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Abstract 

 
Virtual worlds like “Second Life” are popular 

graphical representations of real (and fictitious) places, 
which are inhabited by real people in the form of personal 
avatars. The existence of people in these worlds is either 
(1) as avatars manipulated by users (to make them walk, 
fly, chat, etc), or (2) as pre-scripted agents, called “bots”, 
which are programmed to display some predefined 
behavior in the virtual world. Research that aims to 
bridge real life and these virtual worlds to simulate 
virtual living, while challenging and promising, is 
currently rare. Only very recently the mapping of real-
world activities to virtual worlds has been attempted by 
processing multiple sensors data along with inference 
logic for real-world activities. Detecting or inferring 
human activity using such simple sensor data is often 
inaccurate and insufficient. Hence, this paper explains to 
infer human activity from environmental sound cues and 
common sense knowledge, which is an inexpensive 
alternative to other sensors (e.g., accelerometers). We 
discuss the challenges to implement such a system from 
the signal processing and agent based system point of 
view. To the best of our knowledge, this system pioneers 
the use of environmental sound based activity recognition 
in mobile computing to reflect one’s real-world activity in 
virtual worlds.  
 
1. Introduction and Motivation 
 

Although speech is the most informative acoustic 
event, other kind of sounds may also carry useful 
information regarding the surrounding environment. In 
fact, in that environment the human activity is reflected in 
a rich variety of acoustic events, either produced naturally 
or by the human body or by the objects manipulated or 
interacted by humans. Consequently, detection or 
classification of acoustic events may help to detect and 
describe the human and social activity that takes place in 
the environment. For example: Jingling sound of cooking 
utensils (like cooking pan, spoon, knife etc.) may lead to 
infer someone’s cooking activity, vehicle passing sound 
may suggest that someone is on the road, mob sound 
along with sound of cutleries support the inference that 
the person is in a restaurant and so on.  

Many sources of information for sensing the 
environment as well as activity are available [1][2][3]. In 
this paper, we consider two objectives: first, sound-based 
context awareness, where the decision is based merely on 
the available acoustic information at the surrounding 
environment of the user and second, automatic virtual 
living, where the detected sound context infers an activity 
to be mapped with a virtual world activity. Acoustic 
Event Detection (AED) is a recent sub-area of 
computational auditory scene analysis [4] that deals with 
the first objective. AED processes acoustic signals and 
converts those into symbolic descriptions corresponding 
to a listener's perception of the different sound events that 
are present in the signals and their sources. Virtual living 
is a concept of living in a virtual world with a resident 
population of millions of real people from around the 
world. Each person is represented by an avatar that 
represents their chosen digital persona. A user will be able 
to walk, “teleport” or even fly to thousands of exciting 3D 
locations and can also use voice and text chat to 
communicate with other real people from around the 
world. In this manner, the animating behavior and life-
likeness of the avatars as well as the representation of the 
real-world environments in the virtual worlds render the 
idea of “virtual living”. Would there be a technology to 
synchronize a user’s (e.g., an elderly people) real world 
with the user’s virtual world, the concept of “virtual 
living” might be applied to monitor the user’s well-being 
or abnormality by someone (e.g., relatives or care-givers) 
who cares about the user. Nourishing such a vision in 
mind we apply the concept of AED to perform automatic 
generation of life-log which is represented as activities in 
the virtual world. 

In this paper, we describe a listening test made to 
facilitate the direct comparison of the system’s 
performance to that of human subjects. A forced choice 
test with identical test samples and reference classes for 
the subjects and the system is used. The second main 
concern in this paper is to evaluate how acceptable the 
automatic generation of virtual world activities is. Since 
we are dealing with a highly varying acoustic material 
where practically any imaginable sounds can occur, we 
have limited our scope in terms of location and the 
activities to recognize at a particular location. We 
envision that with the proliferation of computing power of 
hand held devices (HHD), availability of internet 
connectivity and improvements in communication 
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technologies such ambient communication to the virtual 
world will find a universal place in our daily lives and 
allow us to create a vivid and intelligent online social 
network. Let’s consider the following scenario to clarify 
our motivation. 

