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Abstract

We propose a method to predict users’ interests in
social media, using time-evolving, multinomial re-
lational data. We exploit various actions performed
by users, and their preferences to predict user in-
terests. Actions performed by users in social me-
dia such as Twitter, Delicious and Facebook have
two fundamental properties. (a) User actions can
be represented as high-dimensional or multinomial
relations - e.g. referring URLs, bookmarking and
tagging, clicking a favorite button on a post etc.
(b) User actions are time-varying and user-specific
— each user has unique preferences that change
over time. Consequently, it is appropriate to rep-
resent each user’s action at some point in time
as a multinomial relational data. We propose Ac-
tionGraph, a novel graph representation for model-
ing users’ multinomial, time-varying actions. Each
user’s action at some time point is represented by
an action node. ActionGraph is a bipartite graph
whose edges connect an action node to its involv-
ing entities, referred to as object nodes. Using real-
world social media data, we empirically justify
the proposed graph structure. Our experimental re-
sults show that the proposed ActionGraph improves
the accuracy in a user interest prediction task by
outperforming several baselines including standard
tensor analysis, a previously proposed state-of-the-
art LDA-based method and other graph-based vari-
ants. Moreover, the proposed method shows robust
performances in the presence of sparse data.

1

The World Wide Web contains numerous relations among
users and resources referred to by URLs. The number of re-
lational data has increased rapidly over the past few years as
a result of the rapid growth of social media such as social
networking services. In social media, users perform various
actions such as expressing their interests in a particular web-
site in Facebook!, retweeting a comment made by a friend in
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Twitter?. The manners in which different users express their
interests on a particular resource vary across different social
media. For example, a user might bookmark a website in De-
licious® when she wants to share it with others, whereas an-
other user might rweet it in Twitter. The different actions per-
formed by users in different social media provide valuable
clues for predicting user interest in numerous Web-related
tasks such as information recommendation. For example, if
two users A and B perform similar actions towards numerous
resources, then it is likely that A and B have similar interests.
Consequently, a recommender system can use this informa-
tion to recommend information (e.g. news, products, movies
etc.) to B based on the interests expressed by A. Moreover,
by exploiting the interest related actions we can overcome
the cold-start problem [Jamali and Ester, 2009] which we
frequently encounter in recommendation systems. So-called
cold-start users, that have rated only a very small number of
items, might have some data describing their interests in some
social media that can be utilized in a recommendation system.

Despite the importance of user interest prediction in so-
cial media, it remains a relatively under-studied problem that
poses two main challenges. First, the actions performed by
users in social media involve high-dimensional and multino-
mial relations. For example, a user might express her interest
on a particular news article by tweeting it in Twitter, which
then gets marked as a favorite by a different user. Such an
action involves multiple entities including multiple users and
multiple resources, which calls for a multinomial representa-
tion. The number of users as well as the number of resources
on the Web is extremely large, which potentially results in a
large number of relation instances being created over time. To
accurately capture user interest from this high-dimensional
relational data, we must develop a method that is robust to
data sparseness.

Second, the interest of users in the Web is a dynamic phe-
nomenon that changes over time. For such time-aware rec-
ommendations, it has been pointed out that capturing users’
temporal preferences is important [Xiang et al., 2010]. Over-
all behaviors of a user can be characterized by her long-term
preferences. But at any given time, a user is also influenced
by her short-term interests that only last for few days such
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Figure 1: An example of ActionGraph representation.

as traveling or birthdays. To capture users’ temporal pref-
erences, it is pointed out that capturing user-specific time
scale is more effective [Xiang et al., 2010]. Although many
time-evolving models introduce time as a universal dimen-
sion shared by all users, in some cases we can observe local
effects that involve only a specific user. Although this user-
specific time scale is an important aspect of time-varying
systems, it has not been studied adequately. We propose a
method that captures both multinomial and time-dependent,
user-specific actions in social media. Our contributions in this
paper are summarized as follows.

e We propose ActionGraph, a novel graph representation
for modeling multinomial, time-dependent actions per-
formed by users in social media.

Using real-world social media data, we empirically jus-
tify the proposed graph structure. We show that adding
features such as keywords based on other action types
can be effective for interest predictions. This will sup-
port ActionGraph structure, which can model multino-
mial relations.

