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Abstract. Hypothetical reasoning is an important framework for knowledge-based
systems because it is theoretically founded and useful for many practical problems.
Since the inference time of hypothetical reasoning grows exponentially with respect
to problem size, its inefficiency becomes the most crucial problem when applied to
practical problems.

In this paper, we develop a new framework for hypothetical reasoning that uses paral-
lel software processors. Our earlier SL method, which can find a near-optimal solution
for cost-based hypothetical reasoning in polynomial time (with respect to problem
size), uses both linear programming and nonlinear programming techniques. In the
new method, these techniques are realized as the interaction of parallel processors.
Taking this approach, we may generalize related methods such as the breakout method
or Gu’s nonlinear optimization method for SAT problems, and introduce two superior
algorithms. One algorithm is similar to the breakout method, and the other achieves
good-quality solutions by adding new processors during search iterations.
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1 Introduction

Hypothetical reasoning tries to find a set of element hypotheses that is sufficient for proving
(or explaining) a given goal (or a given observation) [Poole 88]. The assumption of hypo-
thetical knowledge allows to handle domains where only incomplete knowledge is provided.
Hypothetical reasoning can also deal with cases where hypothesis knowledge contradicts
with domain knowledge. Because of its theoretical basis and practical usefulness, hypo-
thetical reasoning is an important framework for knowledge-based systems. However, since
hypothetical reasoning is a form of non-monotonic reasoning and thus an NP-complete or
NP-hard problem, its inference time grows exponentially with respect to problem size. Slow
inference speed often becomes the most crucial problem in practice.

For the related satisfiability (SAT) problems, many kinds of methods based on GSAT
have seen great success. One of the strategies to enhance the power and applicability of
GSAT is to add a weight to each clause and increase the weight if the clause is not satis-
fied [Selman and Kautz 93]. The same idea is applied in the breakout method [Morris 93],
the heuristic repair method [Minton et al. 92], the DLM (discrete Lagrangian based search
method) [Wah and Shang 97], the GLS (Guided Local Search) method [Voudouris 95], and
others. Those methods show good performance in several domains. The main idea common
to those breakout-type methods is the use of constraint weighting schemes that solve the
problem of local minima by adding weights to the cost of violated constraints. These weights
permanently increase the cost of violating a constraint, thus changing the shape of the cost
surface so that (local) minima can be avoided or exceeded [Thornton and Sattar 99].

Ishizuka and co-workers introduced an efficient and comprehensive method called SL
(Slide-down and Lift-up) method for cost-based hypothetical reasoning. The SL method



uses a linear programming technique, namely the simplex method, for determining an initial
search point and a non-linear programming technique for efficiently finding a near-optimal
0-1 solution [Ishizuka and Matsuo 98]. The nonlinear programming method is based on Gu’s
method which applies unconstrained nonlinear optimization for SAT problems [Gu 94].
Starting the search from the real-number optimal solution, the SL method has been ex-
perimentally shown to find a near-optimal 0-1 solution in polynomial time with respect to
problem size. One salient feature of the SL method is its search in continuous-value space.

In this paper, we introduce a new method that treats each variable and each constraint
of a hypothetical reasoning problem(HRP) as a processor. Thus the search for a solution
is realized as the interaction of multiple processors. Actually, both linear and nonlinear
programming techniques can be built up as the interaction of processors. Starting from
a description of the parallel computation method, we show how to design a processor, i.e.,
how to update its value and send messages to the neighboring processors. By simplifying the
message, the relations to other algorithms are shown, including the breakout-type method
and Gu’s nonlinear optimization method. Finally, two methods are introduced that have
very good performance when applied to HRPs. One is similar to breakout method, which
increases the weights of violated constraints. The other is a new algorithm, where two dif-
ferent processors work together. When comparing this algorithm to other methods, it can
be shown to find qualitatively better solutions.

The rest of this paper is organized as follows. In Section 2, we describe how to transform
HRPs into mathematical formulations. Section 3 starts with a brief introduction of parallel
computation, and then applies this paradigm to HRPs. In Section 4, the relations to the
breakout-type method and Gu’s nonlinear optimization method are discussed. Section 5
is dedicated to a new algorithm, called leastEQ method, that uses two different types of
processors. In Section 6, we evaluate the algorithms experimentally. Section 7 concludes the

paper.

2 Transformation into Linear and Nonlinear Programming

The discussion in this paper is restricted to hypothetical reasoning problems that can be
represented as propositional Horn clauses. Note that we explicitly include inconsistency
constraints—denoting inconsistencies among hypotheses—as special cases of Horn clauses.

