SL Method for Computing
a Near-optimal Solution using Linear and
Non-linear Programming
in Cost-based Hypothetical Reasoning

Mitsuru Ishizuka and Yutaka Matsuo

Dept. of Information and Communication Eng.
School of Engineering, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract. Hypothetical reasoning is an important framework for knowledge-
based systems because it is theoretically founded and it is useful for many
practical problems. Since its inference time grows exponentially with
respect to problem size, its efficiency becomes the most crucial prob-
lem when applying it to practical problems. Some approximate solution
methods have been proposed for computing cost-based hypothetical rea-
soning problems efficiently; however, for humans their mechanisms are
complex to understand. In this paper, we present an understandable ef-
ficient method called SL (slide-down and lift-up) method which uses a
linear programming technique, namely simplex method, for determining
an initial search point and a non-linear programming technique for effi-
ciently finding a near-optimal 0-1 solution. To escape from trapping into
local optima, we have developed a new local handler which systemati-
cally fixes a variable to a locally consistent value when a locally optimal
point is detected. This SL method can find a near-optimal solution for
cost-based hypothetical reasoning in polynomial time with respect to
problem size. Since the behavior of the SL method is illustrated visually,
the simple inference mechanism of the method can be easily understood.

1 Introduction

By handling incomplete hypothesis knowledge which possibly contradicts with
other knowledge, hypothetical reasoning tries to find a set of element hypotheses
which is sufficient for proving (or explaining) a given goal (or a given observation)
[Poole 88]. Because of its theoretical basis and its practical usefulness, hypothet-
ical reasoning is an important framework for knowledge-based systems, partic-
ularly for systems based on declarative knowledge. However, since hypothetical
reasoning is a form of non-monotonic reasoning and thus an NP-complete or NP-
hard problem, its inference time grows exponentially with respect to problem
size. In practice, slow inference speed often becomes the most crucial problem.
There already exist several investigations trying to overcome this problem.
(For example, see [Ishizuka 91, 94, Kondo 93, 96, Ohsawa 97] for authors’ work.)



Besides symbolic inference methods which have been exploited mostly in Al field,
search methods working in continuous-value space have recently shown promis-
ing results in achieving efficient inference for hypothetical reasoning as well as
for SAT problems and CSP (constraint satisfaction problem). This approach is
closely related to mathematical programming, particularly with 0-1 integer pro-
gramming. When we consider a cost-based propositional hypothetical-reasoning
problem, it can be transformed into an equivalent 0-1 integer programming prob-
lem with a set of inequality constraints. Although its computational complexity
still remains NP-hard, it allows us to exploit a new efficient search method in
continuous-value space. One key point here is an effective use of the efficient
simplex method for linear programming, which is formed by relaxing the 0-1
constraint in 0-1 integer programming. Also, non-linear programming formation
provides us another possibility. These approaches may be beneficial particularly
for developing efficient approximate solution methods, for example, in cost-based
hypothetical reasoning [Charniak 90].

The pivot-and-complement method [Balas 80] is a good approximate solu-
tion method for 0-1 integer programming. Ishizuka and Okamoto [Ishizuka 94]
used this method to realize an efficient computation of a near-optimal solution
for cost-based hypothetical reasoning. Ohsawa and Ishizuka [Ohsawa 97] have
transformed the behavior of the pivot-and-complement method into a visible
behavior on a knowledge network, improved its efficiency by using the knowl-
edge structure of a given problem, and consequently developed networked bubble
propagation (NBP) method. NBP method can empirically achieve a polynomial-
time inference of N'* where N is the number of possible element hypotheses,
to produce a good quality near-optimal solution in cost-based hypothetical rea-
soning.

The key point of these methods is the determination of an initial search
point by using simplex method and efficient local searches around this point in
continuos space for eventually finding a near-optimal 0-1 solution. However, in
order to avoid trapping into locally optimal points, a sophisticated control of
the local search is required; as a result, the inference mechanisms have become
complicated and for humans they are difficult to understand.

