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Abstract. The small world topology is known widespread in biological,
social and man-made systems. This paper shows that the small world
structure also exists in documents, such as papers. A document is repre-
sented by a network; the nodes represent terms, and the edges represent
the co-occurrence of terms. This network is shown to have the character-
istics of being small world, i.e., highly clustered and short path length.
Based on the topology, we develop an indexing system called KeyWorld,
which extract important terms by measuring their contribution to the
graph being small world.

1 Introduction

Graphs that occur in many biological, social and man-made systems are often
neither completely regular nor completely random, but have instead a “small
world” topology in which nodes are highly clustered yet the path length between
them is small [12][10]. For instance, if you are introduced to someone at a party
in a small world, you can usually find a short chain of mutual acquaintances
that connects you together. In the 1960s, Stanley Milgram’s pioneering work on
the small world problem showed that any two randomly chosen individuals in
the United States are linked by a chain of six or fewer first-name acquaintances,
known as “six degrees of separation” [6]. Watts and Strogatz have shown that
a social graph (the collaboration graph of actors in feature films), a biological
graph (the neural network of the nematode worm C. elegans), and a man-made
graph (the electrical power grid of the western United States) all have a small
world topology [12][11]. World Wide Web also forms a small world network [2].

In the context of document indexing, an innovative algorithm called Key-
Graph [7] is developed, which utilizes the structure of the document. A document
is represented as a graph, each node corresponds to a term!, and each edge cor-
responds to the co-occurrence of terms. Based on the segmentation of this graph
into clusters, KeyGraph finds keywords by selecting the term which co-occurs
in multiple clusters. Recently, KeyGraph has been applied to several domains,

! A term is a word or a word sequence.
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Fig. 1. Random rewiring of a regular ring lattice.

from earthquake sequences [8] to register transaction data of retail stores, and
showed remarkable versatility.

In this paper, inspired by both small world phenomenon and KeyGraph, we
develop a new algorithm, called KeyWorld, to find important terms. We show
at first the graph derived from a document has the small world characteristics.
To extract important terms, we find those terms which contribute to the world
being small. The contribution is quantitatively measured by the difference of
“small-worldliness” with and without the term.

The rest of the paper is organized as follows. In the following section, we
first detail the small world topology, and show that some documents actually
have small world characteristics. Then we explain how to extract the important
terms in Section 3. We evaluate KeyWorld and suggest further improvements in
Section 4. Finally, we discuss future works and conclude this paper.

2 Term Co-occurrence Graph and Small World

2.1 Small-worldliness

We treat an undirected, unweighted, simple, sparse and connected graph. (We
expand to an unconnected graph in Section 3.) To formalize the notion of a small
world, Watts and Strogatz define the clustering coefficient and the characteristic

path length [12][11]:

— The characteristic path length, L, is the path length averaged over all pairs
of nodes. The path length d(i, j) is the number of edges in the shortest path
between nodes 7 and j.

— The clustering coefficient is a measure of the cliqueness of the local neigh-
bourhoods. For a node with k neighbours, then at most xCy = k(k — 1)/2
edges can exist between them. The clustering of a node is the fraction of
these allowable edges that occur. The clustering coefficient, C' is the average
clustering over all the nodes in the graph.



Table 1. Characteristic path lengths L, clustering coefficients C' and proximity ratios
u for graphs with a small world topology [10] (studied in [12])).

| [ L [Lrana]| C [ Crana ][ # |
Film actor|3.65| 2.99 || 0.79 [0.00027|| 2396
Power grid|[18.7| 12.4 ||0.080| 0.005 |/10.61
C. elegans||2.65| 2.55 || 0.28 | 0.05 |[|4.755

The graphs are defined as follows. For the film actors, two actors are joined by an edge
if they have acted in a film together. For the power grid, nodes represent generators,
transformers and substations, and edges represent high-voltage transmission lines be-
tween them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction.

Watts and Strogatz define a small world graph as one in which L > L,.,4
(or L & Lyand) and C' > Crana wWhere Lygnq and Chrang are the characteristic
path length and clustering coefficient of a random graph with the same number
of nodes and edges. They propose several models of graphs, one of which is
called B-Graphs. Starting from a regular graph, they introduce disorder into the
graph by randomly rewiring each edge with probability p as shown in Fig.1. If
p = 0 then the graph is completely regular and ordered. If p = 1 then the graph
is completely random and disordered. Intermediate values of p give graphs that
are neither completely regular nor completely disordered. They are small worlds.

