
A Document as a Small World

Yutaka Matsuoy Yukio Ohsawaz Mitsuru Ishizukay

yGraduate School of Engineering zGraduate School of Systems Management

University of Tokyo University of Tsukuba

Tokyo 113-8656, Japan Tokyo 112-0012, Japan

Abstract

The small world topology is known widespread in

biological, social and man-made systems. This paper

shows that the small world structure also exists in doc-

uments, such as papers. A document is represented by

a network; the nodes represent terms, and the edges

represent the co-occurrence of terms. This network is

shown to have the characteristics of being small world,

i.e., highly clustered and short path length. Based on

the topology, we can extract important terms, even if

they are rare, by measuring their contribution to the

graph being small world.

1 Introduction

Graphs that occur in many biological, social and
man-made systems are often neither completely regu-
lar nor completely random, but have instead a \small
world" topology in which nodes are highly clustered
yet the path length between them is small [10, 8]. For
instance, if you are introduced to someone at a party in
a small world, you can usually �nd a short chain of mu-
tual acquaintances that connects you together. In the
1960s, Stanley Milgram's pioneering work on the small
world problem showed that any two randomly chosen
individuals in the United States are linked by a chain
of six or fewer �rst-name acquaintances, known as \six
degrees of separation" [4]. Watts and Strogatz have
shown that a social graph (the collaboration graph of
actors in feature �lms), a biological graph (the neu-
ral network of the nematode worm C. elegans), and
a man-made graph (the electrical power grid of the
western United States) all have a small world topol-
ogy [10, 9]. World Wide Web also forms a small world
network [1].

In the context of document indexing, an innova-
tive algorithm called KeyGraph [5] is developed, which
utilizes the structure of the document. A document
is represented as a graph, each node corresponds

to a term1 , and each edge corresponds to the co-

1 A term is a word or a word sequence.

occurrence of terms. Based on the segmentation of
this graph into clusters, KeyGraph �nds keywords by
selecting the term which co-occurs in multiple clus-
ters. Recently, KeyGraph has been applied to sev-
eral domains, from earthquake sequences [6] to register
transaction data of retail stores, and showed remark-
able versatility.

In this paper, inspired by both small world phe-
nomenon and KeyGraph, we develop a new algorithm
to �nd important terms. We show at �rst the graph

derived from a document has the small world charac-
teristics. To extract important terms, we �nd those
terms which contribute to the world being small. The
contribution is quantitatively measured by the di�er-
ence of \small-worldliness" with and without the term.

The rest of the paper is organized as follows. In the
following section, we �rst detail the small world topol-
ogy, and show that some documents actually have
small world characteristics. Then we explain how to
extract the important terms in Section 3. Finally, we
discuss future works and conclude this paper.

2 Term Co-occurrence Graph and

Small World

2.1 Small-worldliness

We treat an undirected, unweighted, simple, sparse
and connected graph. (We expand to an unconnected

graph in Section 3.) To formalize the notion of a small
world, Watts and Strogatz de�ne the clustering coef-

�cient and the characteristic path length [10, 9]:

� The characteristic path length, L, is the path
length averaged over all pairs of nodes. The path
length d(i; j) is the number of edges in the short-
est path between nodes i and j.

� The clustering coe�cient is a measure of the
cliqueness of the local neighbourhoods. For a
node with k neighbours, then at most kC2 =
k(k � 1)=2 edges can exist between them. The
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Figure 1: Random rewiring of a regular ring lattice.

clustering of a node is the fraction of these allow-
able edges that occur. The clustering coe�cient,
C is the average clustering over all the nodes in
the graph.

Watts and Strogatz de�ne a small world graph
as one in which L � Lrand (or L � Lrand) and
C � Crand where Lrand and Crand are the char-
acteristic path length and clustering coe�cient of a

random graph with the same number of nodes and
edges. They propose several models of graphs, one
of which is called �-Graphs. Starting from a regular
graph, they introduce disorder into the graph by ran-
domly rewiring each edge with probability p as shown
in Fig.1. If p = 0 then the graph is completely regular
and ordered. If p = 1 then the graph is completely
random and disordered. Intermediate values of p give
graphs that are neither completely regular nor com-
pletely disordered. They are small worlds.