On the other hand, Gu [Gu 93, 94] exploited an efficient method to solve
SAT problems by transforming them into unconstrained non-linear program-
ming; the SAT problem is related to propositional hypothetical reasoning. There
are several methods for unconstrained non-linear programming, i.e., the steep-
est descent method, Newton’s method, quasi-Newton method, and conjugate
direction method. The mechanisms of these local search methods are easy to
understand as they basically proceed by descenting a valley of a function. How-
ever, since those methods simply try to find a single solution depending upon an
initial search point, they cannot be used for finding a (near) optimal solution for
the folowing reason: if they are trapped into local optima, they have to restart
from a new initial point that is to be selected randomly.

In order to find a near-optimal solution using the simple non-linear program-
ming technique, we combine a linear programming, namely simplex method, to



determine the initial search point of the non-linear programming. The search,
however, often falls into local optima and an effective method escaping from
these local optima is required. In this paper, we present an effective method
named variable fixring method for this problem. Variable fixing corrects a local
inconsistency at each locally optimal point and allows to restart the search.
Unlike conventional random restart schemes, this method permits to direct the
search systematically using the knowledge structure of a given problem.

As sliding-down operations toward a valley of a non-linear function and
lifting-up operations are repeated alternately, we call this method SL (Slide-
down and Lift-up) method. By illustrating its behavior visually, we show
that its mechanism is easily understandable and also achieves good inference
efficiency that is close to the efficiency of the NBP method.

In this paper, we will treat hypothetical reasoning problems that are rep-
resented in propositional Horn clauses; we will also allow for (in)consistency
constraints among hypotheses.

2 Transformation into Linear and Non-linear
Programming and their Combination

First we show how to transform a hypothetical reasoning problem into linear
and non-linear programming problems. These transformations become the basis
of the SL method. As for the transformation into linear programming, there are
several ways of replacing logical knowledge by an equivalent set of linear inequal-
ities. Among them, we adopt the following transformation used in [Santos 94].

Associating the true/false states of logical variables such as pl, p2, g, etc.
with 1/0 of the corresponding numerical variables represented by the same sym-
bols, we transform a Horn clause

q < pl A p2. (1)
into a set of inequalities
g<pl,q<p2, pl+p2—-1<gq (2)
and also
q < plV p2. (combination of ¢ < pl and g « p2) 3)
into
pl<g,p2<gq, ¢<pl+p2 (4)

This transformation is advantageous in that it allows to produce a 0-1 so-
lution only by using simplex method for a certain type problem [Santos 96],
though the number of generated inequalities becomes large.

For the constraint representing inconsistency, the head of its Horn clause is
set to false which is translated to 0 in the corresponding inequality. As the goal
of hypothetical reasoning has to be satisfied, it is set to true which becomes 1
in the inequality.



Let the weights of possible element hypotheses hl, h2, h3, - - - be wy, wa,ws - - -,
respectively. Moreover, let the element hypothesis hi(i = 1,2, - -) become hi = 1
if it is included in the solution hypothesis, and hi = 0 otherwise. Then we can
define the cost of the solution as

cost = w1 hl + wah2 + wsh3 + - -,

which expresses the sum of the weights of the element hypotheses included in
the solution. Let us set cost as the objective function; then if we compute the
optimal solution to minimize this function under the generated inequalities, it
indicates the optimal solution in the cost-based hypothetical reasoning problem.

In this way, hypothetical reasoning becomes a 0-1 linear integer program-
ming. In the pivot-and-complement method (Balas 80), an efficient approximate
solution method for 0-1 integer programming, the optimal real-number solu-
tion is obtained as follows: first the simplex method is used by relaxing the
0-1 constraint on the variables, then a near-optimal 0-1 solution is searched
in a sophisticated manner around the optimal real-number solution. This local
search mechanism for the 0-1 solution is rather complicated because it incorpo-
rates several heuristics that have been obtained empirically. For our new method
here, while we utilize this optimal real-number solution obtained by the simplex
method as the initial search point, we try to develop a new simple and under-
standable method of the local search using a non-linear programming technique.

