
Making Topic-Specific Report and Multimodal Presentation Automatically by
Mining the Web Resources

Shaikh Mostafa Al Masum, Mitsuru Ishizuka

Department of Information and Communication Engineering, University of Tokyo, Japan
mostafa_masum@ieee.org, ishizuka@i.u-tokyo.ac.jp

Abstract

Due to availability and accessibility of enormous
internet-based resources and dynamic nature of web
pages, the task of information retrieval is becoming more
challenging and gradually tricky. This paper describes
about agent based autonomous system, Automatic Report
to Presentation (ARP), with the notion of autonomous
information service emerging as the result of integration
among natural language processing, web intelligence,
and character-based agent interaction. The system, ARP,
automatically builds a report on a topic or search
phrase(s) given by a user by fetching a set of web-pages;
and then parsing; summarizing, affect-sensing and
correlating information extracted from those. The system
also makes a concise presentation automatically and, a
group of character based software-agents autonomously
present the topic in a story-telling manner employing text-
to-speech engine with accompanied content-rich slides,
different gestures and affects.

1. Introduction

Internet is the biggest online multi-disciplinary
information repository in the world. Due to availability
and accessibility of enormous internet-resources and
dynamic nature of web pages, the task of information
retrieval is becoming more challenging and tricky. User
interested in a certain topic can utilize numerous sources
of information resources of various nature, content and
characteristics. Hence the idea of automatically creating
report(s) on a particular topic or query string given by a
user and building automatic multimodal presentation(s)
utilizing online resources might be thought as an addition
towards autonomous information service as well as a
special kind of web-search service providing content-rich
report and story-like presentation for grasping an idea
about a topic quickly and with fun. Such system will not
suffice serious web-searching but may evolve as a service
to deliver story-like result(s) for a web-search query.
Specially, children and naïve users of computers might
find such a system useful and as a source of fun. The
research is encircling different techniques like html
parsing web pages; extraction and summarization;
question answering system; information retrieval; sensing
affective information from text for multimodal
presentation and markup language to dynamically script

avatar based software-agents with affects and gestures to
incorporate anthropomorphism for improved human-
computer interaction.

Web pages are often very "noisy" in the sense that they
might contain many unrelated information. So, many
unrelated text segments may be identified by an HTML-
parser. There are different techniques and heuristics for
parsing HTML pages as discussed in [10][13][19], but the
limitation of those parsers for our purpose is, as web
pages may emphasize phrases or long text segments
unrelated to the key information, further parsing is
required to extract the important text and concept from a
document. Hence for the system, ARP, we have
implemented several heuristics to parse HTML coded
Web-pages and extract data in the form of tuples of
salient heading(s) and associated text-chunk.

Web searching, extracting and finally summarizing
useful information are active research areas since last
decade. In brief, the techniques include Keyword-based
search (e.g. [4][10]), Web queries, Wrapper Induction for
Information, Effective Resource Discovery, User
Preference-based search and Content or Context based
summarization. For the system keyword-based searching
using web-search engines, e.g.[9][24], are taken as the
initial step to collect the links of potential information
relevant to searching topic. Web query languages allow
the user to retrieve data from web pages by using
extended database query languages. This is not required
for our system. Wrapper Induction for Information
approaches (e.g., [4]) is not also suitable because a
wrapper is a procedure for extracting tuple from a
particular information source. Hence, they are not
designed for finding significant concepts and exploratory
texts associated with the different concepts of user-
specified topics. Effective (Web) Resource Discovery
aims to find Web-pages relevant to users' requests or
interests (e.g., [19]). This approach uses techniques such
as link analysis, link topologies, and text classification
methods to find relevant pages. In the user preference
approach, information is presented to the users according
to their preference specifications and this is not helpful
for our problem too. Content based summary utilizes
textual content of the web documents in question. The
disadvantage of this method becomes evident when a
particular web page contains little textual content and
relies mostly on visual language communication. Context-
based method, e.g., [1][6], are making use of the
hypertext structure of the web, exploit the paragraphs or

other text units that are close to the links pointing to the
particular document being used to create the content.
For our approach we used the mixed approach of content
and context based retrieval. We first searched the topic in
Wikipedia[23] and if the topic is ambiguous and found in
the Wikipedia source, we extract several context(s) and
relevant content(s) of the topic and then subsequently
other web-search engines are invoked. We also utilize
ConceptNet 2.0 [14] for sensing affective information and
topic gisting from the chucks of text considered for
presentation slides. In the system we employed
ConceptNet to utilize two functions of ConceptNet,
GuessMood() and Summarize(). GuessMood() returns a
tuple of six emotions (happy, sad, angry, fearful,
disgusted, and surprise) with their respective percentage
value indicating the mood of the input text and
Summarize() function is useful for getting a summary or
gist of the topic from a chunk of text. In future we plan to
employ other functions of ConceptNet for further analysis
of Context.

