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Abstract. Small world topology has been receiving much attention re-
cent years. Many real-world graphs actually have a small world topology.
In a small world graph, a shortcut plays an important role to make the
world small; if shortcuts are eliminated, the graph is separated into clus-
ters. In this paper, I propose a new clustering algorithm by eliminating
“shortcuts,” which helps a user understand the graph well.

1 Introduction

In the 1960s, Stanley Milgram showed that any two randomly chosen individuals in the
United States are linked by a chain of six or fewer first-name acquaintances, known as
“six degrees of separation.” Watts and Strogatz defined what is small world, and showed
some networks have small world characteristics [11]. Since their introduction, small-
world networks and thir properties have received considerable attention. Numbers of
networks are shown to have a small-world topology. Examples include social networks
such as acquaintance networks and collaboration networks, technological networks such
as the Internet, the World-Wide Web, and power grids, and biological networks such as
neural networks, foodwebs, and metabolic networks. (For reference, see [4].) Matsuo
et. al. showed that word co-occurrence in a technical paper also consists a small world
graph [8].

In a small world graph, nodes are highly clustered yet the path length between
them is small. Although some recent works have proposed different definitions of “small
world” (for example, [6]), one by Watts and Strogats is appropriate to grab idea of node
distance and clusters. They define the following two invariants [11]:

• The characteristic path length, L, is the path length averaged over all pairs of
nodes. The path length d(i, j) is the number of edges in the shortest path between
nodes i and j.

• The clustering coefficient is a measure of the cliqueness of the local neighborhoods.
For a node with k neighbors, then at most kC2 = k(k − 1)/2 edges can exist
between them. The clustering of a node is the fraction of these allowable edges
that occur. The clustering coefficient, C , is the average clustering over all the
nodes in the graph.

Watts and Strogatz define a small world graph as one in which L ≥ Lrand (or L ≈ Lrand)
and C � Crand where Lrand and Crand are the characteristic path length and clustering
coefficient of a random graph with the same number of nodes and edges.

In this paper, I propose a new method for detecting clusters based on the small
world structure. In a small world network, shortcuts (or weak ties) play an important
role to connect clusters (or communities). In other words, clusters already exist in the
graph. Therefore, I eliminate some edges from the graph to make C and L large so that
nodes are clustered and clusters are separated.
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Finding clusters (or rather, “elicitation” of clusters when they exist in nature) is
an important task when we try to understand the graph. A cluster often shows the
particular context; for example, a cluster corresponds to a community in social networks,
a Web page community in WWW, and a concept in a technical paper. Proper clustering
may suggest us the context shared by the member of each cluster.

2 Related Works

Clustering is an important data exploration task in chance discovery[9] as well as in
data mining, because it shows the overview of the data, and stimulates our interest
when understanding the clusters.

The first hierarchical clustering dates back to 1951 by K. Florek, and since then there
have been numerous modifications. One of the most widely used clustering methods
is the single linkage clustering. It is a kind of hierarchical clustering, and its cluster
relationships can be represented by a rooted tree, called dendrogram. A cluster is
produced by cutting edges of the dendrogram with a threshold. However, application
of only one threshold for all clusters would produce many too small clusters and a few
large clusters.

To tackle this problem, a clustering method based on a linkage graph is proposed
in [5] to cluster protein sequences into families. They formulate clustering as a kind of
graph partitioning problem [2] of a weighted linkage graph and find minimal cut with
consideration of balancing the size of clusters. The graph partitioning problem is of
interest in areas such as VLSI placement and routing, and efficient parallel implemen-
tations of finite element methods, e.g., to balance the computational load and reduce
communication time. [3] develops an algorithm to find communities on the Web by
maximum flow / minimum cut framework. This algorithm performs well in practice
i.e., under the condition that one couldn’t have rapid access to the entire Web.

Another approach focuses on the betweenness of an edge in a linkage graph as the
number of shortest paths between pairs of nodes that run along it [4]. An edge in a
graph is iteratively removed if the betweenness of the edge is highest in order to find
communities in social and biological networks.

3 Small World Clustering

I formalize my clustering algorithm, called Small World Clustering, as an optimization
problem. It differs to the conventional graph partition problem [2] in that it uses the
C and L for the measurement.

Definition 3.1 (Small World Clustering)
Given a graph G = (V,E) and k where V is a set of nodes, E is a set of edges, and k is
a positive integer, Small World Clustering (SWC) is defined as finding a graph G′ such
that k edges are removed from G so that

f = aLG′ + bCG′

is to be maximized. (LG′ and CG′ are L and C for graph G′ respectively, and a and b
are constants.)
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To deal with a disconnected graph, I extend the definition of L: An extended path
length d′(i, j) of node i and j is defined as follows.

d′(i, j) =

{
d(i, j), if (i, j) are connected,
n, otherwise.

(1)

where n is a number of nodes in G.
The problem of finding an optimal connection among all possible pairs of nodes

of a graph has been proven to be NP-complete. Therefore I consider an approximate
algorithm for SWC as follows.

1. Prune an edge which maximize f iteratively until k edges are pruned.

2. Add an edge which maximize f . If an edge to be added is the same as the most
previously pruned one, terminate.

3. Prune an edge which maximize f . Go to 2.

The second and third proceedures are optional. If clustering needs to be finished rapidly,
these proceedures can be skipped. However in some cases, they provide a little better
solution.

4 Examples

I show an example of SWC applied to a word co-occurrence graph. A word co-occurrence
graph is constructed as follows [8];

1. pick up n frequent words as nodes,

2. calculate a Jaccard coefficient1 for each pair of words, and add an edge if the
coefficient is larger than a given threshold.

A word co-occurrence graph is shown to have small world characteristics [8]. Thus,
clustering by SWC can be applied.

Fig. 1 is a word co-occurrence graph derived from a technical paper [10] with the
single linkage clustering. We can see a big cluster, one little cluster, and six isolated
nodes. Resulting in a big cluster and many isolated nodes is very common when single
linkage clustering is applied. It is very difficult to grab the ‘meaning’ behind each
cluster.

Fig. 2 shows a graph derived from the same paper but by SWC2 instead of the
single linkage clustering (with the same number of nodes and links). Four big clusters,
three pairwise nodes and one single node are extracted. Because the nodes in a cluster
is well connected (as C should be high) and clusters are properly separated (as L should
be high), it is easier to grab the meaning of cluster; for example, the left upper cluster
is words related to “extract author’s basic concept,” the center upper cluster is about
“existing retrieval method”, the left lower cluster is “the key concept of this paper”,
and the right big cluster is about “the proceedure of the new algorithm.”

In the result graph, a lot of complete subgraphs (or cliques) and stars emerge. These
are two frequent types of subgraphs when small worlds are generated artificially [7].

1The Jaccard coefficient is the number of sentences that contain both words divided by the number
of sentences that contain either words.

2Constant a is set 1, and b is set 100.
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Figure 1: A word co-occurrence graph with a single linkage clustering. C = 0.201, L = 12.1.

Figure 2: Clusters obtained by SWC. C = 0.689, L = 18.3
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5 Discussion and Future Work

In this paper, I show a clustering algorithm which utilizes the small world structure of
the graph. Quantative evaluation is ongoing research.

There is no consensus among the reserchers as to what constitutes a cluster. There
is only some intuitive understanting: the intuitive idea behind clustering consists in
condensing a subgraph into a single node, where the choice of the cluster is application-
dependent [1]. From chance discovery point of view, if a user can find the novel meaning
of clusters, the clustering algorithm is preferable. I will further investigate on what type
of clustering can properly stimulate the imagination of a user.
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