Gu [Gu 93, 94] presented a method for SAT problems by transforming them
into unconstrained non-linear programming problems. According to this trans-
formation, the transformation of propositional Horn clauses to clauses that can
be processed by our hypothetical reasoning can be realized as follows.

— If the same variable appears in head part of a cluse, we introduce new vari-
ables and produce a rule clause with disjunctive body as exemplified below.
[ex.] In case of ¢+ plAp2, and g+ p3Ap4, replace them by gl < plAp2, ¢2+
p3 Apd, g+ qlV q2. (This is to make the following completion operation
effective even for OR-related rules.)

— Apply completion for each rule. (Completion is an operation that changes
g < pto g <+ pand q — p, interpreting {q if p} as {q¢ if and only if p}.
In the definition of material implication (used in formal logic), ¢ + p, for
instance, is interpreted as true if g is true regardless of p’s truth value; this
makes backward inference impossible which is required in the hypothetical
reasoning. Thus completion is needed here.)

After the above operations, a given problem is transformed to the problem
of finding the minimal value 0 of a non-linear function constructed as follows.

— Associate the true/false states of each logical variable with 1/—1, respec-
tively, of the corresponding numerical variable.

— Replace the literals x and -z by (z — 1)? and (x + 1)?, respectively.

— Replace conjunction (A) and disjunction (V) in the logical formula by arith-
metic operation + and X, respectively, assuming that all the clauses are
connected by conjunction.



For example, consider the following hypothetical reasoning problem.
1 < g. (the goal 'g’ shall be satisfied.)

g—aAb.,a<hlAc,b<h2Ac., c+ h3AhR4.,
¢+ h5 A hb6., inc < hl A h4.

(’in¢’ stands for inconsistent which is equivalent to the empty clause.)

After applying completion, the following set of formulae is generated.
l1<g.,9<aAb.,a+g.,bg.,a+ hlAc., hl «<a., c ¢+ a.,

b h2Ac., h2<b.,c+<b.,clVc2+c,c+cl., c+ 2.,
cl+ h3Ah4., h3+cl., hd < cl., c2 + h5 A hb6., hd < c2.,
h6 < c2., inc < hl A h4.

Then the following non-linear function is to be constructed, for which a solution
achieving the minimal value 0 is searched.

f=(g=1%+(g-1)*(a+1)*(0+1)*+(9+1)*(a=1)*+(9+1)*(b—1)
a—1)?(h1+1)*(c+1)*+(a+1)*(h1-1)*+(a+1)*(c—1)
b—1)?(h2+1)%(c+1)?+(b+1)*(h2—1)2+(b+1)*(c—1)?
c+1)3(c1-1)3(c2—1)2+(c—1)?*(c1+1)2 4+ (c—1)?(c2+1)?
1-1)%(h3+1)?(hd+1)?+(c1+1)*(h3—1)*+(c1+1)*(h4—1)?
c2—1)?(h5+1)*(h6+1)?+(c2+1)*(h5—1)*+(c2+1)*(h6—1)?
h1+1)%(hd441)? (5)

+ 4+ + + + +
(o)

N~ o~~~ o~

The weight of each element hypothesis is not considered here; thus, even if
a 0-1 solution achieving f = 0 is found, it will not necessarily be an optimal or
near-optimal one. However, if local search is conducted starting from the real-
value optimal point determined by the simplex method with respect to the linear
inequality constraints and the objective function, it will reach a near-optimal 0-1
solution.

One feature of the non-linear function thus generated is that it is at most
quadric with respect to one variable. This is due to the fact that one variable
never appears twice in one propositional Horn clause.

3 Improvement of the Construction of the Non-linear
Function

Although the above computational mechanism using both the linear and non-
linear programming techniques provides us with an understandable scheme for
cost-based hypothetical reasoning, we have to solve one crucial problem, namely



trapping into local optimal points where f is strictly above 0. To cope with this
problem, we first reconsider the form of the above non-linear function.

