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Abstract. Hypothetical reasoning is an important framework for knowledge-based

systems because it is theoretically founded and useful for many practical problems.

Since the inference time of hypothetical reasoning grows exponentially with respect

to problem size, its ineÆciency becomes the most crucial problem when applied to

practical problems.

In this paper, we develop a new framework for hypothetical reasoning that uses paral-

lel software processors. Our earlier SL method, which can �nd a near-optimal solution

for cost-based hypothetical reasoning in polynomial time (with respect to problem

size), uses both linear programming and nonlinear programming techniques. In the

new method, these techniques are realized as the interaction of parallel processors.

Taking this approach, we may generalize related methods such as the breakout method

or Gu's nonlinear optimization method for SAT problems, and introduce two superior

algorithms. One algorithm is similar to the breakout method, and the other achieves

good-quality solutions by adding new processors during search iterations.
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1 Introduction

Hypothetical reasoning tries to �nd a set of element hypotheses that is suÆcient for proving
(or explaining) a given goal (or a given observation) [Poole 88]. The assumption of hypo-
thetical knowledge allows to handle domains where only incomplete knowledge is provided.
Hypothetical reasoning can also deal with cases where hypothesis knowledge contradicts
with domain knowledge. Because of its theoretical basis and practical usefulness, hypo-
thetical reasoning is an important framework for knowledge-based systems. However, since
hypothetical reasoning is a form of non-monotonic reasoning and thus an NP-complete or
NP-hard problem, its inference time grows exponentially with respect to problem size. Slow
inference speed often becomes the most crucial problem in practice.

For the related satis�ability (SAT) problems, many kinds of methods based on GSAT
have seen great success. One of the strategies to enhance the power and applicability of
GSAT is to add a weight to each clause and increase the weight if the clause is not satis-
�ed [Selman and Kautz 93]. The same idea is applied in the breakout method [Morris 93],
the heuristic repair method [Minton et al. 92], the DLM (discrete Lagrangian based search
method) [Wah and Shang 97], the GLS (Guided Local Search) method [Voudouris 95], and
others. Those methods show good performance in several domains. The main idea common
to those breakout-type methods is the use of constraint weighting schemes that solve the
problem of local minima by adding weights to the cost of violated constraints. These weights
permanently increase the cost of violating a constraint, thus changing the shape of the cost
surface so that (local) minima can be avoided or exceeded [Thornton and Sattar 99].

Ishizuka and co-workers introduced an eÆcient and comprehensive method called SL
(Slide-down and Lift-up) method for cost-based hypothetical reasoning. The SL method



uses a linear programming technique, namely the simplex method, for determining an initial
search point and a non-linear programming technique for eÆciently �nding a near-optimal
0-1 solution [Ishizuka and Matsuo 98]. The nonlinear programming method is based on Gu's
method which applies unconstrained nonlinear optimization for SAT problems [Gu 94].
Starting the search from the real-number optimal solution, the SL method has been ex-
perimentally shown to �nd a near-optimal 0-1 solution in polynomial time with respect to
problem size. One salient feature of the SL method is its search in continuous-value space.

In this paper, we introduce a new method that treats each variable and each constraint
of a hypothetical reasoning problem(HRP) as a processor. Thus the search for a solution
is realized as the interaction of multiple processors. Actually, both linear and nonlinear
programming techniques can be built up as the interaction of processors. Starting from
a description of the parallel computation method, we show how to design a processor, i.e.,
how to update its value and send messages to the neighboring processors. By simplifying the
message, the relations to other algorithms are shown, including the breakout-type method
and Gu's nonlinear optimization method. Finally, two methods are introduced that have
very good performance when applied to HRPs. One is similar to breakout method, which
increases the weights of violated constraints. The other is a new algorithm, where two dif-
ferent processors work together. When comparing this algorithm to other methods, it can
be shown to �nd qualitatively better solutions.

The rest of this paper is organized as follows. In Section 2, we describe how to transform
HRPs into mathematical formulations. Section 3 starts with a brief introduction of parallel
computation, and then applies this paradigm to HRPs. In Section 4, the relations to the
breakout-type method and Gu's nonlinear optimization method are discussed. Section 5
is dedicated to a new algorithm, called leastEQ method, that uses two di�erent types of
processors. In Section 6, we evaluate the algorithms experimentally. Section 7 concludes the
paper.

