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Abstract

More and more users have been taking various actions to di-
verse resources referred to by URLs such as news, web pages,
images, products, movies as a result of the growth of so-
cial media. They are annotating, tweeting in Twitter, reblog-
ging in Tumblr, and Liking in Facebook, etc. Analyses about
these diverse actions will be useful for aggregating or inte-
grating diverse resources. In this paper, we view users’ ac-
tions to resources as expressing their some interests, and by
investigating how their interests are expressed in social me-
dia, we get suggestions for aggregations. Our results show
that a certain kind of action (such as tagging on Delicious)
can be used to make predictions on a different kind of ac-
tion (such as favorite on Twitter). These analyses will be use-
ful for aggregating or integrating diverse contents on multi-
ple sources. In addition to some experimental analyses, we
propose a novel method to predict users’ interests in social
media, using time-evolving, multinomial relational data. Our
experimental results show that the proposed method signifi-
cantly outperforms standard tensor analysis and an existing
state-of-the-art method (LDA) in prediction tasks.

Introduction

In social media, users perform various actions within their
social networks such as expressing their interests to a par-
ticular website in Facebook1 or retweeting a comment made
by a friend in Twitter2. The manners in which different users
express their interests to a particular resource vary across
social media. For example, a user might bookmark a web-
site on Delicious3 when she wants to keep a record of it,
whereas another user might favotite a resource in Twitter.
When different users take some actions to a certain resource,
we can hypothesize that those users get interested in the
resource although their action types may be different each
other. When a user takes some actions to a resource, we
can view that user is interested in the resource, whether it
is not clear she did it because she loved it or she wanted
to call in the question, or so. We view users’ behaviors
as Figure 1. Each user has unique preferences which are
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1www.facebook.com
2www.twitter.com
3www.delicious.com
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Figure 1: A model of users’ behaviors in social media.

influenced by numerous factors such as her cultural back-
ground, education, and past experience and so on. Conse-
quently, the different actions performed by users in social
media provide valuable clues for extracting users’ prefer-
ences, predicting users’ interests in numerous Web-related
tasks such as information recommendation and trust net-
work extraction (Matsuo and Yamamoto 2009). For exam-
ple, if two users A and B perform similar actions to numer-
ous resources, then it is likely that A and B have similar
interests. As a result, a recommender system can use this in-
formation to recommend information (e.g. news, products,
movies etc.) to B based on the interests expressed by A.
Moreover, by exploiting the interest related actions, we can
overcome the cold-start problem (Jamali and Ester 2009;
Massa and Bhattacharjee 2005) in recommendation systems.
So-called cold-start users who have rated only a very small
number of items, are expected to have some interests data on
the Web such as social networks.

Despite the importance of user interest prediction in so-
cial media, it is a relatively under-studied problem that poses
three main challenges. First, how can we integrate or aggre-
gate various action data existing on the vast Web? There are
various web services and functions provided on the Web,
and more and more users use various web services and func-
tions. Even when we focus attention on one user, the user is
likely to use more than one web service or function. Both
the amount and the variety of data will continue to increase.
How can users get meaningful information from these data?
What kind of suggestions can we get from those data for
aggregating diverse data? For example, is it really effective
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to mix different types of actions? If so, what kind of actions
are useful to predict a certain kind of action? To answer these
questions, we develop experimental analyses. We examined
whether a certain kind of action such as favorite on Twitter
can be exploited to predict another kind of actions such as
tagging on Delicious.

Second, the actions performed by users in social media
involve high-dimensional and multinomial relations (Lin et
al. 2009). For example, a user might express her interest in
a particular news item by retweeting it in Twitter, which
then gets marked as favorited by a different user. Such
an action involves multiple users and multiple resources
which calls for a multinomial representation. The number
of users as well as the number of resources on the Web is
extremely large, which results in a large number of relation
instances. To accurately capture user interest from this high-
dimensional multinomial relational data, we need a method
that is both efficient and robust to data sparseness.