In general, a HRP is characterized by a goal g to be explained, given a logical theory
Y’ modeling some domain. A solution to a HRP is a set of hypotheses which, if assumed,
would explain g. The set of hypotheses H is typically restricted to some set A of ‘assumable’
predicates. More formally, given a HRP, a set H C H is a solution for a HRP if and only if
(i) YUH F g, and (ii) ¥ U H /L, where L denotes the impossible state (falsum).

First we show how to transform a HRP into linear and nonlinear programming problems,
by transforming Horn clauses into equalities and inequalities. In the following, we associate
the true/false states of logical variables ¢ with numerical values 1/0 of the corresponding
numerical variables represented by x;.

Transformation into Linear Programming. The objective function being minimized is
iEN

where w; represents the weight of element hypothesis ¢, and N represents the set of logical
variables. A Horn clause of the form “a < bV ¢” is transformed into an inequality “x, >
xp + .7, and “a < b A’ into the inequalities “z, > x,” and “z, > z.”!'. The linear

L After applying completion for each rule [Ishizuka and Matsuo 98], we can eliminate the top-down
constraints, as shown by [Santos 94]. The following formulations of nonlinear optimization and
equalities are also based on this idea.



inequality corresponding to Horn clause j is
g5 () <0. (2)

This inequality expresses a necessary condition for the original Horn clause to be satisfied.

Then we relax the 0-1 constraint on the variables and allow the variables to be in [0,1].
Using the simplex method, the optimal real-number solution is obtained. This optimal real-
number solution contains valuable information: (i) the cost of the solution shows the lower
bound of 0-1 optimal solutions; (ii) the solution provides a guide to find a near-optimal
0-1 solution; (iii) if the linear programming problem is infeasible, the original HRP is also
infeasible.

Transformation into Nonlinear Programming. Gu presents a method for SAT prob-
lems by transforming them into unconstrained nonlinear programming problems [Gu 94].
Inspired by Gu’s method, a given problem is transformed to the problem of finding the
minimal value 0 of a nonlinear function that is constructed as follows.

— Replace the literals z; and —x; by z? and (1 — z;)?, respectively.

— Replace conjunction (A) and disjunction (V) in the logical formula by the arithmetic
operations + and X, respectively. We assume that all clauses in the knowledge base are
(implicitly) connected by conjunction.

For instance, “1 < ¢, g < a V V" is transformed into
fNEP = (1- a:g)2 + :ri(l —z4)%(1 — x3)>.

The term corresponding to Horn clause j in fNZF is denoted by fJNLP.

Transformation into Equalities. In order to prepare the discussion in the next section,
Horn clauses are transformed into equations as follows. For each Horn clause, replace the
literals x; and —x; by z; and 1 — z;, respectively. Replace disjunction by the arithmetic
operation x and construct the left-hand side of the equation. Put 0 to the right-hand side of
the equation. For example, “1 <— g, g < aVb” is transformed into the equalities “1 -z, = 0”
and “zg(1 — z4)(1 —xp) =07

The equality corresponding to Horn clause j is

hi%(z) =0. (3)

If we round the variables to 0/1, this constraint is a necessary and sufficient condition to
satisfy the original Horn clause.

3 Parallel Computation

A hypothetical reasoning problem is expressed by a network as shown in Fig. 1. The search
for the transformed linear programming problem or nonlinear programming problem de-
scribed in the previous section is realized by the message-passing in this network. Here, the
contents of the message is simply a value.

For example, Fig. 2 shows how to realize nonlinear optimization by the message-passing.
Here, each variable and each constraint sends messages. Using 9 fJN LP [9z;, each variable
updates its value so that fNF is minimized.

Thus, we consider each variable and each constraint as a processor. Each processor
performs a very simple computation, it just sends a value as a message. Search proceeds
as the interaction iterates. Note that we employ the parallel processor model in order to
grasp the procedure of the algorithm intuitively. The computation is executed on a single
serial machine. We ignore the cost of communication among processors, and assume that
each processor can request a message from its neighbors whenever needed.
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Fig. 1. Hypothetical Reasoning P:
represented by a Network. Fig. 2. Message-passing.

Out of the many parallel computation techniques that deal with constrained optimiza-
tion, we decided to use the augmented Lagrangian method, a method of multipliers that
successively updates primal and dual variables. It is an excellent general purpose method
for constrained optimization problems [Bertsekas and Tshitshiklis 89].