Walsh de�nes the proximity ratio

� = (C=L) = (Crand=Lrand) (1)

as the small-worldliness of the graph [8]. As p in-

creases from 0, L drops sharply since a few long-range
edges introduce short cuts into the graph. These short
cuts have little e�ect on C. As a consequence the
proximity ratio � rises rapidly and the graph devel-
ops a small world topology. As p approaches 1, the
neighbourhood clustering start to break down, and the
short cuts no longer have a dramatic e�ect at linking
up nodes. C and � therefore drop, and the graph loses
its small world topology. In Table 1, we can see � is
large in the graphs with a small world topology.

In short, small world networks are characterized
by the distinctive combination of high clustering with
short characteristic path length.

2.2 Term Co-occurrence Graph

A graph is constructed from a document as follows.
We �rst preprocess the document by stemming and

Table 1: Characteristic path lengths L, clustering co-
e�cients C and proximity ratios � for graphs with a
small world topology [8] (studied in [10])).

L Lrand C Crand �

Film actor 3.65 2.99 0.79 0.00027 2396

Power grid 18.7 12.4 0.080 0.005 10.61

C. elegans 2.65 2.55 0.28 0.05 4.755

The graphs are de�ned as follows. For the �lm actors, two actors
are joined by an edge if they have acted in a �lm together. For
the power grid, nodes represent generators, transformers and
substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they
are connected by either a synapse or a gap junction.

Table 2: Statistical data on proximity ratios � for 57
graphs of papers in WWW9.

L Lrand C Crand �

Max. 4.99 3.58 0.38 0.012 22.81

Ave. 5.36 | 0.33 | 15.31

Min. 8.13 2.94 0.31 0.027 4.20

We set fthre = 3. We restrict attention to the giant connected
component of the graph, which include 89% of the nodes on
average. We exclude three papers, where the giant connected
component covers less than 50% of the nodes. We don't show
the Lrand and Crand for the average case, because n and k
di�ers dependent on the target paper. On average, n = 275
and k = 5:04.

removing stop words, as in [7]. We apply n-gram to
count phrase frequency. Then we regard the title of
the document, each section title and each caption of
�gures and tables as a sentence, and exclude all the
�gures, tables, and references. We get a list of sen-
tences, each of which consists of words (or phrases).

In other words, we get a basket data where each item
is a term, discarding the information of term orderings
and document structures.

Then we pick up frequent terms which appear over
a user-given threshold, fthre times, and �x them as
nodes. For every pair of terms, we count the co-

occurrence for every sentences, and add an edge if the
Jaccard coe�cient exceeds a threshold, Jthre

2 . The
Jaccard coe�cient is simply the number of sentences
that contain both terms divided by the number of sen-
tences that contain either terms. This idea is also used
in constructing a referral network from WWW pages
[3]. We assume the length of each edge is 1.

Table 2 is statistics of the small-worldliness of 57

2 In this paper, we set Jthre so that the number of neighbors,

k, is around 4.5 on average.



graphs, each constructed from a technical paper that
appeared at the 9th international World Wide Web
conference (WWW9) 2000 [11]. From this result, we
can conjecture these papers certainly have small world
structures. However, depending on the paper, the
small-worldliness varies.

One reason why the paper has a small world struc-
ture can be considered that the author may mention
some concepts step by step (making the clustering of
related terms), and then try to merge the concepts
and build up new ideas (making a `shortcut' of clus-
ters). The author will keep in mind that the new idea
is steadily connected to the fundamental concepts, but
not redundantly. However, as we have seen, the small-
worldliness varies from paper to paper. Certainly it
depends on the subject, the aim, and the author's
writing style of the paper.

3 Finding Important Terms

3.1 Shortcut and Contractor

Admitting that a document is a small world, how
does it bene�t us? We try here to estimate the impor-
tance of a term, and pick up important terms, though
they are rare in the document, based on the small
world structure. We consider `important terms' as the
terms which re
ect the main topic, the author's idea,
and the fundamental concepts of the document.

First we introduce the notion of a shortcut and a
contractor, following the de�nition in [9].

De�nition 3.1

The range R(i; j) is the length of the shortest path
between i and j in the absence of that edge. If
R(i; j) > 2, then the edge (i; j) is called a shortcut.

Applying the notion of \shortcuts" in terms of nodes,
we can get the de�nition of \contractor."

De�nition 3.2

If two nodes u and w are both elements of the same
neighbourhood �(v), and the shortest path length be-
tween them that does not involve any edges adjacent
with v is denoted dv(u;w) > 2, then v is said to con-

tract u and w, and v is called a contractor.