Scenario: Sami, Anny, Harry, and Silvia have become 
friends in a virtual world but in real life they live at 
different corners of the world. They often login to a 
virtual world and frequently update their status to let 
others know what they are doing just for fun. They use 
“Second Life” [5] to interact with each other in the virtual 
world. They are looking forward to use a HHD (e.g., 
iPhone) that can automate the process to update their real-
world status. Let’s assume that on the HHD they have 
installed our system that can capture and allow processing 
of environmental sounds at some time interval. The 
processed sound cues are used together with common 
sense knowledge to infer the present activity and 
automatically reflects the real-world activity on the virtual 
world. For example, while Silvia is cooking in real-world 
(i.e., the sound cues like cutting onion on chopping board, 
water falling on sink, cooking pan and spoon, arranging 
plates as indicated in Figure 1 are generate), her friends 
see her moving around the kitchen in the Second Life, as 
indicated at the right-side of Figure 1. 

The paper is organized as follows: Section 2 reviews 
the background studies related to this research. Our 
approach, in terms of system architecture and description 
of the system components is explained in Section 3. 
Section 4 explains the experimental setup, the results 
obtained by the system as well as user evaluations. 
Conclusions are presented in Section 5. 
 
2. Background 

A number of researchers have investigated to infer 
activities of daily living (ADL). In [6] authors have 

successfully used cameras and a bracelet to infer hand 
washing. The authors of [7] used radio-frequency-
identification (RFID) tags functionally as contact switches 
to infer when users took medication. The system 
discussed in [8] used contact switches, temperature 
switches, and pressure sensors to infer meal preparation. 
Authors of [9] used cameras to infer meal preparation. In 
[10] authors used motion and contact sensors, combined 
with a custom-built medication pad, to get rough 
inference on meal preparation, toileting, taking 
medication, and up-and-around transference. A custom 
wearable computer with accelerometers, temperature 
sensors, and conductivity sensors to infer activity level is 
used in [11].  Author of [12] used 13 sensors to infer 
home energy use, focusing on the heating-use activity. 
Motion detectors to infer rough location were used in 
[13]. Several sensors like motion sensors, pressure pads, 
door latch sensors, and toilet flush sensors to infer 
behavior are reported in the system described in [14]. The 
authors [1] have described monitoring bathroom activities 
based on sound. The system [2] utilized RFID tags to 
detect objects and thereby inference of activities is done 
from the interaction with the detected objects. The 
research on MIT’s house_n project [15] places a single 

type of object-based adhesive sensor in structurally 
unmodified homes and sensor readings are later analyzed 
for various applications—kitchen design, context 
sampling, and potentially ADL monitoring. All of these 
systems have a commonality that they perform high-level 
inference from low-level by coarse sensor data reporting 
and analyses. Some have added special pieces of 
hardware to help performance improvement, but progress 
toward accurate ADL detection has nevertheless been 
slow. Only a few researchers have reported the results of 
any preliminary user testing [6][10][13][14]. The level of 

 
Figure 1. Cooking activity is inferred from the sound cues produced in kitchen and the activity is mapped to “cooking” 
activity to reflect that Silvia is also cooking in her virtual world while she is cooking in her real-world kitchen 
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inference using sensors has often been limited—for 
example, reporting only that a person entered the living 
room and spent time there. Moreover, as an example, 
research aiming to detect hand washing or tooth brushing 
have had nearly no synergy, each using its own set of 
idiosyncratic sensors and algorithms on those sensors. 
Furthermore a home deployment kit designed to support 
all these ADLs would be a mass of incompatible and non-
communicative widgets. Our approach instead focuses on 
a general inference engine and infers activities from the 
sound cues that are likely to be produced either naturally 
or from the interactions with objects. Thus we can use our 
system for many ADLs.  