Related work to ours is question-answering (e.g., [8],
[12],[11]). A question-answering system is used to answer
user questions by consulting a repository of documents.
[8] utilizes the snippet returned from a search engine to
help find answers to a question. We have incorporated
some of the heuristics from question-answering research
to finding such informative pages and also utilize some of
the concepts of [12] which explained about mining topic-
specific concepts and definitions collected from web
pages. However, the total task is different in terms of
building the outline of a report and presentation
dynamically and associating summarized text-chunks to
the related heading and finally presenting the topic gist by
some character-agents with accompanying affect and
gesture to mimic human-like behavior.

Some of the prominent applications, e.g. embodied
characters are now used as virtual tutors in interactive
learning environments [22], virtual sales agents [2] and
presenters [3] in a pre-scripted manner. So, a scripting
language, Multimodal Presentation Markup Language
(MPML)[18][21] has been developed to script and
generate human-like behavior for the character-agents.
We have extended the “Auto-Presentation” system
discussed in [20] in terms of retrieving information for
ambiguous topic and making multiple presentations;
building content-rich report; adding affective qualities to
the character-agents and encoding into MPML script
dynamically; improving topic gisting and increasing user
interaction.

2. Overview of the System

The objective of the system is to provide fun and
knowledge especially to the kids, students and naïve
computer users by building a presentation and a content-
rich document of an input topic. In the system, we do not
require extensive linguistic analysis or machine learning

than shallow language processing, but we employ
conventional search engines, web encyclopedia and
exploit the structure of the web pages to identify
candidate phrases for information retrieval. To create the
contents web encyclopedia (e.g. [23]) and multiple but
unique web pages returned by search engines ([9][24]) are
consulted. The features added or improved to the previous
system discussed in [20] are:
• Multiple report and presentation for ambiguous topic.
• Improved Web Search, Filter, Extract, Rank,

Summarize and Report Outline.
• Mood / Affect incorporation to the character-agents

The system, ARP, is consisting of multiple agents
performing specific tasks. Figure 1 shows the architecture
of the system in terms of agent interaction. The names of
the agents are self-explanatory. Briefly, the Query
Analyzer (QA) agent does key-phrase extraction for topic
identification from input query and disambiguation
processing for the topic. The Web Crawler (WC) and
Web-page Extractor (WE) agents interact with each other
to fetch web pages based on search-keys employing
search-engines ([9][24]). The WE agent also reads
each web-page and considers potential HTML-tags to
produce simple text-files by extracting data from those.
The Report Builder (RB) agent creates summarized text-
chunks from the extracted text-files and prepares a report
with salient headings. The Presentation Builder (PB)
agent creates different slides from the report, retrieves
images using search engine to add them to the slides, does
mood analysis using ConceptNet and creates MPML
script accordingly. Finally the Presentation Avatar (PA)
agent creates JavaScript from the MPML script and
performs the presentation using several character-agents
(e.g. Microsoft-Agent character Genie, Marlin etc [17]).

3. Implementation of ARP

The ARP system consists of six software-agents
working in a pipelining manner. ConceptNet Server is the
implementation of ConceptNet 2.0 [14]. In the following
subsections each agent and its functionalities are been
discussed with necessary algorithms.