Third, the interest of users on the Web is a dynamic phe-
nomenon that constantly varies over time and from one user
to another. For such time-aware recommendations, it has
been pointed out that capturing users’ temporal preferences
is important (Xiang et al. 2010). Overall behavior of a user
may be characterized by her long-term preferences. But at
any given time, a user is also affected by her short-term in-
terest due to personal events such as travellings or birthdays
etc. To capture users’ temporal preferences, it is pointed out
that capturing user-specific time scale is more effective (Xi-
ang et al. 2010). Although many time-evolving models (Sun
et al. 2007; Sun, Tao, and Faloutsos 2006) introduce time as
an universal dimension shared by all users, in some cases we
can observe local effects that involve only a specific user or
some specific users. Although this user specific time scale is
an important aspect of time-varying systems, there is much
less work about it.

For latter two challenges, we propose a new method that
captures both multinomial and time-dependent, user-specific
actions in social media.

Our contributions are summarized as follows.
• We conduct experimental analyses about the relations

among diverse actions on social media. Our results show
a specific action such as tagging on Delicious can be ex-
ploited to predict another action such as favorite on Twit-
ter. These analyses will be useful for aggregating or inte-
grating diverse contents on multiple services.

• We propose ActionGraph, a novel graph representation
for modeling multinomial, time-dependent actions per-
formed by users in social media. To the best of our knowl-
edge, this method is the first one that captures both multi-
nomial and user-specific time scale.

• Our experimental results show that the proposed method
significantly outperforms tensor analysis and a previously
proposed state-of-the-art prediction method based on La-
tent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003). The proposed method is not only precise but also
robust to data sparseness.
The rest of the paper is organized as follows. Firstly, we

show our experimental analyses about the relations among

diverse actions. The results will be useful for integrating
or aggregating multiple sources on the Web. Secondly, we
present a method for interests predictions that captures both
multinomial and user-specific time scale. Thirdly using real-
world data, we demonstrate the utility of our method. Then
we review some related work and conclude.

Diverse actions analyses

In this section, we investigate how users’ interests are ex-
pressed in social media, and get suggestions for integrat-
ing or aggregating multiple resources. We designed our ex-
periments as analyzing relations between different types of
actions. Using favorite data in Twitter, how precisely can
we predict another action such as tagging on Delicious or
retweet in Twitter? If we can predict well, it will support to
aggregate these two kinds of data. Figure 6 shows an exam-
ple of users’ actions on social media. In the following, we
shall call what type of action a user takes to a specific re-
source as action type.

Experiments

Dataset We have collected a dataset from Twitter and De-
licious. Crawled Dataset will be published at the author’s
web site4. Twitter is one of the most popular and growing
social media, and can be thought as a suitable application
for our Social Media analyses. We are aiming to aggregate
data from multiple web services, so we need some linking or
bridging entities that link/bridge different applications. URL
is one of the entities which link data from one application to
another application. Besides URL is an entity that can indi-
cate various resources. So it will be suitable to choose ac-
tion types which involve URLs. Major functions in Twitter,
tweet, retweet, favorite and following meet this requirement.
So we choose those four functions for Twitter functions. We
show some details about those functions below. Users can
tweet a short post, called tweet. Users can write texts includ-
ing URLs in their tweets. By following another user, users
can view that user’s tweets. Retweet is a function to re-post
other user’s tweet, by clicking one button. By retweeting a
post, the user’s followers can view the post. Users can also
favorite a post by clicking one button. We chose another
application, Delicious, for our analyses. Delicious is a so-
cial bookmarking web service. We picked users’ tagging ac-
tions from Delicious. Delicious tagging actions are similar to
URLs referring actions in Twitter, in the sense that they are
referring URLs actions. We started crawling from a specific
user, then we followed the users’ following networks to two
hop links. Then using FriendFeed5 data, we identified users
who also have FriendFeed accounts. Some of those users
have delicious accounts, which can be identified by Friend-
Feed. We collected data from these identified users with time
stamps ranging from August 1 2010 to August 30 2010. The
relational tuples are summarized in Table 1. Tagging action
on Delicious is noted as tagging.

4nozomi.shi-ba.org
5www.friendfeed.com
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Table 1: Summary of the relational tuples in Twitter and De-
licious dataset for action types analyses.