A similar approach to automatic virtual living is 
automatic life-logging. The idea of a “life-log” or a 
personal digital archive is a notion that can be traced back 
at least 60 years [16]. Since then a variety of modern 
projects have spawned such as the Remembrance Agent 
[17], the Familiar [18][19], myLifeBits [20], Memories for 
Life [21] and What Was I Thinking [22]. In [23] the 
authors evaluate the user‘s context in real time and then 
use variables like current location, activity, and social 
interaction to predict moments of interest. Audio and 
video recordings using a wearable device can then be 
triggered specifically at those times, resulting in more 
interest per recording. Life log includes people's 
experiences which are collected from various sensors and 
stored in mass storage device. It is used to support user's 
memory and satisfy user's needs for personal information. 
If he wants to inform other people of his experience, he 
can easily share his experience with them by means of 
providing his life log. But specifically speaking, a user 
cannot automatically mirror/reflect his current 
movements, activities or surrounding environment (e.g., 
park, shopping mall, etc.) in his real life to the virtual life 
of his avatar. Only very recently [24] the mapping of real-
world activities to virtual worlds has been attempted by 
processing multiple sensors data along with inference 
logic for real-world activities. Detecting or inferring 
human activity using such simple sensor data is often 
inaccurate and insufficient. Moreover deploying a 
sophisticated ubiquitous sensor network at outdoor 
environment is often expensive and not feasible.  

Our work differs from others in four key ways. First, 
we utilize environmental sounds cues to infer regarding 
the interactions with objects or environment instead of 
sensor or camera data. Second, due to simple use of 
microphone to capture environmental sound we can also 
infer outdoor environments like on the road, in a park, in 
a train station etc. that previous research was limited to 
perform. Thirdly, our model is easy to incorporate new a 
set of activities for further needs by just adding more 
appropriately annotated sound clips and re-training of the 
Hidden Markov Model (HMM) based recognizer. Finally, 
the system can be used as a life-logging agent as well as a 
mean to seam someone’s real-world with a virtual world.  

3. The System 
 
The goal of the system is to detect activities of daily 

living (e.g., laughing, talking, travelling, cooking, 
sleeping, etc.) and situational aspects of the person (e.g., 
inside a train, at a park, at home, at school, etc.) by 
processing environmental sounds. For example, while the 
system identifies cooking pan’s jingling and chopping 
board sound as consecutive cues and system’s local time 
indicates evening then from common sense database the 
system infers this activity as ‘cooking’. 

 

 
3.1. System Architecture 

 
Because of their ubiquity we plan to use hand held 

devices (e.g., portable computer or smart phone) to 
deploy this application that will capture environmental 
sound at some intervals to be processed. According to the 
system’s architecture given in Figure 2, environmental 
sound signals are processed through signal processing and 
then each input sound sample is recognized as a set of 
object labels by HMM based label recognizer. The 
detected object list and commonsense knowledge 
regarding human activity, object interaction, along with 
temporal information (e.g., morning, noon etc.) are 
utilized by the inference agent to infer both activity and 
surrounding environment of the user. Recognized real-
world activity and location are then mapped to the virtual 
world of the user by a scripting language. In the following 
sections the system’s components are described with 
necessary examples. 

 
3.2. Sound Corpus 

 
The patterns of sounds arising from activities occurring 

naturally or due to interaction with the objects are 
obviously a function of a many environmental variables 
like size and layout of the indoor environment, material of 
the floors and walls, type of objects (e.g., electrical or 

Sound Corpus 

HMM based Trainer 

Label Recognizer 

Inference Agent Commonsense 
Knowledgebase 

.mfcc files 

hmm0 .... hmm9 

Each sound clip is labelled by a set of 
interacting objects 

 Input Sound 
[processed to .mfcc file] 