Query Analyzer

Web Crawler

Web Page Extractor

Presentation Builder Report Builder

Presentation Avatar

Figure 1. Multi-Agent Architecture of the System

ConceptNet Server

3.1. Query Analyzer

The query analyzer first validates linguistically if a

proper question has been asked. For a valid question, Q,
using a shallow language parser, it extracts the Topic, T
from Q. T is depicted as a concatenated string of words
(Wi).
Where, Wi indicates words
C = count of words in T and at present C ≤ 10 and
Wi ≠ adverb, pronoun, preposition, determiner, aux-verb
For example if someone types “What do you know about
the arsenic poisoning in the asian countries?”; Query
analyzer signals it as a valid question and outputs Topic,
T as: “arsenic poisoning asian countries”. But sometimes
T may have ambiguous meaning or context. For example
if someone asks, “Can you tell me about Jaguar? or What
is a virus?”, the topic “Jaguar” or “virus” may have
different contextual senses. In order to deal with this issue
query analyzer first searches for T in Wikipedia, the
online encyclopedia, and does a data-mining in the web-
page returned by Wikipedia for the key “For other uses”
which essentially gives the web-link to decipher the
possible contextual senses for topic T. If such data-mining
is successful, T is set ambiguous and the agent further
does data-mining in the web-page returned by that
particular disambiguation link of Wikipedia for the
possible senses. In the case of multiple contexts we
consider 5 maximum senses and hence the system can
generate maximum of 5 automatic reports and
presentations of the topic. For example “Jaguar” returns
16 such senses and we considered the first 5 senses. So
for an ambiguous T we get a set of senses which we name
as, Topic-Sense, TS and represented as,

N= Number of Senses found for the Topic, N ≤ 5
Query Analyzer then makes a set of search topic for the
web-crawler agent and hence, the set of Search-Topic,

},.....,,{ 21 NSTSTSTST = where each Search-Topic,
STi also contain the main Topic, T.
Hence a Search-Topic, ii TSTST += ; 1≤ i ≤ N;

3.2. Web Crawler

The Web Crawler agent employs web search engines,

i.e. [9][24], to fetch a set of relevant web-pages based on
each search topic. For each search-topic, STi, in set ST the
agent does the following. Consider a Search-key, K= STi
and then prepares a search string to search for K using the
online encyclopedia, i.e. [23]. The search-link is
represented by, Wi = {WiL1};

Web crawler then invokes Google search engine and
fetches the search-result page for K and receives a set of
links from Web-page extractor agent. The set of links for
K returned by [9] is,

}1.,.........1,1{1 21 ni LGLGLGG = and we limit n≤10.

In the same way the agent invokes Google again to
receive the set of links for different prefix added search-
key, K as indicated below.

}2.,.........2,2{2 21 ni LGLGLGG = n≤10

}3.,.........3,3{3 21 ni LGLGLGG = n≤10

}4.,.........4,4{4 21 ni LGLGLGG = n≤10
The above sets of links are obtained from Google for K,
where K= “Who What When” + STi ; K= “History of” +
STi and K= “About” + STi respectively. The search-string
used to invoke Google search engine as an http request is
http://www.google.com/search?num=10&hl=en&q="+K
+"&lr=lang_en&as_ft=i. The Web-page extractor agent
can also return the links of PDF files that could be viewed
as HTML pages as suggested by Google search result.

The search string used to invoke yahoo search engine is
http://search.yahoo.com/search?p="+K and yahoo search
engine gives the following sets of links as indicated;

}1.,.........1,1{1 21 ni LYLYLYY = n≤10
}2.,.........2,2{2 21 ni LYLYLYY = n≤10

The above sets of links are obtained from [24] for K,
where K = STi and K= “About” + STi respectively.
The agent then makes the set of unique links obtained
from [9] and [24] and finally makes a set of unique links,
Ui, which serves as the sources of knowledge for the
search-topic, STi .

iiiii GGGGG 4321 ∪∪∪= //all links of Google

iii YYY 21 ∪= //all links of Yahoo

URL-set, iiii YGWU ∪∪= //The list of unique URLs
The web crawler agent finds definition of the topic

using the following search string. For example,
http://www.google.com/search?num=10&hl=en&q=defin
e:"+ K; returns the definition of K. If the agent fails to
find any definition for a given Topic, STi, it forms sub-
topics by taking the portion of the search topic. Algorithm
to find a definition using [9] is given below:
Begin

 Search-Topic, ST = STi
 Wi is the list of words in ST
 Search-Key, SK=NULL
 Set j = C ; where is the number of words in ST

 Set Definition, d=NULL
While (d=NULL)
 Begin

 Search-key, ∑
=

=
j

i
ij WSK

1

where 1 ≤ j ≤ C

 d = getDefinitionFromGoogleFor(SKj)
 If (d = NULL)

 then j= j-1
 Else exit the loop

 Loop While
 End
End
3.3. Web-page Extractor

},.....,,{ 21 NTSTSTSTS =

CWWWT +++=21

After receiving the URL-set, Ui from the web-crawler

agent, it retrieves a set of web-pages, WPi represented as,
},.....,,{ 21 Mi PPPWP =

