
Combination retrieval for creating knowledge from sparse

document-collection

Naohiro Matsumuraa,b,*, Yukio Ohsawaa,c,1, Mitsuru Ishizukab,2

aPRESTO, Japan Science and Technology Corporation, Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi-Shi, Saitama 332-0012, Japan
bGraduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

cGraduate School of Business Science, University of Tsukuba, Tokyo, Japan

Received 13 January 2003; accepted 16 March 2005

Available online 31 May 2005

Abstract

With the variety of human life, people are interested in various matters for each one’s unique reason, for which a machine maybe a better

counselor than a human. This paper proposes to help user create novel knowledge by combining multiple existing documents, even if the

document-collection is sparse, i.e. if a query in the domain has no corresponding answer in the collection. This novel knowledge realizes an

answer to a user’s unique question, which cannot be answered by a single recorded document. In the Combination Retriever implemented

here, cost-based abduction is employed for selecting and combining appropriate documents for making a readable and context-reflecting

answer. Empirically, Combination Retriever obtained satisfactory answers to user’s unique questions.

q 2005 Published by Elsevier B.V.

Keywords: Information retrieval; Cost-based abduction; Knowledge creation
1. Introduction

People are interested in personal and unique matters, e.g.

very rare health condition, friction with friends, etc. They

often hesitate to consult a human about such unique matters,

and worry in their own minds. In such a case, entering such

interests to a search engine and reading the output

documents is a convenient way which may serve satisfac-

tory information.

However, a document-collection of a search engine,

even though they may seem to include a lot of documents,
0950-7051/$ - see front matter q 2005 Published by Elsevier B.V.

doi:10.1016/j.knosys.2005.03.003

* Corresponding author present address: Graduate School of Economics,

Osaka University, 1–7 Machikaneyama, Toyonaka, Osaka, 560–0043,

Japan

E-mail addresses: matumura@econ.osaka-u.ac.jp (N. Matsumura),

ohsawa@q.t.u-tokyo.ac.jp (Y. Ohsawa), ishizuka@miv.t.u-tokyo.ac.jp

(M. Ishizuka).
1 Present address: Department of Creative Informatics, Graduate School

of Information Science and Technology, The University of Tokyo
2 Present address: Department of Quantum Engineering and System

Science, School of Engineering, The University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-8656
is too sparse for answering a unique question: They have

only past information not satisfactory for answering novel

queries. For overcoming this situation, a search engine is

desired to help user create knowledge from sparse

documents.

For this purpose, we propose a novel information

retrieval method named combination retrieval. The basic

idea is that an appropriate combination of existing

documents may lead to creating novel knowledge, although

each one document may be short of answering the novel

query. Based on the principle that combining ideas triggers

the creation of new ideas [1], we present a system to obtain

and present an optimal combination of documents to the

user, optimal in that the solution forms a document-set

which is the most readable (understandable) and reflecting

the user’s context.

The remainder of this paper is organized as follows. In

Section 2, the meaning of combination retrieval in this paper

is shown by comparison with previous information retrieval

methods. The mechanism of the implemented system,

Combination Retriever, is described, in Section 3. We

show the experiments and the results in Section 4, showing

the performance of Combination Retriever for medical

counseling question-and-answer documents.
Knowledge-Based Systems 18 (2005) 327–333
www.elsevier.com/locate/knosys

http://www.elsevier.com/locate/knosys

N. Matsumura et al. / Knowledge-Based Systems 18 (2005) 327–333328
2. Previous methods for answering a query

A question–answering system is a piece of software

which answers a user’s question. The question maybe

entered as a word-set query {alcohol, liver, cancer} or

a sentence query ‘Does alcohol cause a liver cancer ?’ An

intelligent answer to this question may be ‘No, alcohol does

not cause liver cancer directly. You may be confused of

liver cancer and other liver damages from alcohol. Alcohol

causes cancer in other tissues.’ However, for making such

an answer, the system should have medical knowledge

relevant to user’s query and arrange essential parts of the

knowledge. It is not realistic to implement knowledge wide

enough to be applied to unique user interests.