Virtual World Integration Agent 

Figure 2. The System Architecture 
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mechanical) and persistent ambient noise present in the 
environment etc. In is essential to install this system to the 
same culture and environment from where sound samples 
are acquired and proper training of the system is made. It 
is analogous to the practice adopted for speech 
recognition whereby the system is individually trained on 
each user for speaker dependent recognition because such 
environmental sounds may vary in different cultures and 
places. Therefore the sample sounds we have collected 
are from the different places of Tokyo city, Tokyo 
University and apartments in Tokyo. For clear audio-
temporal delineation during system training, the sound 
capture for each activity of interest was carried out 
separately. A number of male and female subjects were 
used to collect the sounds of interest; each subject would 
typically go into the particular situation as depicted in 
Table 1 with the sound recording device and the 
generated sounds are recorded. We used the digital sound 
recorder of SANYO (model number: ICR-PS380RM) and 
signals were recorded as Stereo, 44.1 KHz, .wav 
formatted files. It is important to note that in the 
generation of these sounds, associated ‘background’ 
sounds such as the ambient noise, rubbing of feet, friction 
with cloths, undressing, application of soap, etc., are 
recorded simultaneously. The variability in the captured 
sounds of the each activity provides realistic input for 
system training, and increases the robustness and 
predictive power of the resultant classifier. Some sounds 
(e.g., water falling, vacuum cleaning machine sounds etc.) 
are generally loud and fairly consistent. There are samples 
that needed to sufficiently train the classification model 
due to a high degree of variability even for the same 
individual. For example, hands washing, drinking, eating, 
typing related sounds exhibited a high degree of 
variability. This required us to collect many more samples 
for such kind of activities related sounds to capture the 
diversity of the sounds. According to the location and 
activities of our interest mentioned in Table 1, we have 
collected 114 types of sounds. Each of the sound types 
has 15 samples of varying length from 10 to 25 seconds. 

 

3.3. HMM based Trainer  
3.3.1. Sound Clip Annotation: We have listed 63 objects 
that are used in the annotation to denote their pertinence 
in a given sound sample. During the annotation an 
annotator opened a sample (.wav formatted) sound file by 
WaveSurfer, an open source tool for sound visualization 
and manipulation, setting the annotation configuration as 
“HTK Transcription”. HTK is a speech recognition toolkit 
based  on Hidden Markov Model. In our case, a sound 
sample usually contains different kind of sounds 
eventually produced by different kind of objects. An 
annotator selected a particular portion of the sample 
sound by listening that represented any of the 63 listed 
objects and thus that region of the signal is annotated by 
assigning a short name (as shown in Table 2) of a 
particular object which was producing or associated with 
that sound portion. For example if a sound portion is 

produced by a “plate” object, that portion is annotated as 
“plt”. 

If the annotator found that there was an overlapping 
sounds of more than one objects in a selected portion, in 
that case the following was considered. 
 Initially it was tried if the selection can be shortened 

to represent the sound portion associated with a 
single object as mentioned above. 

 If the selected audio portion cannot be represented 
by one object due to auditory distinctness of more 
than one sounds produced by simultaneous 
interaction of more than one objects, an annotator 
was allowed to denote maximum of two objects to 
annotate such complex sound. For example, if a 
selected audio portion was found representing both 
“human coughing”, “music”, and “tv program” 
sound, in this case an annotator tagged this portion 
of the sound as either “ppl_mus” or “ppl_tel” or 
“ppl_tel” or “mus_tel” according to the prominence 
of the sounds of the pertaining objects. 

 
3.3.2. Training Features: It is obvious that simple 
frequency characterization would not be robust enough to 
produce good classification results. To find representative 

location Activities 

Living Room Listening Music, Watching TV, Talking, 
Sitting Idle, Cleaning (vacuum-cleaning)  

Work Place Sitting idle, Working with PC, Drinking 
Kitchen Cleaning, Drinking, Eating, Cooking 
Toilet Washing, Urinating 
Gym Exercising 

Train Station Waiting for Train 

Inside Train Travelling by Train 
Public Place Shopping, Travelling on Road 

On the Road Traveling on Road 

Table 1: List of locations and activities of our interest 

 
 
 
 
 
 
 
 

Object  Tag  Object Tag 

ambulance amb cash register reg 
announcement ann CD player cdp 

basin bsn chopping board chp 
bicycle ckl computer com 

blender machine bln computer keyboard kbd 

boiling boi computer mouse cms 

bottle btl cracking crk 
bowl bwl drawer dwr 
bus bus dumbbell dbl 
car car electric train trn 