The following example shows a simple case of trapping into a local optimal
point.

a(false) + b(true) A c¢(false) A d(true) (6)
c(false) « e(false) V p(true) (7

where true/false inside ( ) indicates the truth value of the variable in a state.
In this example, Eq.(7) is in a false state; this prevents the non-linear function
covering all the logical formulae or constraints to become 0. After completing
Eqgs.(6) and (7), the non-linear function obtained as a result of the proposed
replacements becomes Eqgs.(8) and (9), respectively:

(a=1)2(b+1)*(c+1)*(d+1)*+(a+1)?(b—1)*+(a+1)*(c—1)*+(a+1)*(d—1)* (8)

(c+1)%e—-1)2 (p—-12+(c—1)%*e+1)2+ (c—1)2%(p+1)? (9)

Suppose that ¢ appears in these two clauses of the knowledge base. Then, to
consider the effect of ¢’s change, we compute the partial derivatives of Eqgs.(8)
and (9) with respect to c¢ as

(-1-12(1+1)?2(c+1)(1+1)>+ (-1 +1)*(2(c— 1)) = 128(c+ 1) (10)

20c+1)(-1 =121 =12 +2(c—1)(-14+1)> +2(c— 1)1 +1)* = 8(c—1) (11)

As these are summed to compute f/0c as in Eq.(5), we obtain 8f/dc =
136¢+ 120. Since f is quadratic with respect to one variable, f becomes minimal
at ¢ = —120/136. This suggests that ¢ tends to stick to -1(false state).

This example indicates that the non-linear function proposed by Gu [Gu 93,
94] is problematic when a parent node! has many child nodes! and the truth
status of a clause is determined by its one child node. That is, since the coefficient
of the variable corresponding to this node increases with the involution of 2 in
the non-linear function, as seen in Eq.(8), this effect becomes too large so as to
prevent the same variable appearing in the head part of another Horn clause
moving away from its incorrect status. The problem here is that if p is true,
then (p+1)? becomes 2%; that is, the coefficient of one variable in a certain state
varies with the involution of 2, depending on the number of body atoms in the
Horn clause.

Hence, rather than associating true/false states with 1/—1, respectively, we
associate them with 0.5/ —0.5, respectively, and transform x and —z to (z—0.5)2
and (x + 0.5)2, respectively, to construct a new non-linear function. Thereby,

! In this paper, ’variable’ and ’node’ are used interchangeably since a propositional
variable constitutes one node in the proof tree.



when p is true, (p + 0.5)2 becomes 1; the unbalance among the coefficients of
the product terms in a certain state can be avoided.

The following list summarises the way of constructing the new non-linear
function.

— Associate the true/false states of each logical variable with 0.5/ — 0.5,
respectively, of the corresponding numerical variable.

— Replace the literals z and -z by (z — 0.5)? and (z + 0.5)2, respectively.

— Replace conjunction (A) and disjunction (V) in the logical formula by the
arithmetic operations + and x , respectively.

4 Variable Fixing Scheme for Escaping from Local
Optima

There remains the possibility that the search is trapped into local optima and
can not go to the minimal point of f = 0 even if we use the new non-linear
function. For example, consider the following simple case. If all the values are
false (namely, -0.5) at the initial stage, this becomes a locally optimal point.
As h1, h2, h3 and h4, which are all in a false state, pull a and b toward their
false states, the goal g can not go to a true state.

g—aAb.,a<hlAh2., b h3AN.

In large complex problems, the non-linear functions tend to have many locally
optimal points of this and other sorts.

To solve this problem, consider again the following case of a locally optimal
state.

a(false) + b(true)A c(true)A d(false). (12)
d(false) + e(true)A p(true)A g(true). (13)

When the non-linear function does not reach 0, the minimum value, it indi-
cates that at least one Horn clause is not satisfied. In this example Eq.(13) is not
satisfied, since two restrictions, one from an upper node (d shall be false) and
one from a lower node (d shall be true), contradict each other. This situation
can not simply be resolved because a might be requested to be false from its
upper node, and also e, p and ¢ might be requested to be true from their lower
nodes.

