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A document is represented by a network; the nodes represent terms, and
the edges represent the co-occurrence of terms. This paper shows that the
network has the characteristics of being small world, i.e., highly clustered and
short path length. Based on the topology, we can extract important terms,
even if they are rare, by measuring their contribution to the graph being
small world.

1.1 Introduction

Graphs that occur in many biological, social and man-made systems are
often neither completely regular nor completely random, but have instead
a “small world” topology in which nodes are highly clustered yet the path
length between them is small [1.7, 1.5]. Watts and Strogatz have shown that
a social graph (the collaboration graph of actors in feature films), a biological
graph (the neural network of the nematode worm C. elegans), and a man-
made graph (the electrical power grid of the western United States) all have
a small world topology [1.7, 1.6]. World Wide Web also forms a small world
network [1.1].

In this paper, we first show the graph derived from a document has the
small world characteristics. Then we develop a new algorithm to find impor-
tant terms by measuring a term’s contribution to make the world small.

1.2 Small world

We treat an undirected, unweighted, simple, sparse and connected graph. (We
expand to an unconnected graph in Section 1.4.) To formalize the notion of
a small world, Watts and Strogatz define the clustering coefficient and the
characteristic path length [1.7, 1.6]:

— The characteristic path length, L, is the path length averaged over all pairs
of nodes. The path length d(i,7) is the number of edges in the shortest
path between nodes ¢ and j.

— The clustering coefficient is a measure of the cliqueness of the local neigh-
bourhoods. For a node with k neighbours, then at most ,Cs = k(k —1)/2
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edges can exist between them. The clustering of a node is the fraction of
these allowable edges that occur. The clustering coefficient, C' is the average
clustering over all the nodes in the graph.

Watts and Strogatz define a small world graph as one in which L > L,qn4
(or L & Lyana) and C > Crang where Lygng and Cqpng are the characteristic
path length and clustering coefficient of a random graph with the same num-
ber of nodes and edges. They propose several models of graphs, one of which
is called B-Graphs. Starting from a regular graph, they introduce disorder
into the graph by randomly rewiring each edge with probability p as shown
in Fig.1.1. If p = 0 then the graph is completely regular and ordered. If p =1
then the graph is completely random and disordered. Intermediate values of
p give graphs that are neither completely regular nor completely disordered.
They are small worlds.

Regular Small world

=0 -
p Increasing randomness

Fig. 1.1. Random rewiring of a regular ring lattice.

Walsh defines the proximity ratio u = (C/L) / (Crand/Lrana) as the small-
worldliness of the graph [1.5]. p is larger than 1 in the graphs with a small
world topology.

1.3 Term Co-occurrence Graph

A graph is constructed from a document as follows. We first preprocess the
document by stemming and removing Salton’s stop words. We apply n-gram
to count phrase frequency. Then we regard the title of the document, each
section title and each caption of figures and tables as a sentence, and exclude
all the figures, tables, and references. We get a list of sentences, each of which
consists of words (or phrases).

Then we pick up frequent terms which appear over a user-given threshold,
fthre times, and fix them as nodes. For every pair of terms, we count the co-
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occurrence for every sentences, and add an edge if the Jaccard coefficient
exceeds a threshold, Jyp et.

Table 1.1 is statistics of the small-worldliness of 57 graphs, each con-
structed from a technical paper that appeared at the 9th international World
Wide Web conference (WWW9) [1.8]. From this result, we can conjecture
these papers certainly have small world structures. However, depending on
the paper, the small-worldliness varies.

Table 1.1. Statistical data on proximity ratios u for 57 graphs of papers in WWW9.

| [ L [ Lrana | € [Crana | p |
Max. || 499 | 358 | 0.38 | 0.012 ]| 22.81
Ave. | 536 | — || 033 — || 1531
Min. || 8.13 | 2.04 || 0.31 | 0.027 || 4.20

We set finre = 3. We restrict attention to the giant connected component of the
graph, which include 89% of the nodes on average. We exclude three papers, where
the giant connected component covers less than 50% of the nodes. We don’t show
the Lyrgna and Crqeng for the average case, because n and k differs dependent on the
target paper. On average, n = 275 and k = 5.04.

One reason why the paper has a small world structure can be considered
that the author may mention some concepts step by step (making the clus-
tering of related terms), and then try to merge the concepts and build up
new ideas (making a ‘shortcut’ of clusters). The author will keep in mind
that the new idea is steadily connected to the fundamental concepts, but not
redundantly.

1.4 Finding Important Terms

Admitting that a document is a small world, how does it benefit us? We try
here to estimate the importance of a term, and pick up important terms,
though they are rare in the document, based on the small world structure.
We consider ‘important terms’ as the terms which reflect the main topic, the
author’s idea, and the fundamental concepts of the document.

Below we show a series of definitions to measure the importance of a term.

Definition 1.4.1. An extended path length d'(i,j) of node i and j is defined
as follows.

ro | d(i,7), if(i,7) are connected,
d'(i,j) = {wsum, otherwise. (1.1)

! In this paper, we set Jinre so that the number of neighbors, k, is around 4.5 on
average. The Jaccard coefficient is simply the number of sentences that contain
both terms divided by the number of sentences that contain either terms. This
idea is also used in constructing a referral network from WWW pages [1.2].
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where wgym is a constant, the sum of the widths of all the disconnected
subgraphs. d(i, j) is a path length of the shortest path between ¢ and j in a
connected graph.

Definition 1.4.2. Extended characteristic path length L’ is an extended
path length averaged over all pairs of nodes.

Definition 1.4.3. L/ is an extended path length averaged over all pairs of
nodes except node v. L’GU is the extended characteristic path length of the
graph without node v.

Definition 1.4.4. The contribution, C'B,, of the node v to make the world
small is defined as CB, = Ly, — L.

If node v with large C B, is absent in the graph, the graph gets very large.
In the context of documents, the topics are divided. We assume such a term
help merge the structure of the document, thus important.

1.5 Example

We show the example experimented on [1.4], i.e. the longer version of this
paper. Table 1.2 shows the frequent terms and Table 1.3 shows the important
terms measured by CB,. Comparing two tables, the list of important terms
includes the author’s idea, e.g., important term and contribution, as well as
the important basic concept, e.g., cluster and coefficient, although they are
rare terms. However the list of frequent terms simply show the components
of the papers, and are not of interest.

Table 1.2. Frequent terms. Table 1.3. Terms with 10 largest
CB,.

| Term | Frequency | | Term | CB, | Frequency |
graph 39 small 3.05 37
small 37 term 2.80 34
world 37 important term | 1.93 7
term 34 contribution 1.64 6
small world 30 node 1.00 29
node 29 make 0.82 6
paper 21 cluster 0.57 15
length 21 graph 0.54 39
document 19 coefficient 0.52 8
edge 19 average 0.50 8

Lastly, Fig. 1.2 shows the graphical visualization of the world of this paper.
(Only the giant connected component of the graph is shown, though other
parts of the graph is also used for calculation.) We can easily point out the
terms without which the world will be separated, say small and important
term.
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Fig. 1.2. Small world of the paper.

1.6 Conclusion

We expect our approach is effective not only to document indexing, but also to
other graphical representations. To find out structurally important parts may
bring us deeper understandings of the graph, new perspectives, and chances
to utilize it. A change, which makes the world very small, may sometimes be
very important.
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