3.1 Augmented Lagrangian Method

We briefly introduce the augmented Lagrangian method. Consider the constrained optimiza-

tion problem
Minimize F(z) (4)

subject to  hj(z) =0 (j € C)
z € P, (5)

where C' is a set of constraints, and P a nonempty polyhedral set. The Lagrangian function

is
L) = F@) + 3 phy(a).
jec

We consider two kinds of processors. One is a Variable processor, which is assigned to
each prime variable z;. The other is a Constraint processor, which treats the dual variable p;.
A Variable processor updates the prime variables so as to reduce cost of the Lagrangian func-
tion. Conversely, a Constraint processor updates the dual variables to increase the function.
By the iteration of this process, the (optimal) solution is obtained.

To update dual variables, an important property is the strict convexity of the primal
cost function F(z), since it implies differentiability of the dual cost function inf,cp L(z).
We add a quadratic term to the cost function, and instead of the original objective function
(4), we consider the following objective function

Fe) = F@) + 5 hy w2,

where t is the count of iterations and ¢(t) is a positive scalar parameter or a nondecreasing
function which is tuned experimentally?. The Augmented Lagrangian function is

Le(x) = Fo(x) + Y pihy(o).
jec
2 According to [Bertsekas and Tshitshiklis 89], practical experience has shown that it is best to
start with a moderate value of ¢ and then either keep ¢ constant, or increase ¢ by some factor
(say, 2 to 10) with each minimization of the Augmented Lagrangian function.



The Augmented Lagrangian method consists of successive minimizations by the Variable

processor of the form (“:=” means “is defined by”)
x; ;= arg min L.(x) (6)
T EP;

followed by updates of the Constraint processor according to

pj i=pj + c(O)h;(@). (7)

3.2 Application to Hypothetical Reasoning Problem

Now we are ready to apply the Augmented Lagrangian Method to hypothetical reasoning
problems. Under the equality constraint (3), we minimize the objective function (1) as
follows.

L) = Y wiait Y i) + S nEay

ieN jec jec

The messages passed between Variable processor and Constraint processor are shown in
Figure 3. From a Constraint processor j to a neighboring Variable processor i, the partial

derivative 50
oL,  Ohj~ ()
8$i =P 837@

is sent, where L; consists of terms in L(xz) that are related to constraint j. The Variable

processor sums up these values and adds its own weight as follows.

oL oL;
AP

JjENeighbor(i)

Oy (x
+ c(t)hf%)g—mf) ®)

If OL/0x; is positive, decrease x;. If OL/0z; is negative, increase z;. Thus the Variable
processor updates its variable to make OL/0z; to be 0. This is what one Variable processor
does in one iteration. As a result, L is minimized with respect to z;.

On the other hand, a Constraint processor receives the messages and updates their
variable according to (7). As a result, L increases. A Constraint processor based on the
equality constraint (3) will be called EQ processor.

Similarly, we will call a Constraint processor based on the linear inequality constraint
(2) an LI processor. A LI processor can be built in the similar way as a EQ processor,
though the formulas of both the message and update are more complicated (for details, see
[Bertsekas and Tshitshiklis 89]).

Fig. 4(a) shows the network constructed by EQ processors and Variable processors. Their
interaction realizes the search to minimize (1) under the equality constraint (3). Fig. 4(b)
is constructed by LI processors and Variable processors. The operation of this network
corresponds to the simplex method, although they differ in constructing a search path and
efficiency.

4 Relation to other Algorithms

Although a message from a EQ processor to a Variable processor represented by (8) is rather
complicated, it does not have to be precise. It is already helpful if the message contributes to
decrease the Lagrangian function by the Variable processors. In this section, first we ignore
the second term of (8). In this way, the iteration becomes the breakout type algorithm that
works in 0-1 space. Second, if we ignore the first term of (8), Gu’s nonlinear optimization is
obtained.
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Fig. 3. Messages of EQ Processor. Fig. 4. Constraint/Variable Processors.

4.1 Relation to the Breakout Type Algorithm
Assume that we ignore the second term of the formula (8).

— Variable processor ¢ updates its value so that L is minimized. However, since L is linear
with respect to z;, the variable takes only the end point, which means 0 or 1 (or the
current value).

— EQ processor updates its value according to (7). Because the prime variables take only
0orl, \%@Aav is either 0 or 1. That is, if the neighboring variables violate the Horn
clause, p; is increased by c(t).

In other words, a Variable processor takes only 0 or 1 and flips its value so that the sum of
the weights of violated constraints is minimized. A EQ processor increases the weight of the
constraint only when it is violated. Observe that this algorithm is of the same type as the
breakout method. It is interesting to see that we started from continuous-space optimization
and obtained an 0-1 space algorithm.