2 Transformation into Linear and Nonlinear Programming

The discussion in this paper is restricted to hypothetical reasoning problems that can be
represented as propositional Horn clauses. Note that we explicitly include inconsistency
constraints|denoting inconsistencies among hypotheses|as special cases of Horn clauses.

In general, a HRP is characterized by a goal g to be explained, given a logical theory
� modeling some domain. A solution to a HRP is a set of hypotheses which, if assumed,
would explain g. The set of hypotheses H is typically restricted to some set H of `assumable'
predicates. More formally, given a HRP, a set H � H is a solution for a HRP if and only if
(i) � [H ` g, and (ii) � [H 6`?, where ? denotes the impossible state (falsum).

First we show how to transform a HRP into linear and nonlinear programming problems,
by transforming Horn clauses into equalities and inequalities. In the following, we associate
the true/false states of logical variables i with numerical values 1/0 of the corresponding
numerical variables represented by xi.

Transformation into Linear Programming. The objective function being minimized is

f =
X

i2N

wixi; (1)

where wi represents the weight of element hypothesis i, and N represents the set of logical
variables. A Horn clause of the form \a  b _ c" is transformed into an inequality \xa �
xb + xc", and \a  b ^ c" into the inequalities \xa � xb" and \xa � xc"

1. The linear

1 After applying completion for each rule [Ishizuka and Matsuo 98], we can eliminate the top-down

constraints, as shown by [Santos 94]. The following formulations of nonlinear optimization and

equalities are also based on this idea.



inequality corresponding to Horn clause j is

gLIj (x) � 0: (2)

This inequality expresses a necessary condition for the original Horn clause to be satis�ed.
Then we relax the 0-1 constraint on the variables and allow the variables to be in [0,1].

Using the simplex method, the optimal real-number solution is obtained. This optimal real-
number solution contains valuable information: (i) the cost of the solution shows the lower
bound of 0-1 optimal solutions; (ii) the solution provides a guide to �nd a near-optimal
0-1 solution; (iii) if the linear programming problem is infeasible, the original HRP is also
infeasible.

Transformation into Nonlinear Programming. Gu presents a method for SAT prob-
lems by transforming them into unconstrained nonlinear programming problems [Gu 94].
Inspired by Gu's method, a given problem is transformed to the problem of �nding the
minimal value 0 of a nonlinear function that is constructed as follows.

{ Replace the literals xi and :xi by x2i and (1� xi)
2, respectively.

{ Replace conjunction (^) and disjunction (_) in the logical formula by the arithmetic
operations + and �, respectively. We assume that all clauses in the knowledge base are
(implicitly) connected by conjunction.

For instance, \1 g, g  a _ b" is transformed into

fNLP = (1� xg)
2 + x2g(1� xa)

2(1� xb)
2:

The term corresponding to Horn clause j in fNLP is denoted by fNLP
j .

Transformation into Equalities. In order to prepare the discussion in the next section,
Horn clauses are transformed into equations as follows. For each Horn clause, replace the
literals xi and :xi by xi and 1 � xi, respectively. Replace disjunction by the arithmetic
operation � and construct the left-hand side of the equation. Put 0 to the right-hand side of
the equation. For example, \1 g, g  a_b" is transformed into the equalities \1�xg = 0"
and \xg(1� xa)(1� xb) = 0".

The equality corresponding to Horn clause j is

h
EQ
j (x) = 0: (3)

If we round the variables to 0/1, this constraint is a necessary and suÆcient condition to
satisfy the original Horn clause.

3 Parallel Computation

A hypothetical reasoning problem is expressed by a network as shown in Fig. 1. The search
for the transformed linear programming problem or nonlinear programming problem de-
scribed in the previous section is realized by the message-passing in this network. Here, the
contents of the message is simply a value.