Another approach for answering a query is to retrieve

ready-made documents relevant to the current query, from

a prepared document-collection. In this way, we can skip

the process of knowledge acquisition and implementation,

because man-made documents represent human knowledge

directly. Search engines for a word-set query entered by the

user may be the simplest realization of this approach.

However, we already know that existing information

retrieval methods do not satisfy novel interests as in

Section 1.

For a point-hitting response to a query, the approach

represented by FAQ (Frequently Asked Question) finder

[2]3 selects a past human question-and-answer record

(client’s question, counselor’s answer) of which the client’s

question is the closest to the current user’s question. The

matching of the current and a past query is executed

between keywords and sentence types of the two questions.

Thus, FAQ finder takes advantage of the professional

counselor’ knowledge, which is presented for advising a

client using easy words, but is hardly implemented as a

knowledge-base. It has an additional merit that the user can

enter the query in natural language.

Although such a memory-based processing of natural

language entry of queries is effective as well as memory-

based translation [3], unique queries are too novel to match

one past query. Thus, answering a novel query remained an

open problem.
3. The process of Combination Retriever

For realizing combination retrieval, we need a method

for selecting meaningful documents which, as a set, serve a

good (readable and meaningful) answer to the user. Here,

we show our approach implemented as a system called

Combination Retriever, where abductive inference is used

for the selection of documents to be combined.
3 The FAQ Finder system: http://faqfinder.ics.uci.edu/
3.1. The outline of the process

The process of Combination Retriever is as follows:

The process of Combination Retriever

Step (1) Accept user’s query Qg.

Step (2) Obtain G, a word-set representing the goal user

wants to under-stand, from Qg (GZQg if Qg is

given simply as a word-set).

Step (3) Make knowledge-base S for the abduction of Step

(4). For each document Dx in the document-

collection Cdoc, a Horn clause is made as to

describe the condition (words needed to be

understood for reading Dx) for and the effect

(words to be subsequently understood by reading

Dx) of reading document Dx.

Step (4) Obtain h, the optimal hypothesis-set which

derives G by being combined with S, by cost-

based abduction (detailed later). h obtained here

represents the union of following information, of

the least size of K.

S: The document-set the user should read.

K: The keyword-set the user should understand by

other information source than the document-

collection Cdoc, for reading the documents in S.

Step (5) Show the documents in S to the user.

Before going into the details, let us mention here that the

intuitive meaning of the abductive inference is to obtain the

conditions for understanding user’s goal G. Those con-

ditions include the documents to read (S) for understanding

G, and necessary knowledge (K) for reading those

documents. That is, S means the document-combination

we aim to present to the user.
3.2. The details of Combination Retriever’s process

In preparation, collection Cdoc of existing human-made

documents is stored. Key, the set of keyword-candidates in

the documents in Cdoc, i.e. word-set which is the union of

extracted keywords for all the documents in Cdoc, is

obtained and fixed. Here, words are stemmed as in [7] and

stop words (‘does’, ‘is’, ‘a’.) are deleted, and then a

constant number of words of the highest TFIDF values [8]

(using Cdoc as the corpus for computing document

frequencies of words) are extracted as keywords from

each document in Cdoc. Next, let us go into the details of

each step in Section 3.1.

Steps (1) and (2) (Make goal G from user’s query Qg):

Goal G is defined as the set of words in QghKey, i.e.

keywords in the user’s query. For example, ‘does alcohol

make me warm ?’ and query {alcohol, warm} are both put

into the same goal {alcohol, warm}, if Cdoc is a set of past

question–answer pairs of a medical counselor which do not

http://faqfinder.ics.uci.edu/

N. Matsumura et al. / Knowledge-Based Systems 18 (2005) 327–333 329
have ‘does,’ ‘make,’ ‘me,’ ‘warm,’ ‘in,’ ‘a,’ or ‘day’ as

keywords (some are deleted as stop words).

