
Object Oriented Hybrid Software Engineering Process (SEP) model for Small
Scale Software Development Firms

Shaikh Mostafa Al Masum
mostafa@miv.t.u-tokyo.ac.jp

Research Student,
Ishizuka Lab, University of

Tokyo, Japan

A. S. M. Mahbub Morshed
mdmorshed@hotmail.com
Student, Islamic University
of Technology (IUT), Board

Bazar, Gazipur 1704,
Bangladesh

Ishizuka Mitsuru
ishizuka@miv.t.u-tokyo.ac.jp

Professor, Department of
Information and

Communication Engineering,
University of Tokyo, Japan

ABSTRACT: Software Engineering Process (SEP) is
a time sequenced set of activities to transform users’
requirements into a software. There are many SEP
and methodologies, namely Rational Unified Process
(RUP), Object-Oriented Process, Environment, and
Notation (OPEN), Extreme Programming (XP), etc,
having support for different scales of development.
All these methodologies are mostly Object Oriented
and tailored for mid to large scale of development. In
most of the cases these process models are very
elaborative that leads to the necessity of having
mentors to configure a specific process. This paper
actually distinguishes some characteristics of
software development activities of Small Scale
Software Development Firm (SSSDF) and hence,
proposes a preconfigured hybrid model of SEP in the
light of few third generation methodologies. Firstly,
this paper provides a brief comparison of the existing
third generation methodologies. Then it depicts some
development characteristics of SSSDF which are
actually revealed from survey of 15 BSDF. And
finally a hybrid model of SEP is realized.

Keywords: Hybrid Software Engineering Process,
OPEN, RUP, XP, Small Scale Software Development
(SSSD), Software Development Life Cycle (SDLC).

1. INTRODUCTION
Like all other engineering processes, SEP also
follows specific methodologies, provides the
guidelines that suggest some specific tasks or
activities to be performed at different stages of SDLC
to build any software. At present, third generation
methodologies like RUP[1], OPEN[2], XP[4][8], etc.
are used for developing software. In the next section
a brief summary of three popular third generation OO
methodologies is depicted.

2. OPEN : AN OVERVIEW
Object-oriented Process, Environment, and Notation
(OPEN) is a full-life cycle, object-oriented software
development approach.
Open Process Framework (OPF) contains 5 groups of
components namely,

1. Work Products – components that are developed
by the project.

2. Languages – the medium used to document a
work product.

3. Producers – anything that produces a work
product.

4. Work Units – a set of cohesive operations
performed by the producer to build a work
product.

5. Stages – the time intervals that provide a macro
organization to the work units.

The figures below show how the different
components of OPF are related with each other.

Figure 1: Metamodel of OPEN (after Henderson-
Sellers)
A process is instantiated from the OPEN process
metamodel and then tailored by adding or subtracting
process components such as activities, tasks,
techniques in order to best fit the organizational
needs in terms of the organization’s size, culture,
investment and other characteristics. OPEN process
lifecycle has a set of activities to produce specific
work products by stepwise tasks and finally
techniques explain about the procedure to produce
specific work products.

3. RUP : AN OVERVIEW
Rational Unified Process (RUP) is a heavyweight
object-oriented software development process. It
emphasizes the adoption of certain best practices of
modern software development. The RUP weaves
those best practices into the definitions of following
terms.

 Roles - sets of activities performed and artifacts
owned

 Disciplines - focus areas of software
engineering effort such as Requirements,
Analysis and Design, Implementation, and Test

 Activities - definitions of the way artifacts are
produced and evaluated

 Artifacts - the work products used, produced or
modified in the performance of activities.

The RUP is an iterative process that identifies four
phases of any software development project. Over
time, the project goes through Inception, Elaboration,
Construction, and Transition phases.

4. XP: AN OVERVIEW
Extreme Programming (XP) is a lightweight object-
oriented software development process developed by
Kent Beck in 1996 and it is based on four values
namely,

1. Communication – XP programmer

communicate with their fellow programmers
and with customers by having an on-site
customer throughout the development lifecycle.

2. Simplicity – XP programmer keep their design
simple and clean by removing duplication and
complexity from codes and by maintaining
minimum number of non-code related artifacts.

