n(fly):-wing_wea k)).
yes
I ?-Iisting(fact),listing(hyp),listing(red-db).
fact(2,[],[],(n(fly) :-cock&wing_weak)). 1
fact(2,[],[],(n(cock):-fly&wing_weak)). ~ -
fact(2,[],[],(n(wing_weak):-cock&fly)). J
fact(1 ,[],[],(fly:-bird)).
fact(1,[],[],(n(bird):-n(fly))).
fact(a,[],[],cock isa bird].
fact(b,[],[],tom isa cock).
fact(a,[],[],n(bird)isa n(cock)).
fact(b,[],[],n(cock)isa n(tom)).
red_db([[tom,fly]]).
yes

Acquired as
fact knowledge

(a)

Stored in redundant
knowledge-base

(b)

Assimilated as
fact knowledge

(c)

I ?-acq(cock,wing_weak). - Occurrence of inconsistency
"right" in Query means "always right" 1
In the frame [cock]

I
Query:
fly is right?(y/n)>>n. Question-answering
"right" in Query means "always right" . according to
In the frame [tom] inconsistent knowledge
Query: tracing algorithm
wing_weak is right?(y/n)>>n.
yes
I ?-Iisting(fact),listing(hyp),listing(red_db).
fact(2,[],[],(n(fly):-cock&wing_weak)).
fact(2,[],[],(n(cock):-fly&wing_weak)).
fact(2,[l,[],(n(wing_weak) :-cock&fly)).
fact(a,[],H,cock isa bird).
fact(b,[],[],tom isa cock).
fact(a,[],[],n(bird)isa n(cock)).
fact(b,[],[],n(cock)isa n(tom)). " t

hyp('s#001',3,[],[],(wing_weak:-cock)). / Changeto
hyp('s#001',3,[],[],(n(cock):-n(wing_weak))). =i hypothesis
hyp('s#000',l ,[],[],(fly:-bird)). knowledge
hyp('s#000',l ,[],[],(n(bird):-n(fly))).
red_db([[tom,fly]]).
yes

(d)
J ?-inq(cock,n(fly)).
yes
J ?-inq(cock,fly).
yes
I ?-era(cock,fly). Erase inherited knowledge
In the frame [cock] from a frame
Query:
fly is right?(y//n)>>n.
yes
I ?-Iisting(fact),listing(hyp),listing(red_db).
fact(4,[],[],(fly:-tom)), l Acquired from
fact(4,[],[],(n(tom):-n(fly))). J ~ redundant knowledge-base
fact(2,[],[],(n(fly):-cock&wing_weak)).
fact(2,[].[],(n(cock):-fly&wing_weak)).
fact(2,[],[],(n(wing_weak):-cock&fly)).
fact(a,[],[],cock isa bird).
fact(b,[],[],tom isa cock).
fact(a,[],[],n(bird)isa n(cock)).
fact(b,[],[],n(cock)isa n(tom)).
hyp('s#000',l,[],[],(fly:-bird¬(cock))). "[Cut of
hyp('s#000',l,[],[],(n(bird):-n(fly)¬(cock))). J inheritance
hyp('s#001 ',3,[],[],(wing_weak:-cock)).
hyp('s#001 ',3,[],[],(n(cock):-n(wing_weak))).
red_db([]).
yes
I ?-inq(cock,fly).
no
I ?-inq(tom,fly).
yes
I ?-nolog.

(e)

Figure 5. An example of knowledge assimilation and management processes

invoked. In this way, the isa link with exceptions can be
adjusted semi-automatically.

The following predicates are implemented for execut-
ing the above-mentioned knowledge assimilation and
management procedures:

acq(frame-name, new-knowledge)
for assimilating new knowledge into the frame,

del(frame-name, delete-knowledge)
for deleting the knowledge from the frame,

era(frame-name, knowledge-to-deny-its-
inheritance)

for adjusting the isa link by adding an exception,
and

inq(frame-name, knowledge)
for inquiring whether the knowledge exists in the
frame or is inherited from the upper frame.