For example, Fig. 2 shows how to realize nonlinear optimization by the message-passing.
Here, each variable and each constraint sends messages. Using @fNLP

j =@xi, each variable

updates its value so that fNLP is minimized.
Thus, we consider each variable and each constraint as a processor. Each processor

performs a very simple computation, it just sends a value as a message. Search proceeds
as the interaction iterates. Note that we employ the parallel processor model in order to
grasp the procedure of the algorithm intuitively. The computation is executed on a single
serial machine. We ignore the cost of communication among processors, and assume that
each processor can request a message from its neighbors whenever needed.
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The Augmented Lagrangian method consists of successive minimizations by the Variable
processor of the form (\:=" means \is de�ned by")

xi := arg min
xi2Pi

Lc(x) (6)

followed by updates of the Constraint processor according to

pj := pj + c(t)hj(x): (7)

3.2 Application to Hypothetical Reasoning Problem

Now we are ready to apply the Augmented Lagrangian Method to hypothetical reasoning
problems. Under the equality constraint (3), we minimize the objective function (1) as
follows.

L(x) =
X

i2N

wixi +
X

j2C

pjh
EQ
j (x) +

c(t)

2

X

j2C

h
EQ
j (x)2

The messages passed between Variable processor and Constraint processor are shown in
Figure 3. From a Constraint processor j to a neighboring Variable processor i, the partial
derivative

@Lj

@xi
= pj

@h
EQ
j (x)

@xi
+ c(t)hEQj (x)

@h
EQ
j (x)

@xi
(8)

is sent, where Lj consists of terms in L(x) that are related to constraint j. The Variable
processor sums up these values and adds its own weight as follows.

@L

@xi
= wi +

X

j2Neighbor(i)

@Lj

@xi

If @L=@xi is positive, decrease xi. If @L=@xi is negative, increase xi. Thus the Variable
processor updates its variable to make @L=@xi to be 0. This is what one Variable processor
does in one iteration. As a result, L is minimized with respect to xi.

On the other hand, a Constraint processor receives the messages and updates their
variable according to (7). As a result, L increases. A Constraint processor based on the
equality constraint (3) will be called EQ processor.

Similarly, we will call a Constraint processor based on the linear inequality constraint
(2) an LI processor. A LI processor can be built in the similar way as a EQ processor,
though the formulas of both the message and update are more complicated (for details, see
[Bertsekas and Tshitshiklis 89]).

Fig. 4(a) shows the network constructed by EQ processors and Variable processors. Their
interaction realizes the search to minimize (1) under the equality constraint (3). Fig. 4(b)
is constructed by LI processors and Variable processors. The operation of this network
corresponds to the simplex method, although they di�er in constructing a search path and
eÆciency.

4 Relation to other Algorithms

Although a message from a EQ processor to a Variable processor represented by (8) is rather
complicated, it does not have to be precise. It is already helpful if the message contributes to
decrease the Lagrangian function by the Variable processors. In this section, �rst we ignore
the second term of (8). In this way, the iteration becomes the breakout type algorithm that
works in 0-1 space. Second, if we ignore the �rst term of (8), Gu's nonlinear optimization is
obtained.



a

b
c

E
Q

processorj

b j

x L∂ ∂

c j

x L∂ ∂

a j

x L∂ ∂

b
x

c
x

a
x

variable
variable

variable

F
ig
.
3
.
M
essa

g
es

o
f
E
Q
P
ro
cesso

r.

a

b
c

L
I

A
N

D

L
I

O
R

L
I

IN
C

d
e

L
I

goal

a

b
c

E
Q

A
N

D

E
Q

O
R

E
Q

IN
C

d
e

E
Q

goal

(a)
E

Q
 processor

and V
ariable processor

(b) 
L

I
 processor

and V
ariable processor

F
ig
.
4
.
C
o
n
stra

in
t/
V
a
ria

b
le
P
ro
cesso

rs.

4
.1

R
e
la
tio

n
to

th
e
B
re
a
k
o
u
t
T
y
p
e
A
lg
o
rith

m

A
ssu

m
e
th
a
t
w
e
ig
n
o
re

th
e
seco

n
d
term

o
f
th
e
fo
rm

u
la
(8
).

{
V
a
ria

b
le
p
ro
cesso

r
i
u
p
d
a
tes

its
va
lu
e
so

th
a
t
L
is
m
in
im
ized

.
H
ow

ev
er,

sin
ce

L
is
lin
ea
r

w
ith

resp
ect

to
x
i ,
th
e
va
ria

b
le
ta
k
es

o
n
ly

th
e
en
d
p
o
in
t,
w
h
ich

m
ea
n
s
0
o
r
1
(o
r
th
e

cu
rren

t
va
lu
e).