Walsh defines the proximity ratio

H = (C'/L) / (C'rand/Lrand) (1)

as the small-worldliness of the graph [10]. As p increases from 0, L drops sharply
since a few long-range edges introduce short cuts into the graph. These short cuts
have little effect on C'. As a consequence the proximity ratio p rises rapidly and
the graph develops a small world topology. As p approaches 1, the neighbourhood
clustering start to break down, and the short cuts no longer have a dramatic
effect at linking up nodes. C' and p therefore drop, and the graph loses its small
world topology. In Table 1, we can see yu is large in the graphs with a small world
topology.

In short, small world networks are characterized by the distinctive combina-
tion of high clustering with short characteristic path length.

2.2 Term Co-occurrence Graph

A graph is constructed from a document as follows. We first preprocess the
document by stemming and removing stop words, as in [9]. We apply n-gram to
count phrase frequency. Then we regard the title of the document, each section
title and each caption of figures and tables as a sentence, and exclude all the
figures, tables, and references. We get a list of sentences, each of which consists
of words (or phrases). In other words, we get a basket data where each item is
a term, discarding the information of term orderings and document structures.



Table 2. Statistical data on proximity ratios u for 57 graphs of papers in WWW9.

L[ L [Lrand] € [Crana]| & ]
Max.[[4.99] 3.58 [[0.38[0.012[[22.81
Ave.|[5.36] — [[0.33] — |[15.31
Min. ||8.13] 2.94 [[0.310.027 || 4.20

We set fipre = 3. We restrict attention to the giant connected component of the graph,
which include 89% of the nodes on average. We exclude three papers, where the giant
connected component covers less than 50% of the nodes. We don’t show the L,,n4 and
Crana for the average case, because n and k differs dependent on the target paper. On
average, n = 275 and k = 5.04.

Then we pick up frequent terms which appear over a user-given threshold,
fithre times, and fix them as nodes. For every pair of terms, we count the co-
occurrence for every sentences, and add an edge if the Jaccard coefficient exceeds
a threshold, Jip,e?. The Jaccard coefficient is simply the number of sentences
that contain both terms divided by the number of sentences that contain either
terms. This idea is also used in constructing a referral network from WWW
pages [5]. We assume the length of each edge is 1.

Table 2 is statistics of the small-worldliness of 57 graphs, each constructed
from a technical paper that appeared at the 9th international World Wide Web
conference (WWW9) 2000 [1]. From this result, we can conjecture these papers
certainly have small world structures. However, depending on the paper, the
small-worldliness varies.

One reason why the paper has a small world structure can be considered
that the author may mention some concepts step by step (making the clustering
of related terms), and then try to merge the concepts and build up new ideas
(making a ‘shortcut’ of clusters). The author will keep in mind that the new
idea is steadily connected to the fundamental concepts, but not redundantly.
However, as we have seen, the small-worldliness varies from paper to paper.
Certainly it depends on the subject, the aim, and the author’s writing style of
the paper.

3 Finding Important Terms

3.1 Shortcut and Contractor

Admitting that a document is a small world, how does it benefit us? We try
here to estimate the importance of a term, and pick up important terms, though
they are rare in the document, based on the small world structure. We consider
‘important terms’ as the terms which reflect the main topic, the author’s idea,
and the fundamental concepts of the document.

2 In this paper, we set Jin,q. so that the number of neighbors, k, is around 4.5 on
average.



First we introduce the notion of a shortcut and a contractor, following the
definition in [11].

Definition 1. The range R(i,j) is the length of the shortest path between i and
J in the absence of that edge. If R(i,j) > 2, then the edge (i,j) is called a
shortcut.

Applying the notion of “shortcuts” in terms of nodes, we can get the definition
of “contractor.”

Definition 2. Iftwo nodesu and w are both elements of the same neighbourhood
I'(v), and the shortest path length between them that does not involve any edges
adjacent with v is denoted d,(u, w) > 2, then v is said to contract v and w, and
v 15 called a contractor.

In our first thought, if d, (u, w) is large, the corresponding term of contractor
v might be interesting, because they bridge the distant notions which rarely
appear together. However, such a node sometimes connects the nodes far from
the center of the graph, i.e. the main topic of the document. Below we take into
account the whole structure of the graph, calculating the contribution of a node
to make the world small.