An example of the behaviour of these mechanisms is
shown in Figure 5, where the frame hierarchy of
tom~cock---~bird is predefined. In Figure 5a, the
knowledge 'fly' is given to the 'bird' frame as new
knowledge. Since it is neither inconsistent nor redun-
dant, it is assimilated with corresponding contraposi-
tives as fact knowledge. In Figure 5b, the knowledge
'fly' is given to the 'tom' frame; however, it is placed in
the redundant knowledge base since it is redundant at
this moment. In Figure 5c, the knowledge 'n(fly):-
wing_weak' is given to the 'cock' frame; it is assimilated

Vol 3 No 2 June 1990 85

as fact knowledge. In Figure 5d, the knowledge
'wing_weak' is given to the 'cock' frame. This gives rise
to an inconsistency, because 'n(fly)' and the inherited
'fly' co-exist in the 'cock' frame. Therefore the inconsis-
tent knowledge tracing algorithm is invoked. As the
result of question answering, the knowledge 'fly' in the
'bird' frame is changed from fact to hypothesis know-
ledge, and the knowledge 'wing_weak' is assimilated as
hypothesis knowledge in the 'cock' frame.

In Figure 5e, the knowledge 'fly' is denied in the
'cock' frame. Then, through question answering gener-
ated by the modified debugging algorithm, the express-
ion of exception 'not(cock)' is added to the body of the
knowledge 'fly' in the 'bird' frame. In addition, through
the recheck of the redundant knowledge base, the
knowledge 'fly' is assimilated into the 'tom' frame.

CONCLUSIONS

The mechanisms of two knowledge acquisition modules
have been described for the hypothesis-based logical
reasoning system, which is very important from the
viewpoints both of the theoretical foundation of hand-
ling incomplete knowledge and of practical usefulness.
Based on this system, the authors are now constructing
a next-generation knowledge-based system in-
crementally to support advanced AI functions such as
analogy, commonsense, creative design, learning, etc.
From a practical viewpoint, the improvement of
inference speed is crucial. To this end we shall have to
exploit a mechanism similar to ATMS14: while it is
necessary for us to treat the knowledge represented in
predicate logic with variables, the knowledge in ATMS
is restricted to propositional logic with no variable.

A C K N O W L E D G E M E N T

The authors wish to thank the members of ICOT's KSS
(in 1987) and KSA (in 1988) working group for their
discussions on hypothetical reasoning and related
issues.

REFERENCES

1 Pool, D L, Aleliunas, A and Gobel, R 'Theorist: a
logical reasoning system for default and diagnosis"
in Cercone, N J and McCalla, G (Eds) The
Knowledge Frontier- Essays in the Representation
of Knowledge Springer-Verlag (1987)

2 Reiter, R 'A logic for default reasoning" ArtiJ~
Intell. Vol 13 (1988)pp 81-132

3 Kunifuji, K, Turumaki, K and Furukawa, K 'A
consideration about a hypothesis-based reasoning
system' (in Japanese) J. Jap. Soc. Artif. lntell. Vol 2
No 2 (1986) pp 228-237

4 Loveland, D W Automated Theorem Proving: A
Logical Basis North-Holland (1978)

5 Seki, H and Takeuchi, A 'An algorithm for finding a
query which discriminates competing hypotheses'
ICOT Tech. Rep. (1985)

6 Miehalski, R S 'A theory and methodology of
inductive learning' in Miehalski, R S et al. (Eds)
Machine Learning Springer-Verlag (1984)

7 Plotokin, G D A Note on Inductive Generalization:
Machine Intelligence 5 John Wiley & Sons (1970)

8 Matsuda, T and Ishizuka, M 'An enhanced know-
ledge representation and concept learning mechan-
ism in a hypothesis-based reasoning system' (in
Japanese) J. Jap. Soc. Artif. lntell. Vol 3 No 1
(1988) pp 94-102
Mitchell, T M 'Version space: a candidate elimina-
tion approach to rule learning' 5th IJCAI (1977)
Miyachi, T, Kunifuji, S, Kitami, H and Furukawa,
K 'A knowledge assimilation method for logic
databases' New Generation Comput. Vol 2 No 4
(1984) pp 385-404
Shapiro, E Y Algorithmic Program Debugging MIT
Press (1983)
Etherington, D W and Reiter, R 'On inheritance
hierarchies with exceptions' AAA1-83 (1983)
Sandwail, E 'Nonmonotonic inference rules for
multiple inheritance with exceptions' Proc. IEEE
Vol 74 No 10 (1986) pp 1345-1353
DeKleer, J 'An assumption-based TMS' ArtiJ~
lntell. Vol 28 (1986) pp 127-162

9

10

11

12

13

14

86 Knowledge-Based Systems