Table 2: Object names and their Tag used for labelling  
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features, previous study [25] carried out an extensive 
comparative study on various transformation schemes, 
including the Fourier Transform (FT), Homomorphic 
Cepstral Coefficients (HCC), Short Time Fourier 
Transform (STFT), Fast Wavelet Transform (FWT), 
Continuous Wavelet Transform (CWT) and Mel-
Frequency Cepstral Coefficient (MFCC). It was 
concluded that MFCC might be the best transformation 
for non-speech environmental sound recognition. A 
similar opinion was also articulated in [26,27]. These 
findings provide the essential motivation for us to use 
MFCC in extracting features for environmental sound 
classification.  

The input signal is first pre-emphasized with the FIR 
filter 1, -0.97z-1. MFCC analysis is performed in 25 ms 
windowed frames advanced every 10 ms. For each signal 
frame, the following coefficients are extracted as a feature 
vector: 
 The 12 first MFCC coefficients [c1,…, c12] 
 The “null” MFCC coefficient c0, which is 

proportional to the total energy in the frame 
 13 “Delta coefficients”, estimating the first order 

derivative of [c0, c1,…, c12]  
 13 “Acceleration coefficients”, estimating the 

second order derivative of [c0, c1,…, c12] 
Altogether, a 39 coefficient vector is extracted from 

each signal frame window. 
 

3.4. Label Recognizer 
 
Training is performed in the training set that consists of 

the recordings and their associated class (i.e., object) 
labels. Typically, the HMM parameters are iteratively 
optimized with the Baum-Welch algorithm that finds a 
local maximum of the maximum likelihood (ML) 
objective function.  

We modeled each sound using a left-to-right 88-state 
(63 for simple object tag + 25 for complex object tag) 
continuous-density HMM without state skipping using 
HTK Toolkit [28]. Each HMM state was composed of 
two Gaussian mixture components. After a model 
initialization stage was done, all the HMM models were 
trained in eight iterative cycles. For classification, 
continuous HMM recognition is used. The grammar 
(denoted partially) used is as follows: 
(<alr|amb|ann|bsn|ckl|bln|boi|btl|bwl|bus|car|reg|cdp|…|flu| 
fwt|sus|srb|…|shr|sng|snk|tap|wnd…|ppl_tv|…|mus_ppl|pp
l_tv| … |wtr_ppl>), which means that there is no 
predefined sequence for all the activities and each label 
may be repeated many times at any sequence. 
 
3.5. Commonsense Knowledgebase  

 
Once we get the list of objects involved in recognized 

sound samples, we must define the object involvement 
probabilities with respect to the activities of our interest. 
For example, the activity “eating” always involves food, 

plate, people and water. Requiring humans to specify 
these probabilities is time consuming and difficult. 
Instead, the system has utilized a technique adopted from 
Semantic Orientation (SO) [29,30] employing NEAR 
search operator of AltaVista’s web search result. 
List of objects, O = {O1, O2, … OK} (K=63) 
List of locations, L = {L1, L2, …LM} (M=9) 
List of activities, A = {A1, A2, … AN} (N=17) 
Each location is represented by a set of English synonym 
words. WLi = {W1, W2, … , WP}. For example, L1= 
“kitchen” and it is represented by, Wkitchen = {“kitchen”, 
“cookhouse”, “canteen”, “cuisine”} 
SA(Oi|Lj) = Semantic Associative value representing the 
object Oi to be associated with location Lj 
SA(Oi|Aj) = Semantic Associative value representing the 
object Oi to be associated with activity Aj 
The formulae to get the SA values are, 

 
(1) 

 
(2) 

The obtained values support the concept that if an 
activity name and location co-occurs often with some 
object name in human discourse, then the activity will 
likely involve the object in the physical world. Our 
approach is in the spirit of such manner while we use 
these obtained values as commonsense knowledgebase to 
assign a semantic associative value to the object 
pertaining to a sound sample as a model of relatedness in 
human activity. Thus, for example, if the system detects 
that the sound samples represent frying, saucepan, water 
sink, water, and chopping board from consecutive input 
samples the commonsense knowledge usually infers a 
cooking activity located in kitchen. 
  