This algorithm is very efficient as will be shown in Section 6 with respect to both search
time and quality of the solution.

4.2 Relation to Gu’s Nonlinear Optimization Method

What will happen if we ignore the first term of the formula (8)7 Dual variables are ignored,
and the behavior of the EQ processors is only based on hj(z), i.e., to what extent the
constraints are violated. This is equivalent to minimize

F= wimi +c(t) Y (h79(x))?

under no constraints. The resulting algorithm is of a similar type as Gu’s method, described
in Sec 3.2. However, due to the lack of dual variables, the search can often get trapped in
local minima. We have to add a local handler to escape from a local minimum as done in the
SL method. The SL method focuses on the violation of a Horn clause when search is trapped
in a local minimum. In order to satisfy the violated Horn clause, it applies a sophisticated
mechanism to fix the variables to 0 or 1.



5 Least EQ method

As the search proceeds, the values of dual variables p assigned to EQ processors grow. It
makes the Lagrangian function differ from the original objective function, and the minimal
point of the Lagrangian function has an increased distance from the minimal point of the
original objective function. Although this contributes to find a feasible solution, some devices
are needed to find a near-optimal solution.

Recall that if we use LI processors, we get the real-number optimal solution (and some-
times the strict optimal 0-1 solution). LI processors are good at finding a low-cost solution.
How can we incorporate these LI processors to EQ processors? In this section, we describe
how to merge these two kinds of processors.

In the search procedure, a Variable processor ¢ sums up the partial derivative OL;/0z;
from neighboring Constraint processors and updates its value. Therefore, we can let LI
processors and EQ processors work together.

The following algorithm describes the collaboration of two processors.

1. Compute the continuous-value solution by LI processors. If the solution is 0-1 solution,
terminate.

2. Else, install a EQ processor to the violated Horn clause.

3. For each processor, update its value. Iterate until the system converges. If it converges,
go to 2. During the iteration, try to approximate the value of each variable to 0-1, and
if a feasible solution (i.e., one satisfying all Horn clauses) is obtained, go to 4.

4. Try to temporally change each true element hypothesis to false without defeating the
proof of the goal. If this succeeds, change the element hypothesis in question and its
associated intermediate nodes to false; i.e., remove this element hypothesis from the
solution hypothesis as a redundant one.

This algorithm tries to explore the search space created by LI processors, guided by EQ

processors. In the second procedure, we employ this strategy: to one constraint whose th(a:)

is the greatest (i.e., the most violating), we install a EQ processor. As will be shown in Section

6, this brings us a high-quality solution because we use a smaller number of EQ processors.
The features of this method are:

— Though we add a EQ processor at each convergence, we do not substitute 0/1 for any
variables. There is no need to backtrack nor is the search space narrowed.

— When the iteration restarts after convergence, each processor uses the value resulting
from the previous convergence. Therefore the search converges rather quickly after the
first convergence. For the first convergence, we can use a more sophisticated method
such as the simplex method.

This algorithm does not guarantee the strictly optimal 0-1 solution. However, as the
number of EQ processor to be added is very small (less than few processors in the experiment
of Section 6), it brings high-quality near-optimal solutions.

6 Experimental Results and Evaluation

We tested the performance of the methods that have been described in this paper. The sys-
tem is implemented in C++ and runs on SGI Onyx workstations. The considered problems
are randomly generated following these conditions: the number of body atoms in each Horn
clause is 2-7, and the number of the occurrences of each atom in one sample knowledge set is
at most 10. Two different types of problems are used: the first type has no inconsistency con-
straints (denoted as problem A), whereas the second type involves 18%-30% inconsistency
constraints (denoted as problem B).



Table 1. Quality of Solutions (problem A)

0/EQ LP/EQ SL |0/breakout|LP/breakout|LP/LIFEQ|LP/LIifleastEQ
Failed 0 0 0 0 0 0 0
Average of Costs || 115.43% | 105.74% | 100% 98.88% 95.92% 93.85% 92.37%
Score to SL meth.||50-167-44|57-114-100|0-0-271| 87-91-93 95-56-120 | 93-31-147 110-22-139

271 problem instances are used.
” Averages of Costs “ shows the average cost percentage to the cost by SL method.
“Score to SL method” shows Win-Lose-Even against SL method.