Where, M= number of web-pages for the search-topic STi
The agent then reads the content of each page, Pi, and
retrieves text between <body> and </body> tag. While
reading the content from the web-pages the following
heuristics are followed.
a. Emphasizing tags like <h1>, <h2>, <h3>, <h4>, ,
, <big>, <i>, , <u> are considered for
heading or salient text.
b. Ignore the heading text if longer than 125 characters.
c. Omit the texts inside <script> and <style> tags.
d. Collect the text chunk which appears between the other
types of tags not mentioned above.
e. Ignore the text that contains an URL or an email
address.
f. Ignore the text-chunk which is too long (e.g. more than
600 words) or too short (e.g. less than 10 words).
g. We assume that the heading text represents as the title
for the text-chunk(s) found immediately after the
heading(s). Several headings may be retrieved in a row
and then we need to summarize the headings too.
h. Some unwanted markup text and character (e.g.
etc.) may be present in the retrieved text, so we stripped
out all the text between ‘<’ and ‘>’ markup character.

The output from each Extracted Page (EPi) is a list of
tuples of potential headings and text-chunk, which can be
represented as following (i.e. l many heading, p many
text-chunks),
Heading-Text Tuple,]],...,[],,...,[[2121 plk TTThhhHT =
So, the list of Extracted Page, },.......,{ 21 Ri HTHTHTEP =
Thus a page may result R (0≤R≤50) many HT tuples.
Finally the agent produces a list of Extracted Pages (EPL)
which is further analyzed to prepare automatic content.
The output of the agent can be represented as following,
(M many extracted pages, each having R many HT tuples)
where the value of R may not be equal for each page.

},.......,{ 21 MEPEPEPEPL =

3.4. Report Builder

The Report Builder agent employs ConceptNet 2.0 as a

server application to receive summarized text for a chunk
of input text using Gist() function. The pre-processing
algorithm for report building is given below:

Begin

For each item, EPi in EPL
For each tuple, HTk in EPi

Begin
],........,[21 pk hhhH = ; get list of Headings

],.......,[21 qk TTTT = ; get list of text-chunks

)(kk HGisth = ; get the summary of title(s)

)(kk TGistt = ; get the summary of text(s)

],[kkk thHTG = ; tuple of Heading-Text Gist
 Add HTGk to Page-level Heading-Text list, PHTi
 End
End
Since we get the following list called Page-level Head-
Text list, from each EPi,

For a search-topic, STi, having M many documents we get
a set of documents, Di, containing M numbers of PHT,

The report builder agent creates a report, Ri, using the
contents of Di according to the following algorithm:
Begin

Set Report,
1PHTR i =

For j=2 to M
 For each tuple, HTG in PHTj
 Score= GetCloseness(HTG, Ri)
 If Score <40 Then

}{HTGRR ii ∪= //add the content to report
 If Ri contains more then 40 elements then
 Exit the loop
End
That means, we initialize the report object with the
contents retrieved from the first link and then consider
each head and text tuple of the other pages to be inserted
into the report if the content is not similar than that of
previously entered contents.

3.3.1. Summarization method. The function we used in
the system to retrieve the summary of an input text is
Gist(txt). This function is implemented in the ConceptNet
server which employed a language parser MontyLingua
[16] to produce a sequence of verb-subject-object-object
(VSOO) frames. Summary has been produced by unifying
common VSOO and selecting the other well formed
VSOO frames.

3.3.2. Measuring Closeness method. GetCloseness
function utilizes a method named MeasureCloseness
which takes two HTG as input and returns a percentage
value indicating the similarity-distance between them.
The function is a variant implementation of traditional
TF-IDF [5][7] scoring for text. Instead of simple TF-IDF
scoring the function first makes two sets of words to
represent the text-chunks by considering the n many word
having top TF scores. Then a vector-like distance has
been calculated between the text-chunks. The algorithm is
given below.

