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Abstract. The pages and hyperlinks of the World Wide Web may be
viewed as nodes and edges in a directed graph. In this paper, we propose

a new de�nition of the distance between two pages, called average-clicks.

It is based on the probability to click a link through random sur�ng.
We compare the average-clicks measure to the classical measure of clicks

between two pages, and show average-clicks �ts better to the users' in-

tuitions of distance.

1 Introduction

The World Wide Web provides considerable auxiliary information on top of the

text of the Web pages, such as its link structure. There has been a fair amount

of recent activity on how to exploit the link structure of the Web. Kleinberg

distinguished between two types of Web sites which pertain to a certain search

topic: hubs and authorities. A good hub is a page that points to many good

authorities and a good authority is a page that is pointed to by many good hubs

[8]. The hub scores and authority scores are determined by an iterative procedure.

The pages with the highest scores are returned as hubs and authorities for the

search topic.

The Google1 search engine uses the link structure for ranking Web pages,

called PageRank [4]. A page has high rank if the sum of the ranks of its backlinks

is high. And the rank of a page is divided among its forward links evenly to

contribute to the ranks of the pages they point to. PageRank is a global ranking

of all Web pages, regardless of their content, based solely on their location in

the Web's graph structure.

Most of these works, which analyze the structure of the Web graph, assume

the length of each link to be 1 (unit), and the clicks between two pages are

counted to measure the distance. For example, [8] �nds the bipartite core, which

is a densely linked community consisting of a set of authorities and a set of hubs

within 1 click. [1] shows that two randomly chosen documents on the web are

1 http://google.com



on average 19 clicks away from each other. However, the distance measured by

the number of clicks doesn't re
ect well the users' intuition of distance. Some

pages have incredibly large amount of links, while most pages have 10 or less

links [5]. For users, it requires a great e�ort to �nd and click a link among a

large number of links than a link among a couple of links. If we count a minimal

clicks to measure the distance between two pages, the path is likely to include

link collections, such as Yahoo!2 directories.

In this paper, we propose a new de�nition of the distance between two pages,

called average-clicks instead of the classical \clicks" measure. This measure re-


ects how many \average clicks" are needed from a page to another page. An

average-click is one click among n links3. And two average-clicks is a distance of

two successive clicks among n links for each, or one click among n
2 links. The

average-click is de�ned on the probability for a \random surfer" to reach the

page, based on the same idea as PageRank: A random surfer keeps clicking on

successive links at random. The probability for a random surfer in page p to

click one of the links in page p is considered as 1=OutDegree(p) in this model,

(ignoring the damping factor). We annotate the link in page p with the length of

�logn(1=OutDegree(p)), so that summing lengths is akin to multiplying prob-

abilities. An average-click is a unit distance of this measure.

If we measure the distance by average-clicks, the path through a large link

collection can be considered long even if it takes only a couple of clicks. On the

contrary, the path in a lines of pages is considered short even if many clicks

are necessary. This �ts very well to the users' intuition of distance. We show

by questionnaires that our average-clicks is a better model to approximate the

users' intuition than the classical clicks measure.

In the following section, the de�nition of average-clicks is explained in detail.

In Section 3, we show some examples and a questionnaire data analysis on the

user's concept of distance. We discuss related works and the possible application

of average-clicks in Section 4, and conclude the paper.

2 Average-clicks

When analyzing the Web as a graph, we are confronted by the diversity of

the links. There are not only topic related links, but also intra domain links,

commercial/sponsor links, and so on. Some pages have more than a hundred of

links, while others have a few or no links. The variety is so wide that we want

to classify these links by some means. Here we de�ne the length of a link using

only the number of the links in a page, inspired by the PageRank algorithm.

PageRank makes a probability distribution over Web pages, based on the

simple idea that a \random surfer" keeps clicking on successive links at random.

The probability to click each link in page p is �=OutDegree(p), where � is a

2 http://www.yahoo.com
3 In this paper, we set n to be 7 due to the fact that the average page has roughly

seven hyperlinks to other pages.
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Fig. 1. Average-clicks and clicks.

damping factor and OutDegree(p) is the number of links page p has. In proba-

bility 1� �, a random surfer jumps to a random Web page. Following [10] � is

usually set to be 0.85, however, we set � = 1 below for simplicity4.

We annotate a link with the length as negative logarithm of probability, so

that summing lengths is akin to multiplying probabilities.

De�nition 1. A length of a link in page p is de�ned as

�logn(�=OutDegree(p)):

We set the base of the logarithm n to be 7 in this paper, due to the fact that the

average page has roughly seven hyperlinks to other pages [2]5. We call a unit of

the length an average-click.