We thus determine the state of d to be true or the state of either e, p
or ¢ to be false, so as to escape from the locally optimal point. There are
two cases in unsolved states where the goal is unsatisfied: first, some of element
hypotheses which are needed to prove the goal are missing, and secondly, selected
hypotheses violate the consistency constraint. Since the former case arises more



often empirically in the search process starting from the initial point, which is
obtained as the real-number optimal point by the simplex method, we adopt the
strategy of resolving the former case first. In this case, if the restrictions from
the upper node and from the lower node contradict, the central node is set to
true.

In addition, after restarting from a new state, the search often falls into the
same local optimal point since the non-linear function is quadratic with respect
to one variable. Thus, if one variable is changed to 0.5 (true state) to resolve the
local inconsistency, we don’t change it anymore in the search process; that is,
we consider it a constant rather than a variable afterwards. As this implies the
substitution of 0.5 in a strong sense, we call this operation variable fixing. The
effect of variable fixing propagates to other variables through the minimization
process of the non-linear function.

The target nodes (variables) for the variable fixing operations are as follows.
Here, we evaluate the state of each node by rounding its value to -0.5 (false)
or 0.5 (true).

1. the goal node in a false state.

2. a parent node in a false state such that its AND-related child nodes are all
in a true state.

3. a parent node in a false state such that one of its OR-related child node is
in a true state.

4. an AND-related child node in a false state such that its parent node is in
a true state.

5. one of the OR-related child nodes in a false state such that its parent node
is in a true state.

When fallen into a locally optimal point, we find one of the target nodes
(variables) as listed above sequentially in order of numbers (1) - (5), apply the
variable fixing operation to that variable and restart the search. The reason for
applying variable fixing to one target variable at a time rather than to multiple
target variables is to avoid moving apart far from the real-number optimal point
which is obtained by the simplex method.

In (2) and (3) above where the restriction from the lower nodes is consid-
ered, variable fixing does not contribute to satisfy the goal and hence causes
inconsistencyin rare case, since the states of the lower nodes are determined by
considering the consistency constraints.

On the other hand, in (4) and (5)above, although variable fixing may con-
tribute to satisfy the goal, it possibly causes inconsistency by changing a false
child node to true. Thus, we place priority on (2) and (3) over (4) and (5).

In (5), the selection of one target node is not uniquely determined; however,
we select the one with the largest analog value as it may affect the states of its
lower nodes the least. We call this process an ” OR-node selection phase”.

Experiments show that the order of (2), (3) and (4) above causes no big
difference on the performance. The algorithm always stops in finite steps, since
one variable fixing operation always decreases one free variable. Also, as the



variable fixing operation increases the number of true nodes, it guarantees to
produce a solution if the given problem has no consistency constraint. Redundant
element hypotheses in the solution can be removed in an improvement phase in
order to obtain a near-optimal solution.

Yet, there are cases where a solution can not be obtained due to variable fixing
of wrong nodes (variables) which contradict with the consistency constraint.
These cases arise the following situations.

i. The node which shall be false is fixed to true.
ii. In the OR-node selection phase one wrong node, which is different from one
to be true, is fixed to true and causes inconsistency.

For case (i), try to remove the redundant element hypotheses from the result-
ing solution hypothesis set so that the inconsistency can be resolved (redundancy
detection phase). For case (ii), keep other possible OR-related child nodes not
selected in a stack, and if the search is failed, restart the OR-node selection phase
by picking another child node from the stack. Although this operation causes
inefficient backtracking, it almost never occurs in our experiments and therefore
does not become a serious problem.

In our system, the OR-nodes are usually selected in the minimization process
of the non-linear function. Here, if a wrong OR-node is selected, there is no way
to remedy it. Then the search proceeds via the local optima by the variable
fixing operations; redundant element hypothesis in the solution hypothesis can
be removed in the improvement phase to be described below.