Step (3) (Make Horn clauses from documents): For the

abductive inference in Step (4) of Section 3.1, knowledge-

base S is formed of Horn clauses. A Horn clause is a clause

in Eq. (1), which means that y becomes true under the

condition that all x1, x2,.,xn are true, where variables x1,

x2,.,xn and y are atoms each of which corresponds to an

event occurrence. A Horn clause can describe causes (x1,

x2,.,xn) and their effect (g) simply

y : x1; x2;.; xn: (1)

In Combination Retriever, the Horn clause for document

Dx describes the cause (reading Dx with enough vocabulary

knowledge) and the effect (acquiring new knowledge from

Dx) of reading Dx, as:

a : b1; b2;.;bmx;Dx: (2)

Here, a is the effect term of Dx which is a term (a

word or a phrase) one can understand by reading

document Dx. b1, b2,.,bmx are the conditional terms

of Dx, which should be understood for reading and

understanding Dx. That is, one who knows words b1,

b2,.,bmx and reads Dx on this knowledge is supposed to

acquire knowledge about a.

The method for taking the effect and the conditional

terms from Dx is straight-forward. First, the effect terms a,

a2,. are obtained as terms in Gh(the keywords of Dx).

This means that the effect of Dx is determined by the user’s

interest G, rather than by the intension of the author of Dx.

For example, a document about cancer symptoms may work

as description of the demerit of smoking, if the reader is a

heavy smoker. Focusing the consideration onto user’s goal

in this way also speeds up the response of Combination

Retriever as in Section 4.1.

Then, the keywords of Dx other than the effect terms

above form the conditional terms b1, b2,.,bmx Finally,

Horn clauses are obtained as

a1 : b1;b2;.; bmx;Dx;

a2 : b1;b2;.; bmx;Dx;

«

(3)

meaning that one knowing b1, b2,.,bmx can read Dx

and understand all the effect terms a1, a2,. by reading

Dx.

Step (4) (Cost-based abduction for obtaining the

documents to read): We employ cost-based abduction

(CBA, hereafter) [6], an inference framework for

obtaining solution h of the least jKj in Section 3.1. In

CBA, the causes of a given effect G is explained.

Formally, CBA is described as extracting a minimal

hypothesis-set h from a given set H of candidate

hypotheses, so that h derives G using knowledge S.

That is, h satisfies Eq. (4) under Eqs. (5) and (6). We

deal with S composed of causal rules, expressed in Horn
clauses mentioned above

Minimize costðhÞ; under that : (4)

h3H; (5)

hgSwG; (6)

Eq. (4) represents the selection of h to be minimal,

i.e. of the lowest-cost hypothesis-set h(3H), where cost

denoted cost(h) is the sum of weights of hypotheses in h.

The weights of hypotheses in H, which axe the

candidates of elements of solution h, are initially given.

Generally speaking, the weight-values of hypotheses are

closely related to the semantics in the problem to which

CBA is applied, as exemplified in [10]. In Combination

Retriever, weights are given differently to the two types

of hypotheses in H:

Type 1: Hypothesis that user reads a document in Cdoc

Type 2: Hypothesis that user knows (learns) a con-

ditional term in Key

In giving weights, we considered that user should be able

to understand the output documents in S, with learning only

a small set K of keywords from external knowledge other

than Cdoc.

This is reflected to minimizing jKj, the size of K. That is,

the weights of hypotheses of Type 2 are fixed to 1 and ones

of Type 1 are fixed to 0, and h is SgK. It might be good to

give values between 0 and 1 to hypotheses of Type 2, earch

value representing the difficulty of learning each term.

However, we do not know how each word is easy to learn

for the user from outside of Cdoc. Also, it might seem to be

necessary to give weights to hypotheses of Type 1, each

value representing the cost of reading each document.

However, it is not necessary because we gave mx in Eq. (3)

to be proportional to the length of Dx. That is, the user’s cost

(effort) for reading a document is implied by the number of

meaningful keywords he/she should read in the document. If

we sum the heterogeneous difficulties, both of reading

documents and of learning words, the meaning of the

solution cost would become rather confusing.
3.3. An example of Combination Retriever’s execution

For example, Combination Retriever runs as follows.

Step (1) QgZ‘Does alcohol cause a liver cancer?’

Step (2) G is obtained from Qg as {alcohol, liver, cancer}.

Step (3) From Cdoc, documents D1, D2, and D3 are taken,

each including terms in G, and put into Horn

clauses as:

alcohol: cirrhosis, cell, disease, D1.

liver: cirrhosis, cell, disease, D1.

alcohol: marijuana, drug, health, D2.

liver: marijuana, drug, health, D2.