3. Feedback – XP programmer get feedback by
testing their soft
ware starting from day one.

4. Courage – XP programmer need to be honest
about what they can and cannot do. They should
courageously respond to changing requirements
and technology even if that means breaking
away from the current trend.

The following twelve XP practices support the four
values. They are the planning game, Small releases,
Metaphor, Simple design, Testing, Refactoring, Pair
programming, Collective ownership, Continuous
integration, Forty-hour week, On-site customer and
Coding standards. These practices are quite self
explanatory and are not discussed here in this scope.

5. COMPARISON OF METHODOLOGIES
The ideal approach to comparing any three processes
is to evaluate three processes in practice[3].
Unfortunately, such a comparison experiment is
extremely difficult to undertake because of the
inability of an empirical software engineering
researcher to control the many confounding variables
or to replicate the experiments (Menzies and Haynes,
1994).

Thus in the evaluation presented here, the focus is on
a “theoretical” comparison between OPEN, RUP and
XP. It should be noted that the comparison is not
quite exhaustive. Only those aspects are presented
which will help in developing the hybrid model.

5.1 Meta-model and Flexibility
OPEN is defined at the meta-model level whereas
both RUP and XP are defined at the model level
albeit their models were instantiated from meta-
models somewhat similar to that of OPEN.

Organization-specific processes are instantiated from
the OPEN meta-model by choosing specific
Activities, Tasks and Techniques (three of the major
meta-level classes) and specific configurations
thereof. Process tailoring may also be needed
whereby details of the Tasks and Techniques are
"tweaked" for optimum fit to the problem domain.
This makes OPEN processes very flexible. RUP and
XP, on the other hand, supports comparatively lesser
flexibility because both of them are pre-packaged,
pre-configured instance (i.e. Hruby, 2000) of their
own meta-model and could thus be described as a
tailored methodology. So, the developer does not
have to and can not regenerate a process, it is already
available. Some tailoring is possible in RUP and no
such possibility is there in XP.

5.2 Time and Effort Allocation
This part discusses how each process is arranged over
time and how the staffing effort allocation compares.

The OPEN life span is divided into 6 phases –
Business Modeling, Inception, Construction, Usage,
Retirement and Business Re-engineering. Each phase
may go through a number of builds that last between
one to three months. The entire duration is usually
more than 2 years.

The life span of RUP is divided into 4 phases –
Inception, Elaboration, Construction and Transition.
Each phase is a summation of some – usually 3 to 9 –
iterations that can last between 2 weeks and 6
months. The expected project duration is from 6
weeks to 54 months.

The entire lifespan of XP is considered as 1 large
phase and iteration take place over the entire lifespan.
The duration of iteration is about 2 weeks. The
duration of the project is about 2 months
approximately.

5.3 Artifacts
Artifacts – or work products for OPEN - are any
components or deliverables used, produced or
modified by the project. Artifacts include user-
manual, use-cases, test fixtures, project plan, etc.
Both RUP and OPEN describes a large number of
artifacts – RUP describes over 100 of them – that
have to be produced over the entire SDLC for a
complete software. These artifacts capture the results
of various activities. XP also tries to capture the
results but provides little guidance on how to do it.
So, XP has around 30 artifacts. In XP, the final
resting place for requirements or design decisions is
the code, not artifacts. Unfortunately, code is not an
effective communication medium for all
stakeholders.

5.4 Activities
An activity – a task for OPEN – is a major work unit
that produces a related set of work products.
Activities describe what needs to be done, not how.
Generally, the more the activities, the more time it
will take to build the project.

In OPEN, there are 7 major activities and many more
sub-activities. The major activities are Project
initiation, Requirements engineering, Analysis and
model refinement, Project planning, Build,
Evaluation and Implementation Planning (or
Deployment). RUP has 9 activities – Business
Modeling, Requirements, Analysis and Design,
Implementation, Test, Deployment, Configuration &
Change Management and Project Management.
Lastly, XP has only 4 activities - Coding, Testing,
Listening, And Designing.

The activities show that XP has a very simple view of
software development as opposed to OPEN that has a
strong focus not only on software development but
also on project management (Henderson-Sellers and
Due, 1997), business decision making, sociological
context and integrated reuse.