The variable fixing operation is effective only when the new non-linear func-
tion introdced in this paper is used. If Gu’s non-linear function is used, it is
not useful since the probabilities of the wrong selection in the OR-node selection
phase and of fixing wrong nodes in other steps become large due to the coefficient
unbalance of the terms in the non-linear function.

5 Improvement Phase of Solution Cost

The solution obtained after the search undergoes an improvement phase taking
into account its cost. A simple algorithm is employed here; that is, each element
hypothesis included in the solution hypothesis set is checked in order according
to its weight to see whether or not it can be removed without undercutting the
provability of the goal. If it can, then the element hypothesis is removed from the
solution. This operation, which is also employed in the pivot-and-complement
method [Balas 80] for 0-1 integer programming, seems to be the most effective
in terms of its computational cost and its performance.

6 Algorithm of SL Method

Summarizing above descriptions, we show below the algorithm of the SL method
for cost-based hypothetical reasoning. The steepest descent method is currently
employed for the minimization of the non-linear function.



i. Initial Phase Constitute a set of linear inequalities from a given problem.
Relaxing the 0-1 constraint, obtain the optimal real-number solution by the
simplex method and set this as the initial search point for the subsequent
0-1 solution search. (The range of [0, 1] of the variables at this initial search
point is shifted to [—0.5,0.5] when used in the subsequent minimization of
the non-linear function.)

ii. Constitution of Non-linear Function Constitute the non-linear function
as described previously.

iii. Search Phase Execute the search for finding the minimal value 0 of the
non-linear function. If rounding the variables into 0.5/ — 0.5 makes the non-
linear function be 0, then stop and go to (vi). If a local optimum is detected,
then go to (iv).

iv. Variable Fixing In order to escape from the local optimum, select one
target node according to the order of (1)-(5) described in the section of
variable fixing, apply variable fixing to this node, and go back to (iii). If
there is no target node found, then go to (v).

v. Redundancy Detection Phase If there is no target node in (iv), it means
that all the Horn clauses being related to the proof of the goal are satisfied
except the consistency constraints. Thus, keeping the goal node true, try
to reduce the true hypothesis so as to remove the inconsistency among
hypotheses. If this succeeds, go to (vi). Otherwise, restart from the OR-node
selection phase in (iv) by picking up one of the remaining OR-nodes in the
stack. If there is no such OR-node in the stack, the search fails.

vi. Improvement Phase Try to temporally change each true element hy-
pothesis to false without spoiling the proof of the goal. If this succeeds,
then change this element hypothesis and its associated intermediate nodes
to false; that is, remove this element hypothesis from the solution hypoth-
esis as a redundant one.

7 Visual Illustration of the Behavior of the SL Method

Unlike other efficient methods for (cost-based) hypothetical reasoning, one salient
feature of the SL method is its simple and understandable mechanism, which
is basically based on the minimization of the non-linear function starting from
the initial search point which is determined by the simplex method. Here, we
illustrate its behavior visually.

For visual illustration, we have to find an effective way of mapping the be-
havior in multi-dimensional space into two or three-dimensional space; simple
display methods such as one using two axes of two variables are not good enough.
For effective display, we choose here two axes such that one axis corresponds to
the vector from the current search point to the previous point determined by
variable fixing or the minimization process, and another corresponds to the vec-
tor from the current search point to the optimal solution point. We set the
current search point, the previous point and the optimal solution point at (0, 0),
(0,1) and (1,0), respectively, and that the height represents the shape of the
non-linear function.



locally

minimal

locally
minimal
point

fixing

Fig. 1. A behavior of search (example 1).

Figure 1 shows an example in which a solution with function value 0 can be
found after only one variable fixing operation. Starting from an initial search
point, the search first falls into a locally minimal point, from which it can not
proceed to the solution point as there is a small hill between them. One can
observe from the figure on the right that variable fixing changes the form of the
function and allows the search to go to the solution point.

Figure 2 illustrates a more complicated case, in which four variable fixing
operations are required before reaching the solution. It can be seen well that the
minimization (Slide-down) and variable fixing (Lift-up) operations are repeated.
(These illustrations are produced using Mathematica.)