To evaluate the usefulness of the proposed Action-
Graph, we employ it in a user interest prediction task
in social media. Our experimental results show that the
ActionGraph-based user interest prediction method out-
performs several baseline methods in terms of precision
and robustness against data sparseness.

2 Proposed Method
2.1 ActionGraph Construction

An action performed by a user in a social media often in-
volves multiple entities. For example, let us consider the sce-
nario where a user A tags a website referred to by URL [
with the keyword, “artificial intelligence”. We can view this
action as involving four entities: user A, URL [, the action
verb, or predicate “tag”, and the keyword “artificial intelli-
gence”. To represent this action, we create an action node,
which corresponds to the action itself, and create four ob-
Jject nodes, which correspond to the involved entities, user A,
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Figure 2: An example of users’ actions in social media.

URL [, the action verb, or predicate “tag”, and the keyword
“artificial intelligence”. Next, we connect the action node to
each of those object nodes. ActionGraph is defined as a graph
G = (VacUVoi, E), where each vertex in V4 corresponds
to a specific action at some point in time represented by an
action node, and each vertex in Vg corresponds to an entity
involved in an action represented by an object node. An edge
in e € F connects a vertex in V4 to a vertex in Vpp. Ac-
tionGraph is a bipartite graph whose edge connects an action
node and the object nodes involved in a particular action. Fig-
ure 2 shows an example of users’ actions in social media. We
refer to the type of actions a user takes to a specific object as
action type. Figure 1 shows the corresponding ActionGraph.

ActionGraph representation preserves the original co-
occurrences among multinomial data, because by following
the links from an action node, one can retrieve all the enti-
ties that are involved in the action represented by the action
node. Furthermore, ActionGraph preserves the time informa-
tion for each user, because an action node corresponds to a
specific point in time in which that action is performed by the
user. For example, if a user performed one action now and
another action after several days, those two actions will be
represented by different action nodes.

2.2 Predicting User Interest using an ActionGraph

In recommendation tasks, collaborative filtering [Resnick et
al., 1994; Shardanand and Maes, 1995] is a major approach
nowadays. Collaborative filtering models the recommenda-
tion task as computing the similarities between a user and a
set of items. For example, two users are considered to be sim-
ilar if the set of items those users are involved in are similar.
Then one can be recommended items that similar users pre-
ferred but s/he has not yet involved in. This basic idea can
be applied to our case, ActionGraph. It is natural to consider
that two users are similar if their actions are similar. So fol-
lowing these previous works, we model the problem of pre-
dicting the user interest in a resource as a problem of com-
puting the similarity between a user and a set of resources,
by exploiting their actions. Given an ActionGraph, to predict
potentially interesting resources to a particular user, we pro-
pose a similarity function that exploits the structure of the Ac-
tionGraph using graph kernels [Fouss et al., 2006]. Because
object nodes include users and resources, we must measure
similarities between object nodes. Consequently, we define



similarities between action nodes in terms of object nodes,
and define similarities between object nodes in terms of ac-
tion nodes as described below.
Similarities between action nodes:
Two action nodes are considered to be similar if the sets of
involved object nodes are similar.
Similarities between object nodes:
Two object nodes are considered to be similar if action nodes
which involve those object nodes are similar.
We use a graph kernel to incorporate the above-mentioned
criteria and compute the similarity between a user and a re-
source in an ActionGraph. Graph kernels enable us to exploit
the structural properties in an ActionGraph. Graph kernels
have the desirable properties that the similarity between two
nodes increases concomitant with number of paths connect-
ing those nodes, and the similarity between two nodes de-
creases when the length of the connecting paths increases.
Consequently, two nodes are considered as similar if there
are many short paths connecting them. Several graph ker-
nels has been proposed in the literature. Among them, graph
kernels based on Laplacian matrix such as the regularized
Laplacian kernel [Smola and Kondor, 2003], are suitable to
find similar nodes [Ito er al., 2005]. Laplacian matrix is a
matrix representation of a graph. The unnormalized Lapla-
cian matrix of matrix M is defined as L(M) = D(M) — M,
where D(M) is a diagonal matrix which has its diagonal
elements set to that in a matrix M and all other elements
to zero. The unnormalized Laplacian matrix can be nor-
malized by multiplying D(M)_l/ % from left and right sides
to L(M) to give a symmetric normalized Laplacian matrix:
DM) 2L (M)D(M) /2,

The regularized Laplacian kernel RLg is defined as fol-
lows,

o0

> (~BL(AAT))

k=0

RL;(AAT) = = (I+BL(AAT))™
ey
where A is a similarity matrix and I is the identity matrix, and
[ is a parameter used to tune how much similarity weights are
placed on distant nodes when measuring the similarity be-
tween a pair of nodes. The similarity matrix A is constructed
from one ActionGraph such as Figure 1. Besides the regular-
ized Laplacian kernel there can be other graph kernels suit-
able for the task of predicting user interest using an Action-
Graph. However, in this paper we limit the discussion to the
above-mentioned regularized Laplacian kernel for its simplic-

ity.