Action type Facets Tuples
tweet (user, URL, tweet id) 213,929

retweet (user, URL, original tweet id) 22,680
favorite (user, URL, original tweet id) 37,912

following (user, user) 214,561
tagging (user, URL, keywords) 21,530

Prediction setting We conducted preliminary experi-
ments, and segment the duration every three days, every nine
days, every twenty-seven days. The prediction performance
was best with every three days dataset. Twitter or Delicious
can be thought as a real-time service, so short segments such
as every three days may be preferable. So we segment the
duration into 10 time slots (every three days). In the follow-
ing we shall use t ∈ [1, 9] to denote a time slot index. We
used slot t[1−9] data as training data, and t+1[2−10] data
as testing data. The task is a binary classification whether
input data is positive or negative and we evaluate the pre-
cision. Input data is relational tuple in Table 1. Features of
retweet actions are (user, “retweet”, URL, original tweet id).
Features of user actions used for our analyses are those n-
tuples, each of them corresponding to one action, including
the action type. We made 50.0% negatives for each training
dataset, so a random prediction achieves 50.0% precision.
We used a machine learning library Classias6 for this exper-
iment. We adopted L2 regularized logistic regression algo-
rithm here. We also conducted same experiments adopting
L2 regularized logistic regression, L1 regularized L1 loss
SVM, L2 regularized L1 loss SVM, but the following con-
clusion is same. So we show results only about L2 regular-
ized logistic regression for want of space. To compare var-
ious type of actions, which vary in the amount of data, we
made the amount of each test/train data equal in each time
slot. The amount of data to predict retweet in t[2] by tweet
in t[1] is equal to the amount of data to predict favorite in
t[2] by favorite in t[1]. When mixing multiple action types
as train data, we conducted two experiments. First, we just
mixed each data used in the experiments described above.
Those experiments are noted as Not-Fixed in Table 2. Sec-
ond we tuned the total amount of data to be equal to the test
data. Those experiments are noted as Fixed in Table 2.

Results and Discussion

The whole results are shown in Table 2. Action type for test
means what action type was used for the test experiment, and
Action type for train means what action type was used for
the train experiment. We note tweet, retweet, favorite, fol-
lowing, and Delicious tagging as Tw, RT, Fav, Fol and Tag,
respectively in Table 2. In the following we pick up some ob-
servations. First, we show results about multi-domain anal-
yses. Then we examine multi-functions analyses on a single
domain (Twitter).

6www.chokkan.org/software/classias/index.
html.en
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Figure 2: Predicting following by other actions.
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Figure 3: Relations between retweet and tweet.
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Figure 4: Predicting Delicious tagging by twitter actions.
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Figure 5: Predicting twitter actions by Delicious tagging.
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Table 2: The Precision results (averaged on each time slot)
for action types analyses.