To treat the disconnected graph, we expand the definition of path length
(though Watts restricts attention to the giant connected component of the

graph).

Definition 3. An extended path length d'(i,j) of node i and j is defined as
follows.

Wsym, otherwise.

d'(i, j) = {d(i,j), if (¢,j) are connected, @)

where wgym, 18 a constant, the sum of the widths of all the disconnected sub-
graphs. d(i, j) is a path length of the shortest path between 7 and j in a connected
graph.

If some edges are added to the graph and some parts of the graph gets
connected, d'(i,7) will not increase, unless the length of an edge is negative.
Thus d'(4, j) is one of the upper bounds of the path length considering the edges
will be added.

Definition 4. Extended characteristic path length L’ is an extended path length
averaged over all pairs of nodes.

Definition 5. L is an ertended path length averaged over all pairs of nodes
except node v. L’GU 1s the extended characteristic path length of the graph without
node v.

In other words, L! is the characteristic path length regarding the node v as a
corridor (i.e., a set of edges). For example, if v is neighboring u, w, and z, then
(u,w), (u,z),and(w, z) are considered to be linked. And Li; is the extended
characteristic path length assuming the corridor doesn’t exist.



Table 3. Frequent terms in this paper.

| Term |Frequency |

term 39
small 36
world 35
graph 33
small world 27
node 26
document 25
length 20
important 19
paper 18

Table 4. Terms with 10 largest C'B, in this paper.

| Term |C B, |Frequency|
small world |4.38 27
contribution |3.11 11

node 2.98 26

list 2.24 8
author 1.36 7
table 1.10 8
mportant term|0.80 11
show 0.72 6

structure 0.44 7
KeyWorld |0.44 10

Definition 6. The contribution, C'B,,, of the node v to make the world small is
defined as follows.
CB, =Ly, — L, (3)

We don’t pay attention to the clustering coefficient, because adding or eliminat-
ing one node affects the clustering coefficient little.

If node v with large C'B, is absent in the graph, the graph gets very large. In
the context of documents, the topics are divided. We assume such a term help
merge the structure of the document, thus important.

3.2 Example

We show the example experimented on this paper, i.e., the one you are reading
now3. Table 3 shows the frequent terms and Table 4 shows the important terms
measured by C'B,. Comparing two tables, the list of important terms includes

® We ignore the effect of self-reference; it’s sufficiently small.



Table 5. Pairs of Terms with 10 Largest C'B..

| Pair |CBe|
node — contribution 2.97

list — table 1.47
contribution — important term|1.20
table — show 1.10
contribution — structure 0.87
KeyWorld - list 0.87
important term — develop |0.79
network — show 0.72
contribution — make 0.47
author — idea 0.47

the author’s idea, e.g., “important term” and “KeyGraph,” as well as the impor-
tant basic concept, e.g., “structure,” although they are not frequently appeared.
However the list of frequent terms simply show the components of the papers,
and are not of interest.

We can also measure the contribution of an edge, C'B., to make the world
small, defined similarly as C'B,. However, if we look at the pairs of terms in Table
5, it is hard to understand what they suggest. There are numbers of relations
between two terms, so we cannot imagine the relation of the pairs right away.

Lastly, Fig. 2 shows the graphical visualization of the world of this paper.
(Only the giant connected component of the graph is shown, though other parts
of the graph is also used for calculation.) We can easily point out the terms with-
out which the world will be separated, say “small world” and “comtribution”.

4 Evaluation and Improvements

This section describes an evaluation of KeyWorld as an indexing system. Key-
World is not merely an indexing system but it provides an understandable graph-
ical representation of the document. However, we restrict attention here to the
performance of KeyWorld as an indexing tool to compare it with existing index-
ing techniques such as tf and tfidf. The tf measures simply term frequency. The
tfidf measure is obtained by using the product of the term frequency and the
inverse document frequency[9]*.

When an author writes a paper, he/she annotates keywords to his/her paper
by selecting the category of the paper (e.g. “text mining”), utilized algorithms
(e.g. “small world”), or the proposed method (e.g. “KeyWorld”). The choice
depends on the author’s criteria. In our definition, a keyword is an important
term in the document, which reflects the main topic, the author’s idea, and the
fundamental concepts of the document. For example, considering this paper,

* We use log N/n, as idf, where N is the number of document collection, and n, is
the number of document which includes term v.
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Fig. 2. Small world of this paper.
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we think “small world,” “document,” “contribution,” “important term,” “path
length,” and “KeyWorld” are keywords, and “node,” “make,” and “text mining”
are not keywords because they are too trivial or too broad, or do not occur in
this document.