We want to emphasize that this visualization facilitates comprehension of
the simple inference mechanism of the SL method; the simplicity is important
to grasp the inference behavior and to trust it. For a computer, visualization is
not necessary to execute the search.

8 Experimental Results and Evaluation

Figure 3 shows the experimental results of the inference time of the SL method.
The system is implemented in C and runs on Sun Ultra and SGI workstations.
The number of body atom in each Horn clause is 2-7, and the number of the
occurences of each atom in one experimental knowledge set is at most 10. The
horizontal axis is the number of nodes, as the SL method carries out the search
on the nodes. Since in practice, the simplex method produces its optimal solution
in polynomial time, the average data excluding cases in which the 0-1 solutions
were obtained only using simplex method are plotted in 3. Also, the times spent
for the simplex method are excluded from the plotted data.

As illustrated in Fig. 3, the SL method can compute a near-optimal solution
in a polynomial-time of approximately n'-® where n is the number of nodes. Fail-
ure of finding a solution was one case out of 111 problems. The near-optimality
of the obtained solution is as good as that of the NBP method [Ohsawa 97], in
which at least the third nearest solution to the optimal one is obtained for all
the cases where the system finds the solution.



Ist minimal  o.5
point

point after
Ist fixing
operation

2nd minimal o, 5
point

point after

3rd minimal 0.5
point

point after
3rd fixing
operation

point after
1st fixing
operation

point after
2nd fixing
operation

point after
3rd fixing
operation

X
<N
N QPELBIL,L 7
‘\})}«.‘20’#.

NS
NS
4 AN

point after
4th fixing
operation

Fig. 2. A behavior of search (example 2).



inference time (s)

1.0 ﬁ

.10

.05 1/

.04/

.03
50 100 200 300

number of nodes

Fig. 3. Inference time of SL method.

9 Related Work

ATMS [deKleer 86] is an efficient method for dealing with possibly hypothetical
knowledge. It is used as a caching mechanism for the working memory of a pro-
duction system and to maintain inferred data that are supported by consistent
hypotheses ("label’ in ATMS terminology). Although its mechanism is also use-
ful partially for logical problem solving, it is not enough for problem solving in
general. The logic-based framework of hypothetical reasoning was presented in
[Poole 88]. Since then, several schemes have been developed to improve its slow
inference speed. A method using an inference-path network [Ishizuka 91] where
network compilation phase is based on the linear-time algorithm of Dowling &
Gallier [Dowling 84] for propositional Horn logic, has achieved nearly ultimate
speed for propositional hypothetical reasoning. As for predicate-logic hypothet-
ical reasoning, effective fast inference methods have been presented in [Kondo
93, 96], which use a deductive database technique.

On the other hand, the effectiveness of using mathematical programming
techniques for logical problem solving has been advocated by [Hooker 88]. Re-
cently, Santos showed that many problems of cost-based hypothetical reasoning
(or abduction) [Charniak 90] can be solved using only the simplex method [San-
tos 94, 96]; however, the hypothetical reasoning problem there does not permit
any inconsistency among possible hypotheses. Cost-based hypothetical reason-
ing is closely related to 0-1 integer programming. Both are NP-hard problem in
general; however there exists a good approximate solution method called pivot-
and-complement method [Balas 80] for 0-1 integer programming. This method
was applied in [Ishizuka 94] for computing a near-optimal solution in polyno-



mial time with respect to problem size to cost-based hypothetical reasoning. In
network bubble propagation (NBP) method [Ohsawa 97], the behavior of the
pivot-and-complement method has been transformed into a visible behavior on
a knowledge network and the efficiency has been improved by using the knowl-
edge structure of a given problem. Although the NBP method can achieve high
efficiency, i.e., a low-order polynomial-time inference, its mechanism has become
complicated.