},......,{ 2,1 Ri HTGHTGHTGPHT =

},........,{ 21 Mi PHTPHTPHTD =

)100*100(),(

)(),(

),(

0,15};:...,.........:,:{

0,15};:...,.........:,:{

21

,1
1 ,1 ,1

222
21

1 1

22
21

22112

22111

maxdis
disVVcloseness

mnmnVVdis

mnVVmaxdis

mpmsmsmsV

npntntntV

p

jsitpj
i

p

ikk

p

ill
lkji

p

i

p

i
ii

ipp

ipp

−=

++−=

+=

≠==

≠==

∑ ∑ ∑

∑ ∑

=≤≤
= ≠= ≠=

= =

It means that each head-text tuple (HTG) is represented
by a vector. A vector is represented by a set of tuples of p
many most frequent words and their corresponding
frequencies. Above shows such vectors having p many
tuples where ti and si indicate frequent words omitting
stop-words (e.g. articles, prepositions etc.); ni and mi
indicate their corresponding frequencies. The function
maxdis() calculates the maximum distance if the vectors
do not have any common term and dis() calculates the
distance of the two vectors (if there is some common
terms). The equal value of maxdis() and dis() indicates
100% closeness. The value given by closeness() function
indicates the measure of content similarity between the
tow text-chunks. GetCloseness() function keeps a list of
such vector representation of each HTG inserted into the
Report and update the list when a tuple is inserted. Hence
the output 55 means, the function GetCloseness() has
found the maximum value of 55% match of the frequent
words and their frequencies of the input tuple with that of
any of the existing tuples. At present we insert a new
tuple if the score is less than 40. This value has been fixed
by running the system with several parameters and we
have noticed that for score 40 we get less repetitive but
content-rich information. We also limited the maximum
number of tuples to be inserted into presentation object to
40.

3.5. Presentation Builder

The Presentation Builder agent considers the report

object, Ri, and takes some of the contents (e.g. maximum
5 lines of text) from each of the element to prepare
presentation slides. At present the system makes
maximum of 40 slides for each presentation topic. The
algorithm to prepare a presentation is given below;
Input: Report Object, },........,{ 21 Ri HTGHTGHTGR =
where R<=40
Begin
 For each element in Ri
 Initialize Scene, },,{ 21 iii SeqPSAAS =
)(ii HTGlyTakenTextRandomT =
)(][iTGuessMoodimood =

]},]...[,[],,{[1123111 −−= mm moodTmoodTmoodTA
]},]...[,[],,{[44222 mm moodTmoodTmoodTA =

],,[iiii imageTHPS =
)}({ 2,1 AAOrderSeqi =

End
A presentation object creates a set of scenes. A scene is
created from each element of the report object. A scene,
Si, is a tuple of two character-agent objects, A1 and A2; a
Presentation Slide Object, PSi, and a Sequence Object
Seqi. The character agent object Ai contains m many
tuples consisting of a text, Ti and moodi. Text Ti is taken
randomly from HTGi and Ti contains m many lines. At
present we fixed the value of m to 5. For each line we
obtained the mood of the sentence using the function
GuessMood() of ConceptNet 2.0. Odd-sequenced line of
text is assigned to agent A1 and even-sequenced line of
text is assigned to A2 agent to speak and act accordingly.
A presentation-slide object is created using the heading
taken from HTGi, text Ti and an image link, imagei,
retrieved by Google image-retrieval service. The image is
retrieved by web-crawler agent using the Search-Topic,
STi, and stores the links of images in a list. A sequence
object is formed by ordering the sequence of two agents
to deliver their contents verbally.

3.5.1. Selecting Text to be spoken by TTS Engine. The
current heuristic of the function TextRandomlyTaken() is
to select two lines from the top, one line from the middle
and two lines from the bottom of the input text-chunk,
HTG. These five lines of text are considered to be spoken
out by the presenter agent(s) employing text-to-speech
engine. If the input HTG contains less than five lines, all
the texts are selected to be spoken out.

3.5.2. Affect Sensing from the Text. The function
GuessMood() is implemented in the ConceptNet server.
The system invokes this function and it performs textual
affect sensing of the input text chunk. The function
returns a tuple of six emotions (happy, sad, angry, fearful,
disgusted, and surprise) with their respective percentage
value indicating the mood of the input text-chunk after
affectively classified into six affect categories using
common-sense approach. The detail implementation is
described in [14][15].