In the experimentation, we asked the authors of 20 technical papers in the
artificial intelligence field to judge whether some terms in their papers are key-
words or not by a questionnaire. For each document, we first get top 15 weighted
terms by tf, tfidf*, KeyGraph, and KeyWorld, i.e. the four lists of 15 terms. (We
denote the list by method a as list,.) We merge the four lists and shuffle the
terms. Then we ask the author whether each term is a keyword or not after ex-
plaining the definition of keywords. Counting the number of authorized terms,
we can get the precision of method a as follows.

Number of authorized terms in list,

precision, = 4)

Number of terms in list,
Next, from the shuffled list of all terms®, the authors are told to pick 5

(or more) terms as indispensable terms which they think are essential to the
document, and cover the most important concepts of the paper. We calculate

5 As a corpus, we used 166 papers in Journal of Artificial Intelligence Research, from
Vol.1 in 1993 to Vol.14 in 2001.

6 If the author remembers the other terms, he/she is permitted to add them to the
list.



Table 6. Precision and Coverage

| || tf KeyVVorld|tﬁdfKeyVVorld+z'df|
precision ||0.53 0.49 |0.55 0.71
coverage ||0.48 0.50 [0.62 0.68

Table 7. Terms with 10 largest C'B, X idf, in this paper.

Term CB, x idf, |Frequency|
small world 4.57 27
important term 3.82 11
CO-0CCUrrence 1.89 4
KeyWorld 1.58 10
short cut 1.56 4
actor 0.89 5
shortest path 0.66 4
sentence 0.66 4
document 0.66 23
path length 0.59 17

the coverage of method a as follows.

Number of indispensable terms in list,

= — 5
coveragta Number of indispensable terms (5)
The results are shown in Table 6. The performance of KeyWorld is not good
enough. The precision and coverage are almost equal to tf. However, we feel
that the term list by KeyWorld includes very important terms as well as very
dull words, e.g. “show” or “table” in Table 4. To sieve out these dull terms, we

develop an improved weighting method, which annotates term » with the weight
CB, x idf,, (6)

where idf, is an idf measure for term v. The improved results are also shown in
Table 6. Both the precision and coverage are now far better than {fidf. Table 7
shows the top 10 terms by KeyWorld with «df factor for this paper.

In summary, KeyWorld can often find important terms, however, it also de-
tect less important terms. By incorporating with the ¢df measure, KeyWorld can
be a very good indexing tool.

5 Discussion

The small world phenomenon was inaugurated as an area of experimental study
in the social sciences by Stanley Milgram in the 1960’s. Since then, numerous



studies have been done for network analysis. The importance of weak ties, which
is a short cut between clusters of people, was mentioned 30 years ago [4].

The measure of contribution is similar to “centrality” in the context of social
network study. Centrality can be measured in a number of ways [3]. Considering
an actors’ social network, the simplest is to count the number of others with
whom an actor maintains relations. The actor with the most connections, i.e.,
the highest degree, is most central. Another measure is closeness, which calculates
the distance from each person in the network to each other person based on the
connections among all members of the network. Central actors are closer to all
others than are other actors. A third measure is betweenness which examines
the extent to which an actor is situated between others in the network, i.e.,
the extent to which information must pass through them to get to others, and
thus the extent to which they will be exposed to information circulating in the
network. However, our measure of contribution has a characteristic in that it
calculates the difference of the closeness of all nodes with and without a certain
node. It measures a node’s contribution to the whole structure by temporarily
eliminating the node.

6 Conclusion

Watts mentions in [11] the possible applications of small world research, includ-
ing “the train of thought followed in a conversation or succession of ideas leading
to a scientific breakthrough.” In this paper, we have focused on the papers rather
than conversation or succession of ideas. The future direction of our research is
to treat directed or weighted graph for finer analyses of the document.

We expect our approach is effective not only to document indexing, but also
to other graphical representations. To find out structurally important parts may
bring us deeper understandings of the graph, new perspectives, and chances to
utilize it. We are interested in a big structural change caused by a small change
of the graph. A change, which makes the world very small, may sometimes be
very important.
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