The distance between two pages p and q is de�ned by the shortest path. From

a probabilistic point of view, this is equivalent to focus only on the path with

the largest probability for a random surfer to get from page p to page q.

De�nition 2. The distance from p to q is the sum of the length of the shortest

path from p to q.

Fig. 1 illustrates some pages and the links between them. Page A has three

links, thus the length of each link is � log
7
(1=3) � 0:56 average-click. As page

B has seven links, the length is each 1 average-click. Summing 0.56 and 1, the

4 We are aware that setting � = 1 means that the users always click on a page. A more

realistic assumption is that there is some probalility � of following a link. However,
since we don't have enough statistical results yet to decide �, we set simply � = 1.

5 The latest survey shows the average page has 1 external link and 4 internal links [9].



distance from A to C is 1.56 average-click. In the case of page D, there is two

paths from page A to D. The average-clicks is smaller in the lower path, though

it takes three clicks. The shortest path in terms of average-clicks is the lower

path, while the path with minimal clicks is the upper path. Note that if a page

has only one link, as page F, the length of the link is 0 average-click.

This model o�ers a very good approximation to our intuitive concept of

distance between Web pages. For example, Yahoo! top-page has currently more

than 180 links. In our de�nition, the length from the top-page to each sub-page

is very far, as the upper path in Fig. 1. On the other hand, the path length by

the local relation, such as the link to one's friends or the link to one's interests, is

estimated rather short, as in the lower path of the �gure. Intuitively we think the

path through the Yahoo! top-page is longer than the path along the acquaintance

chain with the same clicks. In our model, page C is more distant from page A

than page D, and this �ts very well to our intuition.

3 Case Study and Experimental Results

3.1 Examples of the distance

In this section, we show some examples of the distance between two pages by

the average-clicks measure. We �rst implement the best-�rst algorithm to search

the shortest path from page s (stated as start page) to page t (stated as target

page), as shown in Fig.2.

function Search Shortest Path (start page, target page, dthre)

� 1:0, n 7.

list Add List(start page; empty); d(start page) 0:

p start page

while p 6= target page

Fetch page p and extract links which points to page pk (k = 1; : : : ; np)
for k 1 to np

d(pk) d(p)� logn(�=np)

if d(pk) > dthre then next

list Add List(pk; list)

end

if list is empty return failure
p Choose Minimal(list; d)

end

return d(target page)

Add List(a; list) is a function which add a to list.

Choose Minimal(list; d) is a function which choose a 2 list minimizing d(a).

dthre is the range of the search space.

Fig. 2. The best �rst search for the shortest path.



Table 1. The distance measured by average-clicks from page a.

To

URL Cumulative distance

Shortest path (average-clicks)

One of the author's colleagues

http://www.miv.t.u-tokyo.ac.jp/~matumura/ 1.62

http://www.miv.t.u-tokyo.ac.jp/JAICO/ 1.13

http://www.miv.t.u-tokyo.ac.jp/~matsuo 0.0

Yahoo! (Japanese site)

http://www.yahoo.co.jp/ 3.02
http://www.geocities.co.jp/Athlete-Athene/6353/whatsnew.html 2.67

http://www.geocities.co.jp/Athlete-Athene/6353/ 1.13

http://www.miv.t.u-tokyo.ac.jp/ matsuo 0.0

Japanese Society of Arti�cial Intelligence homepage

http://www.nacsis.ac.jp/jsai/ 4.69
http://www.miv.t.u-tokyo.ac.jp/~yabuki/ 2.54

http://www.miv.t.u-tokyo.ac.jp/member/present-mem.htm 1.13

http://www.miv.t.u-tokyo.ac.jp/~matsuo 0.0

International Joint Conference on AI homepage

http://ijcai.org/ 5.39
http://w3.sys.es.osaka-u.ac.jp/~osawa/AIlinks.html 3.33

http://www.gssm.otsuka.tsukuba.ac.jp/staff/osawa 1.97
http://www.miv.t.u-tokyo.ac.jp/~matumura/research.html 1.62

http://www.miv.t.u-tokyo.ac.jp/JAICO/ 1.13

http://www.miv.t.u-tokyo.ac.jp/~matsuo 0.0

WI-2001 homepage

http://kis.maebashi-it.ac.jp/wi01 10.40
http://internet.aist-nara.ac.jp/research/security/ 8.14

http://iplab.aist-nara.ac.jp/research.html.en 7.06

http://iplab.aist-nara.ac.jp/ 5.80
http://shika.aist-nara.ac.jp/ 4.13

http://www.miv.t.u-tokyo.ac.jp/~santi/oohm.html 2.54

http://www.miv.t.u-tokyo.ac.jp/member/present-mem.htm 1.13
http://www.miv.t.u-tokyo.ac.jp/~matsuo 0.0



Table 1 shows an example of the distance from one of the author's homepage.