Action type for test Action type for train Not-Fixed Fixed
TAG TAG 77.3± 8.3% 77.3± 8.3%
TAG Fav 43.4± 1.7% 43.4± 1.7%
TAG Fol 57.4± 6.6% 57.4± 6.6%
TAG RT 39.5± 17.1% 39.5± 17.1%
TAG Tw 43.5± 16.8% 43.5± 16.8%
Fav Fav 54.9± 3.9% 54.9± 3.9%
Fav Fol 49.5± 2.4% 49.5± 2.4%
Fav RT 53.0± 3.3% 53.0± 3.3%
Fav Tw 51.6± 2.4% 51.6± 2.4%
Fav TAG 60.8± 9.0% 60.8± 9.0%
Fav Tw-Fol 50.5± 1.5% 50.3± 1.6%
Fav Fav-Fol 53.3± 1.9% 54.3± 2.4%
Fav Fav-RT 55.9± 2.9% 55.4± 2.9%
Fav Fav-Tw 55.0± 3.1% 54.7± 1.8%
Fav RT-Fol 51.2± 1.2% 51.3± 1.5%
Fav RT-Tw 52.5± 2.%5 52.6± 2.8%
Fav Fav-RT-Fol 54.7± 2.4% 53.9± 2.3%
Fav Fav-RT-Tw 55.3± 3.0% 53.8± 2.9%
Fav Fav-Tw-Fol 53.9± 1.8% 53.5± 3.4%
Fav RT-Tw-Fol 51.2± 1.8% 50.9± 1.4%
Fav Fav-RT-Tw-Fol 54.5± 2.2% 52.4± 2.8%
Fol Fav 55.0± 3.6% 55.0± 3.6%
Fol Fol 64.3± 2.0% 64.3± 2.0%
Fol RT 52.4± 3.4% 52.4± 3.4%
Fol Tw 53.2± 2.3% 53.2± 2.3%
Fol TAG 70.9± 9.2% 70.9± 9.2%
Fol Tw-Fol 62.9± 2.3% 62.4± 1.3%
Fol Fav-Fol 63.5± 1.8% 62.2± 3.2%
Fol Fav-RT 51.7± 2.9% 53.4± 2.4%
Fol Fav-Tw 52.8± 2.5% 54.9± 2.8%
Fol RT-Fol 63.2± 2.3% 61.9± 1.4%
Fol RT-Tw 52.0± 2.8% 53.9± 1.9%
Fol Fav-RT-Fol 62.4± 2.2% 59.8± 3.2%
Fol Fav-RT-Tw 51.5± 2.8% 53.5± 2.8%
Fol Fav-Tw-Fol 62.2± 2.1% 60.2± 2.9%
Fol RT-Tw-Fol 62.2± 2.0% 59.6± 2.8%
Fol Fav-RT-Tw-Fol 61.7± 1.8% 59.4± 3.3%
RT Fav 53.7± 2.6% 53.7± 2.6%
RT Fol 50.8± 1.5% 50.8± 1.5%
RT RT 57.4± 2.0% 57.4± 2.0%
RT Tw 56.1± 1.6% 56.1± 1.6%
RT TAG 56.4± 9.4% 56.4± 9.4%
RT Tw-Fol 52.7± 1.1% 53.4± 1.4%
RT Fav-Fol 52.0± 1.1% 52.1± 1.7%
RT Fav-RT 57.5± 2.3% 56.4± 4.0%
RT Fav-Tw 54.6± 1.0% 54.5± 1.9%
RT RT-Fol 55.5± 1.2% 55.7± 1.7%
RT RT-Tw 58.2± 2.1% 57.2± 2.3%
RT Fav-RT-Fol 56.2± 1.3% 56.2± 2.2%
RT Fav-RT-Tw 57.9± 2.9% 57.7± 2.5%
RT Fav-Tw-Fol 53.1± 1.5% 54.2± 2.3%
RT RT-Tw-Fol 56.7± 1.9% 56.5± 2.1%
RT Fav-RT-Tw-Fol 56.9± 1.9% 55.8± 2.0%
Tw Fav 53.8± 3.8% 53.8± 3.8%
Tw Fol 51.0± 2.5% 51.0± 2.5%
Tw RT 58.0± 2.0% 58.0± 2.0%
Tw Tw 59.2± 2.4% 59.2± 2.4%
Tw TAG 51.4± 11.6% 51.4± 11.6%
Tw Tw-Fol 56.0± 1.7% 54.4± 1.3%
Tw Fav-Fol 51.5± 2.5% 50.9± 2.4%
Tw Fav-RT 57.0± 2.0% 56.3± 2.1%
Tw Fav-Tw 58.7± 2.0% 56.7± 2.0%
Tw RT-Fol 53.7± 1.8% 53.7± 2.7%
Tw RT-Tw 59.9± 2.2% 58.6± 2.2%
Tw Fav-RT-Fol 53.5± 2.2% 53.8± 2.0%
Tw Fav-RT-Tw 59.1± 1.7% 58.0± 2.0%
Tw Fav-Tw-Fol 56.0± 1.8% 54.7± 2.1%
Tw RT-Tw-Fol 56.6± 1.6% 55.6± 1.7%
Tw Fav-RT-Tw-Fol 56.5± 1.4% 55.8± 1.9%

Complementary features in Multi-Domain Figure 5
shows a result predicting Twitter actions by Delicious tag-
ging and Figure 4 shows a result predicting Delicious tag-
ging by Twitter actions. Each bar noted as A-B shows an
average precision on each time slot for the experiment that
an action type for test data is A and the train action type
is B. An error bar shows standard deviation. Delicious tag-
ging actions are effective to predict Twitter favorite actions.
When we predict Twitter favorite by using Delicious tag-
ging, it seems to achieve a little higher performances in a
mean viewpoint. Delicious tagging actions are also effec-
tive to predict Twitter following actions. It seems to achieve
almost equal performances to predicting following actions
by following itself. This means that Delicious tagging can
substitute Twitter following actions, suggesting that mixing
different action types can be effective for sparse data. How-
ever, predicting Delicious tagging by Twitter actions results
in rather lower performances as showed in Figure 4. This
is an asymmetry property of multiple domains. While Deli-
cious tagging was useful to predict some actions in Twitter,
actions in Twitter were not so useful to make predictions
on Delicious tagging in our experiments. We think one of
the reason why we observe this asymmetry is that keywords
reflect users’ preferences that complement preferences re-
flected in actions without keywords. So even if the action
types (such as tagging or favorite) are different, adding fea-
tures such as keywords based on other action types will be
effective for interest predictions. This suggestion will sup-
port to mix different kind of actions even across web ser-
vices.