5.5 SDLC Model

Figure 2: The phases and iterations of RUP

The SDLC model of XP is similar to that of RUP
except that there is fewer number of iteration at each
phase and it has only 4 workflows – Design, Code,
Test and Listen – on the vertical axes.

There are many ways in which XP is similar to RUP
and both can be instantiated from OPEN’s meta-
model. XP can be understood as a shorter version of
RUP without having the additional features of RUP
like project inception, deployment, business
modeling, etc. However, XP is not particularly
suitable for those big projects which require extra
planning, iteration and requirement engineering. In
contrast, OPEN can be used for all projects provided
that a robust process is instantiated from the meta-
model.

Figure 3

6. FEATURES OF SSSDF

Some of the development features of SSSDF based
on the results of a survey of 15 leading Bangladesh
Based (both Domestic and International) Software
Firms is listed below:

a. Firms are small – average number of developers
is 25.

b. Web based solution is the major type of
development work.

c. Almost all firms use Object Oriented Approach.
d. Most of them don’t follow any well-known

methodology, but some try to follow some
variant of RUP.

e. All works are done in a project driven small team
– average team size 5/6 programmers.

f. Average project duration is 8 to 10 months.

Some criticisms regarding the existing OO
Methodologies with respect to these points are made.
OPEN is not purely ideal for SSSDF because of its
“mammoth-like” heavy-weight nature and necessity
of high degree of expertise by the developers. OPEN
is highly flexible meta-level framework, together
with a repository of process component instances,
from which industry creates their own
organizationally tailored method. OPEN gives a high
degree of flexibility although care must be taken in
optimizing this construction process and the resultant
OPEN process instance. Since, at present, this task
needs to be undertaken by a skilled process engineer
(Henderson-Sellers et al., 2001); it would not be ideal
for SSSD environment which usually lacks highly
professional and expert software developers.

As already mentioned RUP and XP, on the other
hand – are pre-packaged, pre-configured instances
(i.e. Hruby, 2000) of their own meta-model and could
thus be described as a (tailorable) methodology. So,
the developer does not have to regenerate a process
due to its readiness. Now, project managers’ task
would be to determine which of these two processes
would best suit SSSDF.

RUP also has to bear some brunt of criticism faced
by OPEN because pre-configured and pre-packaged
instances of RUP can also accommodate a variety of
processes, albeit the varieties are not as numerous as
available in OPEN. But, unlike OPEN, RUP can not
be totally thrown away as a possible candidate
methodology for SSSDF due to its remarkable
adaptability and, most important of all, it already has
got some followers in SSSDF.

XP has become very popular recently all over the
world due to its simplistic nature and several
practices. Since it is relatively latest methodology, it
enjoys a large number of comparative advantages
over its counterparts. So, it is most appropriate to first
investigate whether XP can blend and be well
applicable to SSSDF for all sorts of development
works.

XP - in its orthodox form - addresses only a narrow
range of software development projects (mainly
small projects) – i.e. XP can not be used for all
projects. The following conditions have been
identified and XP’s practices can be fully
implemented to develop an “extreme” project given
that all the following conditions are fulfilled,
a. The project team must be small – ideally ten

people or less.
b. The project itself has to be small – the one that

can be completed within 2 months.
c. The team must be co-located, and willing and

able to do pair programming.
d. There must be an on-site customer during the

whole duration of the project.

The XP’s pair-programming practice can also be
easily implemented in SSSDF as all the team
members are co-located within the firm to produce
robust code and increase reusability. However, care
must be taken that the paired team members have
compatible personalities and well-matched
programming skills.

Originally, XP admits that a real customer must sit
with the team, available to answer questions, resolve
disputes, and set small-scale priorities. Commitment
of an on-site customer is not particularly forthcoming
as customers may not be free for the duration
required by a XP process. On this regard, however,
the RUP is more flexible. The RUP acknowledges
that it is not necessary to have a real customer co-
located with the development team.