N. Matsumura et al. / Knowledge-Based Systems 18 (2005) 327–333330
alcohol: cell, disease, organ, D3.

cancer: cell, disease, organ, D3.

Hypothesis-set H is formed of the conditional parts here,

of D1, D2, and D3 of Type 1 each weighted 0, and ‘cirrhosis,’

‘cell,’ ‘disease,’ ‘maxijuana,’ ‘drug,’ ‘health,’ and ‘organ’

of Type 2 each weighted 1.

Step (4) h is obtained as SgK, where

SZ{D1, D3} and

KZ{cirrhosis, cell, disease, organ},meaning that

user should understand ‘cirrhosis,’ ‘cell,’

‘disease’ and ‘organ’ for reading D1 and D3,

served as the answer to Qg. This solution is

selected because cost(h) (i.e. jKj) takes the values

of 4, less than 6 of the only alternative feasible

solution, i.e. {marijuana, drug, health, cell,

disease, organ} plus {D2, D3}.

Step (5) User now reads the two documents presented as:

D1 (including alcohol and liver) stating that

alcohol alters the liver function by changing

liver cells into cirrhosis.

D3 (including alcohol and cancer) showing the

causes of cancer in various organs, including

a lot of alcohol. This document recommends

drinkers to limit to one ounce of pure alcohol

per day.

As a result, the subject learns that he should limit

drinking to keep liver healthy and avoid cancer, and also

came to know that other tissues than liver get cancer from

alcohol.

Thus, user can understand the answer by learning a small

number of words from outside of Cdoc, as we aimed in

employing CBA. More importantly than this major effect of

Combination Retriever, a by-product is that the common

hypotheses between D1 and D3, i.e. {cell, disease} of Type 2

are discovered as the context of user’s interest underlying

the entered words. This effect is due to CBA, which obtains

the smallest number of involved contexts, for explaining the

goal (i.e. answering the query), as solution hypotheses.

Presenting such a novel and meaningful context to the user

induces the user to create new knowledge [11], to satisfy

his/her novel interest.
4. Experimental evaluations

4.1. The experimental conditions

Combination Retriever was applied to Cdoc of 1320

question–answer pairs from a health care question–

answering service on WWW (Alice, http://www.alice.

columbia.edu). Past clients of Alice asked about personal

anxiety or interest in health and a medical counselor

answered them.
Applying Combination Retriever to such a collection of

past questions and answers made by a human counselor and

client makes a fair experiment, because the vocabulary gap

[12] between the machine counselor and the subject client

does not disturb the client’s understanding of the answer,

thanks to the human counselor’s effort to make easy

answers. Also, the small number as 1320 documents is a

suitable condition for evaluating Combination Retriever for

a sparse document-collection which is insufficient for

answering novel queries.

When a user enters a query in a word-set or a sentence,

Combination Retriever obtains solution h and shows the

output S in h as in Fig. 1. In this case, input {alcohol, cancer,

liver} was entered as query Qg.

Combination Retriever is fully implemented in a

Pentium Pro 300 MHz machine with 256 MB memory.

Although CBA is time-consuming because of its NP-

completeness, most answers in the experiments were

returned within 10 s from the entry of query by high-

speed abduction as in [13]. Queries from users included four

or less terms in Key, due to which the response time was

below 10 s. This quick response comes also from the goal-

oriented construction of Horn clauses shown in Section 3.2,

and from the absence of inconsistencies among hypotheses

which might have slowed the inference.
4.2. The answering system compared with Combination

Retriever

We compared the performance of Combination Retriever

with the following typical search engine for question–

answering. We call this search engine here a Vector-based

FAQ-finder (VFAQ in short hereafter).

† The procedure of VFAQ

Step (1 0) Prepare keyword-vector vx for each question Qx

in Cdoc.

Step (2 0) Obtain keyword-vector vQ for the current query

Qg.

Step (3 0) Find the top M keyword-vectors prepared in Step

(1 0), in the decreasing order of product value

vx$vQ, and return their corresponding answers

(each denoted Ax). Here, M is the number of

documents in the answer of Combination

Retriever for the same query Qg.