Similar/Dissimilar action types in a single Domain Now
we focus attention on a single domain, Twitter. As described
in Figure 3, there are some situations in which different
action types can be exploited to predict a specific action
type. To predict retweet/tweet action, you can achieve al-
most equal performances by using the other action type,
tweet/retweet. Predicting retweet/tweet by the other action
type tweet/retweet achieves equal performances and the
other action types can substitute the original action type,
suggesting that mixing different action types can be effec-
tive for sparse data. When one action type B can be ex-
ploited to predict another action type A, it will mean that
preferences that affect acting A share some characteristics
in common with B. We can say an action type B is similar
to A. About tweet-retweet relations, it makes sense these ac-
tion types are similar. Because users can add comments and
quote another user’s tweet in their tweets, and this action is
similar to clicking a retweet button in the sense that they are
both quotations. On the other hand, as described in Figure
2, there are also some situations in which other action types
cannot be exploited to predict a specific relation. For exam-
ple, to predict following actions, using other actions often
causes lower performances. When predicting other actions
by using following action, it tends to result in lower per-
formances, too. Following is more static than other actions,
and following networks can be viewed as platforms for other
actions. So the Following actions and other actions may be
relatively different in nature.
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Figure 6: An example of users’ actions on social media.
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Figure 7: An example of ActionGraph representation.

Ambiguities of the referring URLs actions in a single Do-
main Compared to the case of following action in Table 2,
URLs referring actions in Twitter seem to be more similar
with each other. We can say predicting URLs referring by
other URLs referring actions is more effective than predict-
ing by using following actions in Twitter. We think this is
because that the preferences reflected in URLs referring in
Twitter are relatively similar with each other, lapping over
each other. This suggests when we can get relatively little
data about a specific action type of URLs referring action,
other URLs referring actions are expected to substitute it.

The influence of amount of data Comparing the Fixed
case where we tuned the amount of the total data for train,
and the Not-Fixed case, we found there are less differences
between them. This suggests increases of the amount of
data do not necessary lead to linear improvements of perfor-
mances. Another possible interpretation is that because we
collected data from near a specific user’s following network,
it may be rather biased. Collecting from more diversified ar-
eas might improve the performance. It is one future work to
investigate how the properties of the social network affect
the prediction.

Proposed Method

We showed adding features based on different action types
is effective for the interest prediction task in the previous

section. So it is useful to develop an efficient method that
can handle multinomial relations. In this section, we propose
a new method that captures both multinomial, user-specific
time scale actions performed by users in social media.

ActionGraph Construction

An action performed by a user in a social media often in-
volves multiple entities. For example, let us consider the sce-
nario where a user A tags a website located by URL l with
the keyword, “artificial intelligence”. We can view this ac-
tion as involving four entities: user A, URL l, the action verb
“tag”, and the keyword “artificial intelligence”. To represent
this action, we create an action node, which corresponds to
the action itself, and create four object nodes, which cor-
respond to the involved entities, user A, URL l, the action
verb “tag”, and the keyword “artificial intelligence”. Next,
we connect the action node to each of those object nodes.
ActionGraph is defined as a graph G = (VAC ∪ VOB , E),
where each vertex in VAC corresponds to a specific action at
some point in time represented by an action node, and each
vertex in VOB corresponds to an entity involved in an action
represented by an object node. An edge in e ∈ E connects
a vertex in VAC to a vertex in VOB . Note that there are no
intra-set edges linking two vertexes in VAC or VOB . Action-
Graph is a bipartite graph whose edge connects an action
node and the object nodes involved in a particular action.
Figure 6 shows an example of users’ actions in social me-
dia. Figure 7 shows the corresponding ActionGraph.