{
E
Q
p
ro
cesso

r
u
p
d
a
tes

its
va
lu
e
a
cco

rd
in
g
to

(7
).
B
eca

u
se

th
e
p
rim

e
va
ria

b
les

ta
k
e
o
n
ly

0
o
r
1
,
h
E
Q

j
(x
)
is
eith

er
0
o
r
1
.
T
h
a
t
is,

if
th
e
n
eig

h
b
o
rin

g
va
ria

b
les

v
io
la
te

th
e
H
o
rn

cla
u
se,

p
j
is
in
crea

sed
b
y
c(t).

In
o
th
er

w
o
rd
s,
a
V
a
ria

b
le
p
ro
cesso

r
ta
k
es

o
n
ly

0
o
r
1
a
n
d

ip
s
its

va
lu
e
so

th
a
t
th
e
su
m

o
f

th
e
w
eig

h
ts
o
f
v
io
la
ted

co
n
stra

in
ts
is
m
in
im
ized

.
A
E
Q
p
ro
cesso

r
in
crea

ses
th
e
w
eig

h
t
o
f
th
e

co
n
stra

in
t
o
n
ly

w
h
en

it
is
v
io
la
ted

.
O
b
serv

e
th
a
t
th
is
a
lg
o
rith

m
is
o
f
th
e
sa
m
e
ty
p
e
a
s
th
e

b
rea

k
o
u
t
m
eth

o
d
.
It
is
in
terestin

g
to

see
th
a
t
w
e
sta

rted
fro

m
co
n
tin

u
o
u
s-sp

a
ce

o
p
tim

iza
tio

n
a
n
d
o
b
ta
in
ed

a
n
0
-1

sp
a
ce

a
lg
o
rith

m
.

T
h
is
a
lg
o
rith

m
is
v
ery

eÆ
cien

t
a
s
w
ill

b
e
sh
ow

n
in

S
ectio

n
6
w
ith

resp
ect

to
b
o
th

sea
rch

tim
e
a
n
d
q
u
a
lity

o
f
th
e
so
lu
tio

n
.

4
.2

R
e
la
tio

n
to

G
u
's
N
o
n
lin
e
a
r
O
p
tim

iz
a
tio

n
M
e
th
o
d

W
h
a
t
w
ill

h
a
p
p
en

if
w
e
ig
n
o
re

th
e
�
rst

term
o
f
th
e
fo
rm

u
la
(8
)?

D
u
a
l
va
ria

b
les

a
re

ig
n
o
red

,
a
n
d
th
e
b
eh
av
io
r
o
f
th
e
E
Q

p
ro
cesso

rs
is

o
n
ly

b
a
sed

o
n
h
j (x

),
i.e.,

to
w
h
a
t
ex
ten

t
th
e

co
n
stra

in
ts
a
re

v
io
la
ted

.
T
h
is
is
eq
u
iva

len
t
to

m
in
im
ize

f
=
X

w
i x

i
+
c(t) X

(h
E
Q

j
(x
))

2

u
n
d
er

n
o
co
n
stra

in
ts.

T
h
e
resu

ltin
g
a
lg
o
rith

m
is
o
f
a
sim

ila
r
ty
p
e
a
s
G
u
's
m
eth

o
d
,
d
escrib

ed
in

S
ec

3
.2
.
H
ow

ev
er,

d
u
e
to

th
e
la
ck

o
f
d
u
a
l
va
ria

b
les,

th
e
sea

rch
ca
n
o
ften

g
et

tra
p
p
ed

in
lo
ca
l
m
in
im
a
.
W
e
h
av
e
to

a
d
d
a
lo
ca
l
h
a
n
d
ler

to
esca

p
e
fro

m
a
lo
ca
l
m
in
im
u
m
a
s
d
o
n
e
in

th
e

S
L
m
eth

o
d
.
T
h
e
S
L
m
eth

o
d
fo
cu
ses

o
n
th
e
v
io
la
tio

n
o
f
a
H
o
rn

cla
u
se
w
h
en

sea
rch

is
tra

p
p
ed

in
a
lo
ca
l
m
in
im
u
m
.
In

o
rd
er

to
sa
tisfy

th
e
v
io
la
ted

H
o
rn

cla
u
se,

it
a
p
p
lies

a
so
p
h
istica

ted
m
ech

a
n
ism

to
�
x
th
e
va
ria

b
les

to
0
o
r
1
.