This homepage, \www.miv.t.u-tokyo.ac.jp/~matsuo," stated below as page a,

is located on the server at Tokyo University in Japan. The results showed the

following:

{ The search is not trapped into the link collection.
{ The distance by average-clicks seems to �t well to our intuitive concept of

distance. In other words, pages familiar to the author of page a are estimated

to be near, and unfamiliar pages are estimated to be distant.
{ The shortest path is very informative for the author in that it provides the

indirect relation of two pages.

For example, the distance to one of the author's colleagues or Yahoo! is small, and

they are very familiar to the author. The IJCAI homepage is more distant than

the JSAI homepage. In fact, we participate in JSAI events more. The distance

to WI-2001 is very far now, however, it might get shorter in the future for the

very reason that we are submitting this paper to WI-2001.

3.2 Evaluation by questionnaires

This section shows a preliminary report on the quantitative evaluation using

questionnaires. We asked �ve participants to rank the pages according to their

perceived familiarity.

First we pick up 30 pages randomly which we can obtain within a few clicks

from each participant's homepage. Then, we asked him/her to answer how famil-

iar each URL of the page is, without providing the contents of the pages or any

distance measures. Answers to the questions were made on a 5-point Likert-scale

from 1 (very familiar) to 5 (very distant). After the questionnaires, we compared

the rating with the distance measure of clicks and average-clicks.

Fig. 3 and 4 shows the scatter plot of the results by participant 1. We can

see very clearly that the rating is correlated with the average-clicks measure.

On the other hand, the classical clicks measure doesn't seem to have a strong

correlation with the ratings. The statistical results of �ve participants are shown

in Table 2, which shows correlation coe�cients: If the correlation coe�cient is

close to 1, there is a strong positive correlation between two sets of data, and

if the correlation coe�cient is 0, there is no relationship. We can see from the

table that the average-clicks have stronger correlation with the users' rating.

Table 2. The correlation coe�cient of participants' rating and clicks/average-clicks.

Participant Clicks Average-clicks

1 0.524 0.836

2 0.696 0.715

3 0.517 0.699

4 0.325 0.804

5 0.471 0.685



Fig. 3. Scatter plot of answers and average-clicks by participant 1.

Fig. 4. Scatter plot of ansers and clicks by participant 1.



4 Discussion

In [6], the weight of a link is de�ned by referring to the text of the page: if the

text in the vicinity of the \href" contains text descriptive of the topic at hand,

the weight of the link is increased. This weighing algorithm requires the text

analysis of a page, while our average-clicks measure requires only the number of

links.

The average-clicks measure is another usage of the probability distribution

by a random surfer model. To transform the probability into the length of a link,

we can imagine more precisely the structure of the graph. This type of length (or

cost) assignment is very common in the context of cost-based abduction, where

�nding the MAP (maximum a posteriori probability) solution is equivalent to

�nding the minimal cost explanation for a set of facts [7].

Many researchers now employ clicks as the measure of distance, however,

it seems reasonable to use average-clicks instead. For example, when �nding a

community on the Web, the general topics pages are likely to be included [3].

However, employing the average-clicks measure, the general topics pages are con-

sidered to be distant and can be �ltered out, because such pages have usually

many links6. Fetching the neighboring pages is a common procedure in many

algorithms. We should fetch the pages within a given threshold of average-clicks,

not within a given threshold of clicks. A given threshold of clicks means some-

times an incredibly large range of the search. Average-clicks measure provides

a good justi�cation of the practical search, such as \if there are few links, fetch

the pages, but if there are many links, give up."

The classical clicks measure is intuitively understandable for all Internet

users, while the distance based on the probability is relatively di�cult to under-

stand. That's why we bring semantics by setting the base of the logarithm to

the average number of links in a page: The distance shows how many \average

clicks" are needed from one page to another page.

5 Conclusion

In this paper, we have proposed a new measure, called average-clicks, and eval-

uate it by measuring the users' intuition of distance. By modelling the Web

structure more precisely, many research �elds will bene�t from search engines to

customized browsers. One of our future works is to estimate the value of a link

using the average-clicks measure.
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