3.6. Inference Agent 

 
The system continuously listens to the environment but 

it records sounds for ten seconds with an interval of ten 
seconds pause between two recordings. Thus for a minute 
the system gets three sound clips of equal length (i.e., ten 
seconds) that serves as the input to the classifier to 
process three sound samples in one minute. Then object-
mapping module provides a list of objects pertaining to 
the recognized sound classes. In this manner the system 
gathers a list of objects for each minute. The inference 
engine works with the list of objects that are gathered in 
every three minutes. This list of objects is then consulted 
with the Semantic Associative (SA) value of the activities 
and locations stored in the commonsense knowledgebase. 

As an example, for a two-minute interval the system 
gets six sound clips. These six sound clips are considered 
to infer an activity at that moment. Each sound clip is 
processed by HMM based recognizer that performs 
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continuous recognition of desired labels. For example, 
let’s assume that the system receives the following six 
sound clips and the HMM recognized the following 
objects.   
 clip 1 {knife, chopping board, people} 
 clip 2{knife, spoon, chopping board, people} 
 clip 3{water sink, water, wind, male voice} 
 clip 4{spoon, frying, people, wind} 
 clip 5{frying, saucepan, spatula, people}  
 clip 6{frying, saucepan, spoon, water} 
The unique list of objects obtained from the clips, U= 

{chopping board, frying, knife, male voice, people, 
saucepan, spatula, spoon, water sink, water, wind}. This 
list of objects is dealt with common sense knowledge by 
obtaining a normalized SA values for each Activity and 
Location. In the above example the objects yield a 
maximum SA value of having a relationship with 
“cooking” activity in “kitchen” location and the near 
candidates are “eating”, “drinking tea/coffee” as 
activities. 

 
3.7. Virtual World Integration Agent 

The agent receives location and activity information 
from the inference agent and on the basic of the input this 
agent invokes necessary pre-defined scripts. The scripts 
usually contains the necessary commands to move the 
person’s avatar to a specific location in the virtual world 
(i.e., Second Life) and do a sequence of animations while 
interacting with the virtual world objects that eventually 
represents the person’s real-world activity in that virtual 
world. At present this agent integrates to the virtual world 
with the kitchen related activities only and in future we 
plan to extend the mapping with other activities and 
locations. Screenshots of the mapped activities in Second 
life is given in Figure 3. 

4. Test and Evaluation 
 

The purpose is to test the performance of the system in 
recognizing the major activities of our interest. The 
system was trained and tested to recognize the following 
17 activities: Listening Music, Watching TV, Talking, 
Sitting Idle, Cleaning, Sitting idle, Working with PC, 
Drinking, Eating, Cooking, Washing, Urinating, 
Exercising, Waiting for Train, Travelling by Train, 
Shopping, Travelling on Road. As explained earlier, the 
sound samples recording for each activity was carried out 
separately. For example, for Listening Music, each 

subject played a piece of music of his/her choice, with 
this repeated a number of times for the same individual. 
The other subjects followed the same protocol and the 
entire process was repeated for developing the sound 
corpus for each activity being tested. The training data set 
was formed utilizing a ‘leave-one-out’ strategy. That is, 
all the samples would be used for their corresponding 
models’ training except those included in the signal under 
testing. Hence, each time the models were trained 
respectively to ensure that the samples in the testing 
signal were not included in the training data set. 