5 Least EQ method

As the search proceeds, the values of dual variables p assigned to EQ processors grow. It
makes the Lagrangian function di�er from the original objective function, and the minimal
point of the Lagrangian function has an increased distance from the minimal point of the
original objective function. Although this contributes to �nd a feasible solution, some devices
are needed to �nd a near-optimal solution.

Recall that if we use LI processors, we get the real-number optimal solution (and some-
times the strict optimal 0-1 solution). LI processors are good at �nding a low-cost solution.
How can we incorporate these LI processors to EQ processors? In this section, we describe
how to merge these two kinds of processors.

In the search procedure, a Variable processor i sums up the partial derivative @Lj=@xi
from neighboring Constraint processors and updates its value. Therefore, we can let LI
processors and EQ processors work together.

The following algorithm describes the collaboration of two processors.

1. Compute the continuous-value solution by LI processors. If the solution is 0-1 solution,
terminate.

2. Else, install a EQ processor to the violated Horn clause.
3. For each processor, update its value. Iterate until the system converges. If it converges,

go to 2. During the iteration, try to approximate the value of each variable to 0-1, and
if a feasible solution (i.e., one satisfying all Horn clauses) is obtained, go to 4.

4. Try to temporally change each true element hypothesis to false without defeating the
proof of the goal. If this succeeds, change the element hypothesis in question and its
associated intermediate nodes to false; i.e., remove this element hypothesis from the
solution hypothesis as a redundant one.

This algorithm tries to explore the search space created by LI processors, guided by EQ
processors. In the second procedure, we employ this strategy: to one constraint whose hEQj (x)
is the greatest (i.e., the most violating), we install a EQ processor. As will be shown in Section
6, this brings us a high-quality solution because we use a smaller number of EQ processors.

The features of this method are:

{ Though we add a EQ processor at each convergence, we do not substitute 0/1 for any
variables. There is no need to backtrack nor is the search space narrowed.

{ When the iteration restarts after convergence, each processor uses the value resulting
from the previous convergence. Therefore the search converges rather quickly after the
�rst convergence. For the �rst convergence, we can use a more sophisticated method
such as the simplex method.

This algorithm does not guarantee the strictly optimal 0-1 solution. However, as the
number of EQ processor to be added is very small (less than few processors in the experiment
of Section 6), it brings high-quality near-optimal solutions.

6 Experimental Results and Evaluation

We tested the performance of the methods that have been described in this paper. The sys-
tem is implemented in C++ and runs on SGI Onyx workstations. The considered problems
are randomly generated following these conditions: the number of body atoms in each Horn
clause is 2{7, and the number of the occurrences of each atom in one sample knowledge set is
at most 10. Two di�erent types of problems are used: the �rst type has no inconsistency con-
straints (denoted as problem A), whereas the second type involves 18%{30% inconsistency
constraints (denoted as problem B).



Table 1. Quality of Solutions (problem A)

0/EQ LP/EQ SL 0/breakout LP/breakout LP/LI+EQ LP/LI+leastEQ

Failed 0 0 0 0 0 0 0

Average of Costs 115.43% 105.74% 100% 98.88% 95.92% 93.85% 92.37%

Score to SL meth. 50-167-44 57-114-100 0-0-271 87-91-93 95-56-120 93-31-147 110-22-139

271 problem instances are used.

"Averages of Costs \ shows the average cost percentage to the cost by SL method.

\Score to SL method" shows Win-Lose-Even against SL method.

Table 2. Quality of Solutions (problem B)

0/EQ LP/EQ SL 0/breakout LP/breakout LP/LI+EQ LP/LI+leastEQ

Failed 73 73 119 73 73 73 73

Average of Costs 119.33% 105.01% 100% 99.71% 98.49% 96.84% 95.88%

Score to SL meth. 21-89-42 29-55-68 0-0-271 41-41-70 42-30-80 45-23-84 46-22-84

271 problem instances are used.