3.6. Presentation Avatar

The presentation avatar agent maintains a list of

presenters which are, in this case, Microsoft Agent based
characters. The agent first converts the scenes produced
by presentation builder agent to an MPML script and
web-pages (as slides). Finally the auto-generated MPML
script is converted to JavaScript code in order to run the
presentation on any web-browser. The Presentation file,
basically an HTML file, is opened in a web-browser by

the agent and the JavaScript controls to present the slides
automatically one after another by the character agents.
The system makes the presentation as a hyper-linked
document and hence a user can switch among the
different presentations (in the case of ambiguous topic)
and slides any time by interrupting the presenters.

3.6.1. The group of presenters. Currently the system
employs Microsoft Agent based characters as the
presenters. They are namely, Merlin, Genie, Peedy, AI,
Robby and James.

3.6.2. Dynamic Generation of MPML Script. An
example of automatically generated MPML script is given
below. It is an XML-like language supporting to script
action, affect, etc. For details about tags and MPML
scripting see [18].

4. Test and Evaluation

At present we did not find such system similar to ours
to make direct comparison and evaluation. But we
optimistically claim that the system can successfully
create report(s) and presentation(s) of whatever topic is
given as input. For example we asked the system to
prepare a report on “emotion sensing from text” and it
retrieves meaningful contents from several pdf files and
content-rich report can be created. One heading and text
tuple is also given as an example.

Figure 2. One example of Head-Text tuple obtained from
a web-page.
Te output of GuessMood() function is given below for a
input sentence; output tuple indicates the affective affinity
of the sentence.

Figure 3. GuessMood() used to set mood of a sentence

As an example of ambiguous topic, when the query
“What do you know about Jaguar?” was asked to the
system, the system gave these five senses for the topic
“Jaguar”: Jaguar as Panthera onca; Jaguar as Car;
Jaguar as Brazilian Cartoonist; Jaguar as Mac OS; and
Jaguar as Rocket. Similarly, when someone asked “Can

you tell me about virus?” the system created the
following five story-lines for the topic “virus” as
indicated below.

Figure 4. Five story-lines for an ambiguous topic “virus”
are created automatically.

User can choose any of the presentation according to
personal interest. By default the system automatically
starts to present from the first topic and so on. While the
automatic presentation is being performed, a user can
navigate among the slides too.

Figure 5. Auto-Presentation on Virus as Computer Virus

5. Conclusion

The purposes and functions of the discussed system are
different from that of conventional systems of information
retrieval in several aspects. For example, the task-
oriented, semi-autonomous and collaborative multi-agent
architecture emphasizes on emotion support by scripting
affects by MPML-tags to make the presentation more
human-like and finally a quick concept building approach
around the topic has been implemented by considering
several functionalities of ConceptNet 2.0. For developing
the system we used MS Visual C++, Microsoft Speech
API and Microsoft Agent. We admit that additional work
is necessary to optimize the system so that it can support
multi-user for higher loads with fast response. Further
refinements in the algorithms are necessary to improve

The First Head-Text tuple obtained from the link:
http://www.networkworld.com/news/2005/0421emotipcsc.html
H: [Emotion-sensing PCs could feel your stress]
T: [Computers that can read and respond to human emotions
can be more effective and reliable than computers that do not,
according to Rosalind Picard, professor and founder of the
Affective Computing Research Group at the Massachusetts
Institute of Technology.]

GuessMood (Arsenic has been used as a cure for diseases such
as syphilis and has been shown to assist in curing some
leukemias.)
Returned Values:
disgusted (88%), surprised (40%),sad (39%), fearful (31%),
happy (15%), angry (15%). So we set the mood for this text to
disgust to the agent who speaks-out this sentence.

information retrieval, extraction and association. Hence
we are concentrating on the structure of web documents
to develop more practical heuristics to perform data
mining from the web-pages more efficiently. In future we
plan to implement the system as a web-service so that any
user can be able to make query and receive the result of
the query as a summarized text-report and accompanied
multi-modal presentation along with the list of sources of
information. We also plan to perform usability study of
the system in future.

10. References

[1] Amitay, E., and Paris, C., “Automatically summarizing web
sites: is there any way around it?”, In Proceeding of the 9th
International Conference on Information and Knowledge
Management, McLean, Virginia, November 2000, pp. 173-179.

[2] André, E., Rist, T., Mulken, S. V., Klesen, M., and Baldes,
S., “The automated design of believable dialogue for animated
presentation teams”, In J. Cassell, S. Prevost, J. Sullivan, and E.
Churchill, editors, Embodied Conversational Agents, The MIT
Press, 2000, pp. 220-255.