ActionGraph representation preserves the original co-
occurrences among multinomial data, because by following
the links from an action node, one can retrieve all the enti-
ties that involve in the action represented by the action node.
Furthermore, ActionGraph preserves the time information
for each user, because an action node corresponds to a spe-
cific point in time in which that action is performed by the
user. For example, if a user performed one action now and
another action after several days, those two actions will be
represented by different action nodes. Because users are ex-
pected to have their own personal time scale (Xiang et al.
2010), it will be effective to preserve the co-occurrences be-
tween a user and time in which the user performed the ac-
tion. On the other hand, if we construct a bipartite graph
modeling user-URL co-occurrences, which is popular in rec-
ommendation tasks, two important information, entities in-
volved in the action such as an action type and time infor-
mation for every user, will be lost. It is noteworthy that Ac-
tionGraph is not limited to relational triples, and can express
co-occurrences among more than three entities. Therefore,
we can add other information in ActionGraph that describe
a particular action, such as the keywords used for tagging, to
better describe a particular action.

Predicting User Interest using an ActionGraph

In recommendation tasks, collaborative filtering (Resnick et
al. 1994; Shardanand and Maes 1995) is a major approach
nowadays. Collaborative filtering models the recommenda-
tion task as computing the similarities between a user and
a set of items. Such an approach that computes the similari-
ties between a user and a set of items for recommendations is
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common practice in recommendation tasks. Following these
previous work, we model the problem of predicting the user
interest in a resource as a problem of computing the similar-
ity between a user and a set of resources. Given an Action-
Graph, to predict potentially interesting resources to a partic-
ular user, we propose a similarity function that exploits the
structure of the ActionGraph using graph kernels (Fouss et
al. 2006). Because object nodes include users and resources,
we must measure similarities between object nodes. Conse-
quently, we define similarities between action nodes in terms
of object nodes, and define similarities between object nodes
in terms of action nodes as described below.
Similarities between action nodes:
Two action nodes are considered to be similar if the sets of
involved object nodes are similar. Numerous similarity mea-
sures have been proposed in the literature to measure the
similarity between two sets such as the Jaccard coefficient,
Dice coefficient, mutual information etc. Any one of those
measures can potentially be used for this purpose.
Similarities between object nodes:
Two object nodes are considered to be similar if action nodes
which involve those object nodes are similar.
We use a graph kernel to incorporate the above-mentioned
criteria and compute the similarity between a user and a re-
source in an ActionGraph. Graph kernels enable us to exploit
the structural properties in an ActionGraph. It is worth men-
tioning that graph kernels consider not only the direct paths
between nodes, but also the indirect paths when computing
similarity. Moreover, graph kernels have the desirable prop-
erties that the similarity between two nodes increases con-
comitant with the number of paths connecting those nodes,
and the similarity between two nodes decreases when the
length of the connecting paths increases. Consequently, two
nodes are considered as similar if there are many short paths
connecting them.

Several graph kernels has been proposed in the litera-
ture. Among them, graph kernels based on Laplacian matrix
such as the regularized Laplacian kernel (Smola and Kon-
dor 2003), are suitable to find similar nodes (Ito et al. 2005).
Laplacian matrix is a matrix representation of a graph. The
unnormalized Laplacian matrix of matrix M is defined as
(Eq.1).

L(M) = D(M)− M. (1)

Where D(M) is a diagonal matrix which has its diagonal el-
ements set to that in a matrix M and all other elements to
zero. The unnormalized Laplacian matrix (Eq.1) can be nor-
malized by multiplying D(M)

−1/2 from left and right sides
to L(M) to give a symmetric normalized Laplacian matrix:
D(M)

−1/2
L(M)D(M)

−1/2.
The regularized Laplacian kernel RLβ is defined as fol-

lows,

RLβ(AA�) =
∞∑

k=0

(−βL(AA�))k = (I + βL(AA�))−1

(2)
where A is a similarity matrix and I is the identity matrix,
β is a parameter used to tune how much similarity weights

Table 3: Summary of the relational tuples in Twitter dataset
for prediction tasks.