In the current stage, the roughly categorized two types of problem instances are used.
But needless to say, it is desirable to de�ne the problem instances more clearly according
to some criterion. As briey described in the last section, detailed analyses have to be
defered to future work. Note that the following results are still preliminary but suÆcient to
obtain an estimation of the performance of our algorithms. The discussion mainly focuses
on computational orders and quality of solutions.

The following methods have been tested.

LP/EQ Use the continuous-value solution as an initial point. Install EQ processors to all
the constraints.

0/EQ Set all the variables to 0 as the initial point. Install EQ processors to all the con-
straints.

SL method Use the continuous-value solution as an initial point. Solve unconstrainted
nonlinear optimization problem using local handler.

LP/breakout type Use the continuous-value solution as the initial point. Install EQ pro-
cessors (breakout type) to all the constraints. Note that the variables take continuous
values only at the �rst iteration. After that, the search proceeds in the 0-1 space.

0/breakout type Set all the variables to 0 as the initial point. Install EQ processors (break-
out type) to all the constraints.

LP/LI+EQ Use the continuous-value solution as an initial point. Install both LI and EQ
processors to all the constraints.

LP/LI+leastEQ Use the continuous-value solution as an initial point. Install LI processors
to all the constraints. If the system converges, add one EQ processor.

The respective inference times are summarized in Figures 5 and 6. Tables 1 and 2 contain
details about the solution quality of the considered methods. Although the inference time
of every method is polynomial with respect to the number of nodes, the simplex method
turns out to be the slowest. Recall the the simplex method is used to get an initial search
point. Its running time is included in the LP/ series. The computational time of the simplex
method is on the order of n2:2, where n is the number of nodes. After getting the continuous-
value solution, the SL method �nds a 0-1 solution in approximately n1:8, the breakout-type
in approximately n1:25, and LI+EQ and LI+leastEQ in almost n1. Therefore, using the
continuous-value solution as an initial point, the computational time of the simplex method
gets dominant if applied to large-scale problems.

If we want a method whose computational time is on an order lower than n2:2, we cannot
use the continuous-value solution. Among the methods that do not use the simplex method,
i.e., the 0 / series, the best method is the 0/breakout type. It achieves computational
time on the order of n1:25 and the quality of its solutions is comparable to the SL method.

Let us assume that we want good-quality solutions and are allowed to use the simplex
method, i.e., solution quality is our main concern. In this case, our results show that the
leastEQ method (LP/LI+leastEQ) should be the preferred method. The result can also
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be justi�ed theoretically. We can show that the search is the least likely to gain distance
from the real-number optimal solution.

To summarize, we have described two competitive methods: one is breakout type (without
simplex method), the other is the leastEQ method. They have tradeo�s: the breakout type
trades solution quality for speed and the leastEQ method is slightly slowered but yields
high-quality solutions.

7 Conclusions and Future Work

In this paper, in order to grasp the search of primal and dual variables intuitively, we
employed a parallel processor approach. The relation between several algorithms is discussed
and two competitive methods for hypothetical reasoning are described. The �rst one is
similar to the method of constraint-weighting such as the breakout algorithm. It is shown to
be also e�ective for hypothetical reasoning problems. The second one is an original method
based on linear programming, where equality constraint are added one by one. A notable
feature of this method is its good solution quality.



In this paper we didn't show detailed results relating to runtime distributions. This is
partly because there seems to be no measure to scale the diÆculty of the problem classes for
hypothetical reasoning problems. But if the analyses of SAT problems are introduced to hy-
pothetical reasoning problems as well, it may be possible to scale the diÆculty. For example,
we can exploit an early analysis of SAT problems, that reveals the probability for a problem
to have feasible solutions [Franco and Paull 83], to hypothetical reasoning problems. Our
future work is thus to experiment in detail our methods for various classes of problems and
hopefully to show a similar phenomenon to phase transitions [Gomes and Selman 97] in hy-
pothetical reasoning problems. By applying randomization, we may enhance the performance
of our methods, as done by [Gomes et al. 00].

Another direction of our work is to make our methods anytime algorithms. For example,
[Yokoo and Hirayama 96] is an application of the breakout method for distributed constraint
satisfaction problems, which has features of an anytime algorithm. This improvement may
increase the applicability of our methods to real world problems.
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