[3] Ashish, N., and Knoblock, C., “Wrapper generation for
semi-structured Internet sources”, ACM SIGMOD Record,
26(4):8-15, 1997.

[4] Brin, S., and Page, L., “The anatomy of a large-scale
hypertextual Web search engine”, Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[5] Chen, L. and Sycara, K., “WebMate: A personal Agent for
Browsing and Searching”, In the Proceedings of the 2nd
International Conference on Autonomous Agents (Agents'98),
Carnegia Mellon University, September 30, 1997, pp. 132-139

[6] Glover, E. J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D.
M., and Flake, G. W., “Using web structure for classifying and
describing web pages”, In Proceeding of 11th International
WWW Conference, Honolulu, Hawaii, May 2002, pp 562-569

[7] Gong, Y., Liu, X., “Generic Text Summarization Using
Relevance Measure and Latent Semantic Analysis”, NEC USA,
C & C Research Laboratories, USA, SIGIR’01, September 9-12,
2001, New Orleans, Louisiana, USA, pp. 19-25.

[8] Guan, T., and Wong, K. F., “KPS - a Web information
mining algorithm”, In Proceedings of WWW8, Toronto, Canada,
May 1999, pp 1495-1507

[9] Google Web-Search Engine, http://www.google.com

[10] Henzinger, M. R., “Algorithmic Challenges in Web Search
Engines”, Internet Math, 1(1): 115–123, 2003.

[11] Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins,
A., “Extracting large-scale knowledge bases from the Web”, In
Proceeding of the Int'l Conf. on Very Large Data Bases,
Edinburgh, Scotland, 1999, pp. 639-650.

[12] Kushmerick, N., “Wrapper induction for information
extraction”, In Proceedings of International Joint Conference on
Artificial Intelligence, Nagoya, Japan, August 1997, pp.729-737.

[13] Liu, B., Chin, C. W., and Ng, H. T., “Mining Topic-
Specific Concepts and Definitions on the Web”, In Proceeding
of the Twelfth International World Wide Web Conference,
Budapest, Hungary, 2003, pp. 251-260.

[14] Liu, H. and Singh, P., “ConceptNet: A Practical
Commonsense Reasoning Toolkit”, BT Technology Journal,
22(4):211-226, October 2004. Kluwer Academic Publishers

[15] Liu, H., Lieberman, H., and Selker, T., “A Model of
Textual Affect Sensing using Real-World Knowledge”, In
Proceedings of the Seventh International Conference on
Intelligent User Interfaces, (IUI 2003), Miami, pp. 125-132

[16] Liu, H., “MontyLingua v1.3.1, Toolkit and API (2003)-
http://web.media.mit.edu/~hugo/montylingua

[17] Official home page of Microsoft® Agent
http://www.microsoft.com/msagent

[18] Prendinger, H., Descamps, S., Ishizuka, M., “Scripting
Affective Communication with Life-like Characters in Web-
based Interaction Systems”, Applied Artificial Intelligence, 16(7-
8):519-553, 2002.

[19] Rakhshan, A., Holder, L. B., and Cook, D. J., “Structural
Web Search Engine”, International Journal of Artificial
Intelligence Tools, 13(1):27-33, 2004.

[20] Shaikh, M. A. M., Ishizuka, M., and Islam, T., “Auto-
Presentation: A Multi-Agent System for Building Automatic
Multi-Modal Presentation of a Topic from World Wide Web
Information”, In Proceeding of IEEE/WIC/ACM Int'l Conf. on
Intelligent Agent Technology, Compiegne, France, September,
2005, pp. 246-249.

[21] Tsutsui, T., Saeyor, S., Ishizuka, M., “MPML: A
multimodal presentation markup language with character control
functions”, In Proceeding of Agents'2000 Workshop on
Achieving Human-like Behavior in Interactive Animated Agents,
Barcelona, Spain, June 2000, pp. 50-54.

[22] Weng, D. S. and Wu, N. X., “SiteHelper: A localized agent
that helps incremental exploration of the World Wide Web”, In
Proceeding of WWW6, California,USA, April 1997, pp.691-700.

[23] Wikipedia, http://en.wikipedia.org

[24] Yahoo! Search Engine, http://www.yahoo.com