Since each sound clip resolves to a set of objects 
pertaining to the recognized sound clip which is 
considered to infer activity and location of the user at that 
time, we developed perceptual testing methodology to 
evaluate the system’s performance on continuous sound 
streams of various sound events to infer location and 
activity. 420 test signals were created, each of which 
contained a mixture of three sound clips of respective 114 
sound types.  Since these 420 test signals are the 
representative sound clues for the 63 objects to infer 17 
activities, we grouped these 420 test signals into 17 
groups according to their expected affinity to a particular 
activity and location. Ten human (i.e., five male, five 
female) judges were engaged to listen to the test signals 
and judge an input signal to infer the activity from the 
given list of 17 activities (i.e., forced choice judgment) as 
well as the possible location of that activity from the list 
of given nine locations of our choice. Each judge was 
given all the 17 groups of signals to listen and assess. The 
number of test signals in a group varied from 3 to 6 and 
each test signal was the result of three concatenated sound 
clips of same sound type. Therefore a judge listen each 
test signal to infer the location and activity that the given 
signal seemed most likely to be associated with. In the 

same way the signals were given to the system to process.  
For the system the entire group of signals was given at a 
time to output one location and activity for each input 
group. Since human judges judged each signal 
individually, in order to compare the result with the 
system, a generalization on the human assessment was 
done. The generalization was done in the following 
manner. A group of signals had at least more than 3 
signals and each of the signals was assigned a location 
and activity label by the judges. Thus a group of signals 
obtained a list of locations and activities. We counted the 
frequencies of location and activity labels for each group 

Figure 3. Kitchen activities like “Drinking”, “Cooking”, Eating” and “Cleaning” are represented in Second Life 
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assigned by each judge and took the maximum of the 
respective labels to finally assign the two types of labels 
(i.e., activity and location) for the group of signals. For 
each type of label, if more than one labels obtained equal 
frequency the random choice of the labels are considered. 
Thus we considered the judges’ labels and system’s 
inference with respect to the expected labels for the 17 
groups of signals. Recognition results for activity and 
location are presented in Figure 4 and 5 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. Comparisons of recognition rates for 17 activities of 
our interest with respect to human judges 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Comparisons of recognition rates for 9 locations of our 
interest with respect to human judges 
 

The recognition accuracy for activity and location is 
encouraging with most being above than 66% and 64% 
respectively.  From Figure 4 and 5, we notice that humans 
are skillful in recognizing the activity and location from 
sounds (i.e., for humans’ the average recognition accuracy 
of activity and location is 96% and 95% respectively). It 
is also evident that the system receives the highest 
accuracy (i.e., 85% and 81% respectively) to detect 
“traveling on road” activity and “road” location 
respectively, which is a great achievement and pioneer 
effort in this research that no previous research attempted 
to infer outdoor activities with sound cues. The correct 
classification of sounds related to activity “working with 
pc” and location “work place” were found to be very 
challenging due to the sounds’ shortness in duration and 
weakness in strength, hence the increased frequency for 
them to be wrongly classified as ‘wind’ type object 
recognition. 
 

5. Conclusion  
In this paper, we described a novel acoustic indoor and 

outdoor activities monitoring system that automatically 
detects and classifies 17 major activities usually occur at 
daily life.  Carefully designed HMM parameters using 
MFCC features are used for accurate and robust sound 
based activity and location classification with the help of 
commonsense knowledgebase. Experiments to validate 
the utility of the system were performed firstly in a 
constrained setting as a proof-of-concept and in future we 
plan to perform actual trials involving peoples in the 
normal course of their daily lives to carry the device 
running our application that listens to the environment 
and automatically detects the daily event based on the 
mentioned approach. Preliminary results are encouraging 
with the accuracy rate for outdoor and indoor sound 
categories for activities being above 67% and 61% 
respectively. We sincerely believe that the system 
contributes towards increased understanding of personal 
behavioral problems that significantly is a concern to 
caregivers or loved ones of elderly people. In future we 
plan to integrate different sensors (e.g., pressure and/or 
proximity sensors) into the system and conduct 
experiments to acquire better understanding of human 
activities. We envision that the enhanced system will be 
tested on the neediest elderly peoples residing alone 
within the cities of Tokyo to monitor their living in an 
unobtrusive manner. Enabling a user to represent real 
world activities to a virtual world and thereby continue 
the concept of “virtual living” is surely a source of 
excitement for young generation but it can come across 
potential usages like virtual shopping mall for product or 
service advertisement, collaborative learning, easy 
monitoring for elderly people for the caregivers and so on. 
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