In our �rst thought, if dv(u;w) is large, the corre-
sponding term of contractor v might be interesting,
because they bridge the distant notions which rarely
appear together. However, such a node sometimes
connects the nodes far from the center of the graph,
i.e. the main topic of the document. Below we take
into account the whole structure of the graph, calcu-
lating the contribution of a node to make the world
small.

To treat the disconnected graph, we expand the def-
inition of path length (though Watts restricts atten-
tion to the giant connected component of the graph).

De�nition 3.3

An extended path length d0(i; j) of node i and j is
de�ned as follows.

d0(i; j) =

�
d(i; j); if (i; j) are connected,
wsum; otherwise.

(2)

where wsum is a constant, the sum of the widths of all
the disconnected subgraphs. d(i; j) is a path length
of the shortest path between i and j in a connected
graph.

If some edges are added to the graph and some parts
of the graph gets connected, d0(i; j) will not increase,
unless the length of an edge is negative. Thus d0(i; j) is
one of the upper bounds of the path length considering
the edges will be added.

De�nition 3.4

Extended characteristic path length L0 is an extended
path length averaged over all pairs of nodes.

De�nition 3.5

L0

v
is an extended path length averaged over all pairs

of nodes except node v. L0

Gv

is the extended charac-
teristic path length of the graph without node v.

In other words, L0

v is the characteristic path length re-
garding the node v as a corridor (i.e., a set of edges).
For example, if v is neighboring u, w, and z, then
(u;w); (u; z); and(w; z) are considered to be linked.
And L0

Gv

is the extended characteristic path length
assuming the corridor doesn't exist.

De�nition 3.6

The contribution, CBv, of the node v to make the
world small is de�ned as follows.

CBv = L0

Gv

� L0

v (3)

We don't pay attention to the clustering coe�cient,
because adding or eliminating one node a�ects the
clustering coe�cient little.

If node v with large CBv is absent in the graph, the
graph gets very large. In the context of documents,
the topics are divided. We assume such a term help
merge the structure of the document, thus important.
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Figure 2: Small World of This Paper.

Table 3: Frequent terms in this paper.
Term Frequency

graph 39

small 37

world 37

term 34

small world 30

node 29

paper 21

length 21

document 19

edge 19

3.2 Example

We show the example experimented on this paper,
i.e., the one you are reading now3 . Table 3 shows
the frequent terms and Table 4 shows the important
terms measured by CBv. Comparing two tables, the
list of important terms includes the author's idea, e.g.,

3 We ignore the e�ect of self-reference; it's su�ciently small.

Table 4: Terms with 10 largest CBv in this paper.
Term CBv Frequency

small 3.05 37

term 2.80 34

important term 1.93 7

contribution 1.64 6

node 1.00 29

make 0.82 6

cluster 0.57 15

graph 0.54 39

coe�cient 0.52 8

average 0.50 8

important term and contribution, as well as the im-
portant basic concept, e.g., cluster and coe�cient, al-
though they are rare terms. However the list of fre-
quent terms simply show the components of the pa-
pers, and are not of interest.

We can also measure the contribution of an edge,
CBe, to make the world small, de�ned similary as
CBv. However, if we look at the pairs of terms in



Table 5: Pairs of Terms with 10 Largest CBe.
Pair CBe

small { term 3.07

important term { contribution 1.93

make { contribution 1.22

node { average 0.98

structure { make 0.82

cluster { short 0.55

graph { connect 0.53

coe�cient { sentence 0.52

average { pair 0.49

contribution { measure 0.48

Table 5, it is hard to understand what they suggest.
There are numbers of relations between two terms, so
we cannot imagine the relation of the pairs right away.

Lastly, Fig. 2 shows the graphical visualization of
the world of this paper. (Only the giant connected
component of the graph is shown, though other parts
of the graph is also used for calculation.) We can easily
point out the terms without which the world will be
separated, say small and important term.

4 Conclusion

Watts mentions in [9] the possible applications of
small world research, including \the train of thought
followed in a conversation or succession of ideas lead-
ing to a scienti�c breakthrough." In this paper, we
have focused on the papers rather than conversation
or succession of ideas. The future direction of our re-
search is to treat directed or weighted graph for �ner
analyses of the document.

We expect our approach is e�ective not only to
document indexing, but also to other graphical rep-
resentations. To �nd out structurally important parts
may bring us deeper understandings of the graph, new
perspectives, and chances to utilize it. We are inter-
ested in a big structural change caused by a small
change of the graph. The importance of weak ties,
which is a short cut between clusters of people, was
mentioned 30 years ago [2]. A change, which makes
the world very small, may sometimes be very impor-
tant.
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