Even though XP seems to be more suitable for
SSSDF but there are some aspects that are not
covered by XP but are crucial for SSSDF which are
not trivial:

a. In XP, only unit and acceptance tests are
applied on the system and the development
team uses the test results to decide whether the
system is ready for the customer. Since most
SSSDFs’ works involve web-based solutions,
other tests may be required: for example, load

tests for Web sites whereas these extra tests are
available in RUP and OPEN.

b. The whole area of system deployment is
missing from XP. Like all Commercial software
products, most Small Scale Software firms also
require online documentation, packaging,
distribution, user manuals, training materials,
and a support organization. The RUP
Deployment discipline provides the guidance to
practitioners on how to create appropriate
materials and then use them.

c. XP doesn’t encourage for UML like diagrams
which are very essentials for SSSDF where
developers often leaves jobs.

As it can be seen, XP – on its own – cannot fulfill the
development requirements of SSSDF. RUP, on the
over hand, does an overkill and have too many
additional aspects which are not actually required at
present for SSSDF. So, a suitable methodology for
SSSDF is neither XP nor RUP but rather, should
contain a mixture of characteristics taken from both
XP and RUP and can be instantiated from OPEN’s
meta-model to make software development more
predictive, managed and streamlined.

7. THE HYBRID METHODOLOGY

The proposed hybrid (figure 4) model has four
phases: Inception, Planning, Iteration and
Deployment.

The main goal of the inception phase is to determine
the true objectives of the user and to devise user
stories for the planning phase. A working version of
the software is developed in each iteration. However,
the number of iterations can be much less than that of
RUP. Some tests, library management and manuals
are developed in the deployment phase along with the
delivery of the software. The test follows iterative
waterfall model and is given the same kind of
emphasis as that of XP.

During Project Initiation we restrict three activities
only. These are Feasibility Study, Cost-Benefit
Analysis and Identification of the Reusability Factor.
Actually these three activities are very essential for
the small firms to make a decision regarding project
induction. We feel that collection of “User Story” is
important to shape the project. The same procedure
followed in XP can be followed. We strictly suggest
for UML like diagrams to make Analysis and
Business Model to minimize the risk that is most
likely to encounter by sudden leave of software
developers in SSSDF and which is, in fact, very

common. According to the verified and accepted
software business model (illustrated by diagrams), a
Release plan is made. .

Figure 4: Object Oriented Hybrid Methodology

According to release plan developers are divided into
small units within the project to write the codes and
build the system. Building is strictly related with
testing which must follow a water-fall model for
testing. During Iteration Phase developers build
iteratively with the help of some OPEN’s OO
Techniques [7] and follow XP’s practices[4][8]. In
this phase Risk Management and Metric Collection is
suggested through waterfall model of testing
strategies. After acceptance test Deployment and
Library Management for reusable components are
considered.

8. CONCLUSION

Small-scale software development is becoming
popular day-by-day and this trend is expected to
continue and flourish in future. OPEN and RUP
mainly targets the projects of long duration, higher
complexity and managing a large number of people.
On the other hand, XP has some deficits regarding
some valuable process components. Hence, we
believe that the proposed model, tuned for small-
scale software, will become more applicable and
easily bearable to the emerging small scale software
firms now and for the days to come because it has
incorporated several good practices from XP fitting
with RUP like phases abiding by a meta-model
similar to OPEN. We expect the proposed model will
be able to streamline that ad-hoc software
development process involved in Small Scale
Software Development Firms.

REFERENCES

[1] Booch, Grady et al, The Unified Modeling
Language – User Guide, Addison-Wesley
2000.

[2] Henderson-Sellers, B. and Due, R.T., OPEN
project management, Object Expert, 2(2),
30-35 1997, invited article for Object
Expert, 2(2), 30-35 COTAR Contribution no
96/10

[3] Hruby, P., 2000, “Designing customizable
methodologies”, JOOP, 13(8), 22-31

[4] Kent Beck, Extreme Programming
Explained: Embrace Change. Addison-
Wesley 1999.

[5] Menzies, T. and Haynes, P., “The
methodology of methodologies; or,
evaluating current methodologies; why and
how”, Proceedings of the Technology of
Object Oriented Languages and Systems
Pacific conference: Prentice Hall, 1995.

[6] Ron Jeffries et al, Extreme Programming
Installed. Addison-Wesley, 2000.

[7] Henderson-Sellers, B., Simons, A.,
Younessi, H., The OPEN Toolbox of
Techniques, Addison-Wesley Pub Co; Book
and CD-ROM edition (June 17, 1999)

[8] http://extremeprogramming.org, Official
Website of Extreme Programming
Community.