As another approach of applying mathematical programming techniques, Gu
[Gu 93, 94] exploited the use of unconstrained non-linear programming tech-
niques for SAT problems, which are closely related to logical inference and
CSP (constraint satisfaction problem). These techniques provide simple efficient
mechanisms for finding a single solution. Yet it is not appropriate to find the
(near) optimal solution, for example, in cost-based hypothetical reasoning.

10 Conclusion

We have presented the SL (slide-down and lift-up) method for cost-based hy-
pothetical reasoning, which can find a near-optimal solution in polynomial time
in cost-based hypothetical reasoning. It uses both linear and non-linear pro-
gramming techniques. Moreover, it incorporates a local handler to escape from
trapping into locally optimal points. The notable feature of this method is its
simple and understandable search behavior as visually illustrated here, though
at present it speed performance is slightly lower than that of the NBP method
[Ohsawa 97]. The mechanism of the SL method may also be useful to develop
systematic polynomial-time methods for finding near-optimal solutions in other
problems such as the constraint optimization problem.

References

[Balas 80] E. Balas and C. Martin: Pivot and Complement — A Heuristic for 0-1 Pro-
gramming, Management Science, Vol.20, pp.86-96 (1980).

[Charniak 90] E. Charniak and S. Shimony: Probabilistic Semantics for Cost Based
Abduction, Proc. AAAT-90, pp.106-111 (1992).

[deKleer 86] J. deKleer: An Assumption-based TMS, Artif. Intelli., Vol.28, pp.127-162
(1986)

[Dowling 84] W. F. Dowling and J. H. Gallier: Linear-time Algorithm for Testing Sat-
isfiability of Propositional Horn Formulae, Jour. of Logic Programming, Vol.3,
PD.267-284 (1984)

[Gu 93] J. Gu: Local Search for Satisfiability (SAT) Problem, IEEE Trans. on Systems,
Man and Cybernetics, Vol.23, No.4, pp1108-1129 (1993).

[Gu 94] J. Gu: Global Optimization for Satisfiability Problem, IEEE Trans. on Knowl-
edge and Data Engineering, Vol.6, No.3, pp.361-381 (1994).

[Hooker 88] J. N. Hooker: A Quantitative Approach to Logical Inference, Decision
Support Systems, Vol.4, pp.45-69 (1988)

[Ishizuka 91] M. Ishizuka and F. Ito: Fast Hypothetical Reasoning System using
Inference-path Network, Proc. IEEE Int’l on Tools for AI (TAI'91), pp.352-359
(1991)



[Ishizuka 94] M. Ishizuka and T. Okamoto: A Polynomial-time Hypothetical Reason-
ing employing an Approximate Solution Method of 0-1 Integer Programming for
Computing Near-optimal Solution, Proc. Canadian Conf. on AI, pp.179-186 (1994)

[Kondo 93] A. Kondo, T. Makino and M. Ishizuka: Efficient Hypothetical Reason-
ing System for Predicate-logic Knowledge-base, Knowledge-Based Systems, Vol.6,
No.2, pp.87-94 (1993)

[Kondo 96] A. Kondo and M. Ishizuka: Efficient Inference Method for Computing
an Optimal Solution in Predicate-logic Hypothetical Reasoning, Knowledge-Based
Systems, Vol.9, pp.163-171 (1996)

[Ohsawa 97] Y. Ohsawa and M. Ishizuka: Networked Bubble Propagation: A
Polynomial-time Hypothetical Reasoning for Computing Near Optimal Solutions,
Artificial Intelligence, Vol.91, No.1, pp.131-154 (1997).

[Poole 88] D. Poole: A Logical Framework for Default Reasoning, Artif. Intelli., Vol.36,
pp-27-47 (1988)

[Santos 94] E. Santos, Jr.: A Linear Constraint Satisfaction Approach to Cost-based
Abduction, Artificial Intelligence, Vol.65, pp.1-27 (1994).

[Santos 96] E. Santos, Jr. and E. S. Santos: Polynomial Solvability of Cost-based Ab-
duction, Artificial Intelligence, Vol.86, pp.157-170 (1996).