Here, a keyword-vector for a query Q is formed as

follows: Each vector has jKeyj attributes (Key was

introduced in the earlier section as the candidate of

keywords in Cdoc), each taking the value of TFIDF [8] in

Q, of the corresponding keyword. Each vector v is

normalized to make jvjZ1. For example, for query Qg

{alcohol, warm} (or a question which is put into G:

{alcohol, warm}), the vector comes to be (0, 0.99, 0,.,0,

0.14, 0, 0,.) where 0.99 and 0.14 are the normalized

http://www.alice.columbia.edu
http://www.alice.columbia.edu

Fig. 1. An output of Combination Retriever, showing two past answers 0323 and 0613 (document IDs in Cdoc) for input query (alcohol, cancer, liver}.

N. Matsumura et al. / Knowledge-Based Systems 18 (2005) 327–333 331
TFIDF values of ‘alcohol’ and ‘warm’ in Qg. Elements of

value 0 here correspond to terms which are in Key but not

included in Qg. Supplying M documents in Step (3 0) is for

setting the condition similar to Combination Retriever so

that a fair comparison becomes possible.

It is possible to make VFAQ more similar to FAQ finder

as in [2] by replacing document (question–answer pair) Dx

with Qx, question in Dx, in the procedure above. However,

we do not do so for two reasons. First, if we name this

version VFAQ0, VFAQ0 is less fair than VFAQ for

comparing with Combination Retriever because Combi-

nation Retriever chose Dx in stead of Qx for matching Qg.

It is also possible to include a giving-up option, i.e.

output ‘I have no answer for you’ if vx$vQ is less than a fixed

allowable threshold for vx of all Dx in Cdoc. However, in

order to avoid the risk of unreasonably discounting VFAQ,

we do not take this option. That is, M documents of the
largest vx$vQ in Cdoc, were always shown and compared

with the answer of Combination Retriever.

Comparing with Combination Retriever’s minimization of

cost(h), VFAQ has no strategy for reducing the redundancy,

i.e. for reducing output documents of similar contents.
4.3. Result examples

Let us show some examples, which show why and how

Combination Retriever serves merits to user.

Query 1: A subject worrying about his fat, but who likes

to drink alcohol, entered query Q: {fat, alcohol, calorie}

instead of a question ‘Does the calorie of alcohol produce

fat in my body?’

Answer 1: Documents D4 plus D5 were obtained by

Combination Retriever, and the user came to understand

that alcohol gains his fat anyway.

N. Matsumura et al. / Knowledge-Based Systems 18 (2005) 327–333332
D4 (including alcohol and calorie) saying that alcohol

contains much calorie, but does not change into fat in

human tissues.

D5 (including alcohol and fat) saying that alcohol disturbs

fat in human tissues from being metabolized.

On the other hand, VFAQ obtained D4 and another

document of similar content to D4, because ‘calorie’ had

much greater TFIDF value than ‘fat’ in D5. This example

shows a typical advantage of Combination Retriever

because D5 disallows the user to drink as he likes,

considering significant effects not considered in D4 which

looks like allowing the user to drink.

Query 2: The user entered {alcohol, warm} for knowing

if drinking alcohol makes one warm if it is cold.

Answer 2: Combination Retriever returned D6 and D7

shown below. ‘metabolize’ and ‘fat’ shared by D6 and D7

reduced the total cost of the combined answer here. The user

read these, and found that metabolizing fat is the essential

point for his question. We can regard this point as the

discovered context as in the example of Section 3.3. As a

result, the user understood that he/she should not drink

alcohol for keeping himself warm, but rather eat fat-rich

food and do exercise.

D6 (including warm), saying that an effective way for

keeping oneself warm is eating fat and exercising. Fat

is easily metabolized and produces fever.

D7 (including alcohol) saying that alcohol disturbs fat in

human tissues from being metabolized (the same

document as D5)

On the other hand, VFAQ obtained D6 and a document

recommending exercise, similarly to D6.

Query 3: ‘Is there any drug to reduce the risk of cancer ?’

Answer 3: G came to be {risk, cancer, drug}. The

following documents D8 and D9 were returned by

Combination Retriever. Here, aspirin was shared as a

conditional term in D8 and D9 although not in Qg, and

reduced the total cost of the combined answer. The subject

understood that lifestyle is more important than drug for

reducing cancer risks.