“

Table 2. Quality of Solutions (problem B)

0/EQ |LP/EQ SL__|0/breakout|LP /breakout|LP/LITEQ|LP/LIflecastEQ
73

Failed 73 73 119 73 73 73
Average of Costs |[119.33% (105.01% | 100% 99.71% 98.49% 96.84% 95.88%
Score to SL meth.|[21-89-42[29-55-68|0-0-271| 41-41-70 42-30-80 45-23-84 46-22-84

271 problem instances are used.

In the current stage, the roughly categorized two types of problem instances are used.
But needless to say, it is desirable to define the problem instances more clearly according
to some criterion. As briefly described in the last section, detailed analyses have to be
defered to future work. Note that the following results are still preliminary but sufficient to
obtain an estimation of the performance of our algorithms. The discussion mainly focuses
on computational orders and quality of solutions.

The following methods have been tested.

LP/EQ Use the continuous-value solution as an initial point. Install EQ processors to all
the constraints.

0/EQ Set all the variables to 0 as the initial point. Install EQ processors to all the con-
straints.

SL method Use the continuous-value solution as an initial point. Solve unconstrainted
nonlinear optimization problem using local handler.

LP /breakout type Use the continuous-value solution as the initial point. Install EQ pro-
cessors (breakout type) to all the constraints. Note that the variables take continuous
values only at the first iteration. After that, the search proceeds in the 0-1 space.

0/breakout type Set all the variables to 0 as the initial point. Install EQ processors (break-
out type) to all the constraints.

LP/LI+EQ Use the continuous-value solution as an initial point. Install both LI and EQ
processors to all the constraints.

LP/LI+leastEQ Use the continuous-value solution as an initial point. Install LI processors
to all the constraints. If the system converges, add one EQ processor.

The respective inference times are summarized in Figures 5 and 6. Tables 1 and 2 contain
details about the solution quality of the considered methods. Although the inference time
of every method is polynomial with respect to the number of nodes, the simplex method
turns out to be the slowest. Recall the the simplex method is used to get an initial search
point. Its running time is included in the LP/ series. The computational time of the simplex
method is on the order of n22, where n is the number of nodes. After getting the continuous-
value solution, the SL method finds a 0-1 solution in approximately n'-8, the breakout-type
in approximately n'-2%, and LI+EQ and LI+leastEQ in almost n'. Therefore, using the
continuous-value solution as an initial point, the computational time of the simplex method
gets dominant if applied to large-scale problems.

If we want a method whose computational time is on an order lower than n22, we cannot
use the continuous-value solution. Among the methods that do not use the simplex method,
i.e., the 0 / series, the best method is the 0/breakout type. It achieves computational
time on the order of n'-2% and the quality of its solutions is comparable to the SL method.

Let us assume that we want good-quality solutions and are allowed to use the simplex
method, i.e., solution quality is our main concern. In this case, our results show that the
leastEQ method (LP/LI+4leastEQ) should be the preferred method. The result can also
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be justified theoretically. We can show that the search is the least likely to gain distance
from the real-number optimal solution.

To summarize, we have described two competitive methods: one is breakout type (without
simplex method), the other is the leastEQ method. They have tradeoffs: the breakout type
trades solution quality for speed and the leastEQ method is slightly slowered but yields
high-quality solutions.

7 Conclusions and Future Work

In this paper, in order to grasp the search of primal and dual variables intuitively, we
employed a parallel processor approach. The relation between several algorithms is discussed
and two competitive methods for hypothetical reasoning are described. The first one is
similar to the method of constraint-weighting such as the breakout algorithm. It is shown to
be also effective for hypothetical reasoning problems. The second one is an original method
based on linear programming, where equality constraint are added one by one. A notable
feature of this method is its good solution quality.



In this paper we didn’t show detailed results relating to runtime distributions. This is
partly because there seems to be no measure to scale the difficulty of the problem classes for
hypothetical reasoning problems. But if the analyses of SAT problems are introduced to hy-
pothetical reasoning problems as well, it may be possible to scale the difficulty. For example,
we can exploit an early analysis of SAT problems, that reveals the probability for a problem
to have feasible solutions [Franco and Paull 83], to hypothetical reasoning problems. Our
future work is thus to experiment in detail our methods for various classes of problems and
hopefully to show a similar phenomenon to phase transitions [Gomes and Selman 97] in hy-
pothetical reasoning problems. By applying randomization, we may enhance the performance
of our methods, as done by [Gomes et al. 00].

Another direction of our work is to make our methods anytime algorithms. For example,
[Yokoo and Hirayama 96] is an application of the breakout method for distributed constraint
satisfaction problems, which has features of an anytime algorithm. This improvement may
increase the applicability of our methods to real world problems.
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