Action type Facets Tuples
retweet (user, URL, original-tweet-user) 14,392
favorite (user, URL, original-tweet-user) 25,884

are placed on distant nodes when measuring the similarity
between a pair of nodes. To explain regularized Laplacian
kernel by an example let us consider the situation depicted in
Figure 7 where three users, A, B and C express their interest
in a URL l. However, action type of A and B is favorite, and
the action type of C is retweet. There are more short paths
between the action nodes of A and B than between A and C
or between B and C. Because the common action type node,
favorite, bridges the gap between the action node of A and
B, the regularized Laplacian kernel is able to use this fact
to accurately compute the similarity. Besides the regularized
Laplacian kernel there can be other graph kernels suitable
for the task of predicting user interest using an ActionGraph.
However, in this paper we limit the discussion to the above-
mentioned regularized Laplacian kernel for its simplicity.

Evaluations of proposed method via Prediction

Conditions

Dataset The crawling condition is same as the previous
analysis. The summary of datasets is in Table 3. Original-
tweet-user means the user who first tweet the original post
and it gets retweeted or favorited by other users.

Prediction setting When a user takes certain actions to a
resource, we hypothesized that the user gets interested in the
resource. We define the interest prediction problem as pre-
dicting resources rank list in which a given user will get in-
terested. The input is n-tuples, each of them corresponding
to one action. Retweet action tuple is (user, “retwee”, URL,
original-tweet-id). The output is similarities between enti-
ties. With Twitter dataset, we designed our prediction task
as predicting URLs referring actions in retweet or favorite,
by exploiting those two action types. We segment the dura-
tion into 10 time slots following the previous setting.

Evaluation metrics We use two types of evaluation met-
rics. First we evaluate the degree of accuracy and then we
evaluate the coverage, because coverage is effective to evalu-
ate the robustness against data sparseness. For accuracy eval-
uations, we use R-Precision metric, which is adopted in Rec-
ommendation Task and Information Retrieval. R-precision is
the precision at rank R, where R is the number of the total
true data. The number of URLs referring actions varies ac-
cording to users. For instance, one may refer thirty URLs.
and another may refer only two URLs in three days. So R-
Precision will be suitable for our measure. We averaged R-
Precision for each user and each slot. For coverage evalua-
tions, we define Coverage as the percentage of 〈user, URL〉
pairs in the test set for which we can compute a recommen-
dation. This information helps to make recommendations for
cold start users.
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Compared methods We adopt two methods as compared
methods; one is a standard method for dealing with multi-
nomial relations, and the other is one of the state-of-the-
art methods for recommendation tasks. (1) Standard tensor
analysis (PARAFAC) (Bader and Kolda 2006). A tensor is
a mathematical representation of a multi-way array. Ten-
sor decomposition or factorization is a form of higher-order
principal component analysis, and PARAFAC decomposi-
tion is one of the most popular tensor decompositions. With
PARAFAC, each dimension is projected on latent spaces.
In this experiment, users and URLs are first projected on
the latent spaces, and then the prediction is made based on
the cosine similarities of the projected vectors of users and
URLs. (2) latent Dirichlet allocation (LDA)-based Collab-
orative Filtering. LDA is a generative probabilistic model
that introduces latent variables and allows sets of observa-
tions to be explained by unobserved, hidden variables which
often called as topics. The probability a user u gets inter-
ested in a resource (URL) ri can be formalized as P (ri|u) =∑Z

j=1 P (ri|zi = j)P (zi = j|u) , where P (ri|u) is the
probability of the i-th URL for a given user u and zi is the
latent topic.

Parameter setting We used 20% of all data as a prelim-
inary dataset, and with this dataset we optimized each pa-
rameter in terms of R-Precision, for both our method and
compared methods. In our prediction method, we changed
the parameter β in in the equation 2 as 0.01, 0.05, 0.01. The
results stayed about the same, but results where β = 0.1 and
0.01 were same and had a little better performances, so we
fixed β as 0.1. In PARAFAC, we changed the reduced latent
dimension as 200, 400, 600, 800. The result was best when
adopting the 600 dimension, so we fixed it as 600. In LDA,
we changed the topic number as 100, 200, 400, 600, and got
400 as the best parameter. There are other two parameters, α
and β in LDA. When applying LDA to a generative model-
ing of documents, α is a parameter of the uniform Dirichlet
prior on the per-document topic distributions, and β is a pa-
rameter of the uniform Dirichlet prior on the per-topic word
distribution. About β, we changed it as 0.01, 0.05, 0.1, and
get 0.01. It is pointed out that changing α by the topic num-
ber is effective (Wallach, Mimno, and Mccallum 2010), so
we set the α for each topic as 50

topic−number following the
pLDA7 implementation we used.