D8 (including risk and cancer), saying that aspirin reduces

the risk of cancer.

D9 (including drug and cancer) saying that aspirin is an

effective drug for many diseases including cancer, but

may irritate the stomach and bleed intestinal ulcers. A

healthy lifestyle is more important than drugs.

On the other hand, VFAQ returned redundant two

documents, both stating about general risks of cancer.

These three examples show that Combination Retriever

obtains documents, which reflects the discovered context

underlying user’s query, and form a context-matching and

easy-to-read answer as a whole. Note that the subject user’s
queries here were unique for Cdoc, i.e. not similar to any past

question.

4.4. Other methods

Among the rare systems which combine documents,

Hyper Bridges [4] and NaviPlan [5] produce a plan of user’s

reading of documents. They present a plan made of sorted

multiple documents, and a user who reads them in the order

as sorted by Hyper Bridges or NaviPlan incrementally

refines one’s own knowledge until one learns the meaning of

the entered query word or phrase.

A plan made by these tools is a serial set of documents,

which guides the user to an understanding of query words

starting from a beginner’s knowledge, if the user reads the

documents in the order presented by the system. As a result,

either NaviPlan or Hyper Bridges obtains no result, because

they cannot obtain the document to be read last, i.e. the

document to directly reach the goal (i.e. answer the query),

in all the examples above where multiple documents are

required to be mixed to answer the query.

On the other hand, Combination Retriever makes a

parallel set of documents, supplementing the content of

each other for making a satisfactory answer as a whole. User

may read them in any order as he/she likes.

4.5. Result statistics

The test was executed for five subjects from 21 to 30

years old accustomed to using a Web browser. This means

that the subjects were of the near age to the past question

askers of Alice and entered queries into the CGI interface

and read the answers of Combination Retriever smoothly.

A popular method for evaluating the performance of a

search engine is to see recall (the number of relevant

documents retrieved, divided by the number of relevant

documents to user’s query in Cdoc) and precision (the

number of relevant documents retrieved, divided by the

number of retrieved documents).

However, this traditional manner of evaluation is not

appropriate for evaluating Combination Retriever, because

the retrieved document-set is not a list of most relevant

documents to the query. In the traditional evaluation, it was

regarded as a success if user gets satisfied by reading a few

documents, which are highly ranked in the output list. On

the other hand, Combination Retriever aims at satisfying a

user who reads the combination of all the output documents,

rather than a few best document. Therefore, this section

presents an original way of evaluation for Combination

Retriever.

Here, 63 queries were entered. This seems to be quite a

small number for the evaluation data. However, we

compromised with this size of data for two reasons. First,

we aimed at having each subject evaluate the returned

answer in a natural manner. That is, in order to have the

subject report whether he/she was really satisfied with the

Table 1

Result statistics

MZ1 MZ2 MR3 Total

Combination

Retriever

16/22 21/29 6/12 423/63

VFAQ 13/22 13/29 0/12 26/63

N. Matsumura et al. / Knowledge-Based Systems 18 (2005) 327–333 333
output of Combination Retriever, the subject must enter

his/her real anxiety or interest. Otherwise, the subject has to

imagine an unreal person who asks the query and imagine

what the unreal person feels with the returned answers.

Therefore, we restricted to a small number of queries

entered from real interests. Second, the results show

significant superiority of Combination Retriever as follows,

even though the test data was small.

The overall result was that Combination Retriever

satisfied 43 of the 63 queries, while VFAQ satisfied only

26 queries. Next, let us show more detailed results, which

show that Combination Retriever works especially for novel

queries.

The dependence of performance on M: According to the

subjects, Combination Retriever did better than VFAQ,

especially for important queries, important in that they

consulted a machine instead of a human counselor due to the

uniqueness of the query. In such a case, Combination

Retriever returned a set of multiple documents because any

single past document could not answer the query. Let us

show this, on the performance dependence on M, the

number of required output documents of Combination

Retriever as defined in Section 4.2. M implies the

uniqueness of the query, i.e. how it is difficult to answer

the query with an existing document.

The result statistics is shown in Table 1. For the 22

queries of MZ1, Combination Retriever satisfied 16

queries, whereas VFAQ satisfied 13 queries. On the other

hand, for the 29 queries of MZ2, Combination Retriever

satisfied 21 queries, whereas VFAQ satisfied 13 queries.

Finally, for the 12 queries of MR3, Combination Retriever

satisfied six queries, whereas VFAQ satisfied not a query.

Thus, the superiority of Combination Retriever for the

larger M came to be the more apparent. In all cases, VFAQ

obtained redundant documents as in the examples presented

above.

These results can be summarized as that unique queries

for Cdoc were answered satisfactorily by Combination

Retriever. Answers in the form of document-combination

by Combination Retriever came to be easy to read according

to the subjects, and the presented answers were meaningful

for the user.
5. Conclusions

We proposed to help user create novel knowledge, by

combining and presenting multiple existing documents.

This novel knowledge realizes an answer to user’s unique

question, which cannot be answered by a single document.

This high-performance comes from obtaining minimal-

cost hypothesis in CBA. That is, a document-set in a

meaningful context can be obtained, because CBA discovers

relevant context according to user’s query, by minimizing the

number of conditional terms for reading output documents.

This means that the user and the system can ask and answer

under a meaningful context, which supports a meaningful

communication. From such a novel and meaningful context

presented, the user can create new knowledge which realizes

a satisfaction of his/her unique interest. This is a significant

by-product of minimizing the cost of output-documents for

obtaining an answer easy to read.
References

[1] J. Hadamard, The Psychology of Invention in the Mathematical Field,

Princeton University Press, Princeton, New Jersey 08544 USA, 1945.

[2] R. Burke, K. Hammond et al., Question answering from frequently-

asked question files: experiences with the FAQ finder system,

Department of Computer Science Technical Report TR-97-05,

University of Chicago (available from http://infolab.cs.uchicago.

edu/faqfinder/), 1997.

[3] S. Sato, M. Nagao, Toward memory-based translation, Proceedings of

COLING-90 3 (1990) 247–252.

[4] Y. Ohsawa, K. Matsuda, M. Yachida, Personal and temporary hyper

bridges: 2-D interface for undefined topics, Journal of Computer

Networks and ISDN Systems 30 (1998) 669–671.

[5] S. Yamada, Y. Ohsawa, Planning to guide concept understanding in

the WWW, in: Workshop Notes on AAAI-98 Workshop on AI and

Data Integration (1998).

[6] E. Charniak, S.E. Shimony, Probabilistic semantics for cost based

abduction, Proceedings of AAAI-90 (1990) 106–111.

[7] M.F. Porter, An algorithm for suffix stripping, Automated Library and

Information Systems 14 (3) (1980) 130–137.

[8] G. Salton, C. Buckley, Term-weighting approaches in automatic text

retrieval, Information Processing and Management 14 (1988)

513–523.

[10] Y. Ohsawa, M. Yachida, An index navigator for understanding and

expressing user’s coherent interest, Proceedings of IJCAI-97 1 (1997)

722–729.

[11] I. Nonaka, H. Takeuchi, The Knowledge Creating Company, Oxford

University Press, Oxford OX2 6DP, England 1995.

[12] G.W. Furnas, T.K. Landauer, L.M. Gomez, S.T. Dumais, The

vocabulary problem in human-system communication, Communi-

cations of the ACM 30 (11) (1987) 964–971.

[13] Y. Ohsawa, M. Ishizuka, Networked bubble propagation: a

polynomial-time hypothetical reasoning method for computing near-

optimal solutions, Artificial Intelligence (Elsevier) 91 (1997)

131–154.

http://infolab.cs.uchicago.edu/faqfinder/
http://infolab.cs.uchicago.edu/faqfinder/

	Combination retrieval for creating knowledge from sparse document-collection
	Introduction
	Previous methods for answering a query
	The process of Combination Retriever
	The outline of the process
	The details of Combination Retrievers process
	An example of Combination Retrievers execution

	Experimental evaluations
	The experimental conditions
	The answering system compared with Combination Retriever
	Result examples
	Other methods
	Result statistics

	Conclusions
	References