Results and Discussion

The results (mean and standard deviation) are given in
Table 4. In R-Precision, ActionGraph outperforms both
PARAFAC and LDA. The reason why ActionGraph outper-
formed LDA, which is a state-of-the-art method for bino-
mial relations, can be thought that multinomial information
is indeed important to predict user social actions. In Cover-
age, ActionGraph significantly outperforms PARAFAC. Ac-
tionGraph can compute almost all similarities for possible
pairs. When modeling multi-dimensional data as a tensor,
data sparseness is one of the biggest problems, and actually
PARAFAC’s Coverage is poor compared to our methods.

7www.code.google.com/p/plda

Table 4: The average prediction performances by R-
Precision and Coverage (averaged on each user and each
time slot) for evaluations via prediction.

ActionGraph PARAFAC LDA
R-Precision 7.6±3.3 % 3.4±2.1 % 4.3±1.4 %
Coverage 99.8±0.0 % 43.6±6.7 % 99.0±0.2 %

Even users and URLs are sparse, action types are tend to
be shared by many action nodes, so action types may serve
as a bridge among other nodes and relax graph sparseness.
So ActionGraph is expected to be robust to data sparseness.

Related Work

Our proposed model can capture two properties of social
media, multinomial relation and time-evolving user-specific
time scale. First we review multinomial relational analyses
work and then review some work dealing with time.

Multinomial Relation Analysis

By multinomial relation analyses, the correlation of more
than three entities can be captured. This is useful in many
situations. For example, even if two users tagged the same
keyword to the same document, the meaning of the tag can
be different for each user. If you preserve the correlation of
not only keywords and documents, but also of users, it is ex-
pected more meaningful mining will be possible. Existing
techniques for multinomial analyses include pair-wise anal-
yses and tensor based analyses. The pair-wise kernel (Ben-
Hur and Noble 2005) was proposed for predicting protein-
protein interactions. The same kernel was proposed for en-
tity resolution (Oyama and Manning 2004), and collabora-
tive filtering (Basilico and Hofmann 2004), independently.
(Zhou et al. 2008) deals with three entities, author, paper and
venue, and decomposes them into three bipartite graphs. But
these pair-wise methods involve the loss of valuable infor-
mation, the original co-occurrence among more than three
entities. Tensor-based approaches have been investigated by
several areas, too. (Lin et al. 2009) generalized NMF (Non-
negative matrix factorization) (Lee and Seung 2001) in the
case of tensors and proposed a method to discover commu-
nity evolutions in social media. Tensor-based analyses have
a challenge to data sparseness problems. As relations be-
come higher order, the combinations of data increase expo-
nentially. These approaches are promising, but they are not
explicitly modeling user-specific time dimensions.

Time-Evolving Network Analysis

There are works (Sun et al. 2007; Sun, Tao, and Faloutsos
2006) that handle time as a universal dimension. But it will
be more preferable to deal with time as more local, user-
specific ones in some situations. (Xiang et al. 2010) is a
new approach to this problem. They introduce session nodes
that connect item nodes bought by a same user in a session -
e.g. in a day or in one week. But this approach cannot han-
dle multi-dimensional data. In social media, data consists
of multiple co-evolving dimensions. For instance, a user’s
action such as uploading photos can trigger another user’s
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different action such as bookmarking and tagging them. So
time-evolving approaches should be able to handle multi-
dimensional data.

Conclusion
By analyzing relations among various actions in social me-
dia, we got suggestions that will be useful for aggregating,
integrating diverse data from multiple web services, mul-
tiple functions provided on the Web. In addition, we pro-
posed ActionGraph, a novel graph representation for mod-
eling users’ multinomial, time-evolving actions. We showed
our method outperforms standard tensor-based analysis and
existing state-of-the-art for recommendations in prediction
tasks. Our method has both higher precision and higher cov-
erage, and expected to be effective for sparse data. We hope
this work can contribute to think, create the future of social
media.
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