3 Experiments

Two types of experiments are conducted to empirically eval-
uate the proposed method. First, we conduct an analysis to
verify whether mixing different action types are effective for
interest prediction tasks. Second, we empirically evaluate the
proposed ActionGraph by using it in a prediction task.

3.1 Social Media Analysis

We designed our experiments as analyzing relations between
different types of actions. Using favorite data in Twitter, how

2509

Table 1: Summary of the relational tuples in Twitter and De-
licious dataset for action types analyses.

Action type Facets Tuples
tweet (user, URL, tweet id) 213,929
retweet (user, URL, original tweet id) | 22,680
favorite (user, URL, original tweet id) | 37,912
following (user, user) 214,561
tagging (user, URL, keywords) 21,530
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Figure 3: Predicting twitter actions by Delicious tagging.

precisely can we predict another action such as tagging on
Delicious or retweet in Twitter? If we can predict well, it will
support to aggregate these two kinds of data.

Dataset

We collected a dataset from Twitter and Delicious. Twitter is
one of the most popular social media. When we try to aggre-
gate data from multiple web services, we need some linking
entities that link different applications. URL is one of such
kind of entities. In addition, URL is an entity that can indicate
various resources. So it will be suitable to choose action types
which involve URLs. We chose four major functions, tweet,
retweet, favorite and following, which meet the requirement.
We show some details about those functions below. Users can
tweet a short post, called tweer. Users can write texts includ-
ing URLs in their tweets. By following another user, users can
view that user’s tweets. Retweet is a function to re-post other
user’s tweet. Users can also favorite a post. We also chose De-
licious, a social bookmarking web service. We picked users’
tagging actions from Delicious. We started crawling from a
specific user, and then we followed the users’ following net-
works to two hop links. Then using FriendFeed* data, we
identified users who have also FriendFeed accounts. Some of
those users have delicious accounts, which can be identified
by FriendFeed. We collected data from these identified users
with time stamps ranging from August 1 2010 to August 30
2010. The relational tuples are summarized in Table 1.

Prediction setting

We conducted preliminary experiments, and segmented the
duration every three/nine/twenty-seven days. The perfor-
mance was best with every three days dataset, so we segment
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Figure 4: Predicting Delicious tagging by twitter actions.

the duration into 10 time slots (every three days). In the fol-
lowing we shall use ¢ € [1, 9] to denote a time slot index. We
used slot ¢ € [1,10] data as train data, and ¢t 4+ 1 € [2, 10] data
as test data. The task is a binary classification and we evaluate
the precision. Input data is relational tuples in Table 1, each
of them corresponding to one action. Features of retweet ac-
tions are (user, “retweet”’, URL, original tweet id). We made
50.0% negatives for each train dataset, so a random prediction
achieves 50.0% precision. We adopted L2 regularized logis-
tic regression using a machine learning library Classias’ . To
compare various type of actions, which vary in the amount of
data, we made the amount of each test/train data equal in each
time slot.

Results and Discussion

Figure 3 shows a result predicting Twitter actions by Deli-
cious tagging and Figure 4 shows a result predicting Deli-
cious tagging by Twitter actions. We note tweet, retweet, fa-
vorite, following, tagging as Tw, RT, Fav, Fol, TAG respec-
tively in Figure 3 and 4. Each bar noted as A-B shows an
average precision on each time slot for the experiment that an
action type for test data is A and the train action type is B.
An error bar shows standard deviation. When we predict fa-
vorite/following by using tagging, it seems to achieve almost
equal or a little higher performances in a mean viewpoint.
This means that tagging can substitutes favorite/following ac-
tions, suggesting that mixing different action types can be ef-
fective for sparse data. However, predicting Delicious tagging
by Twitter actions results in rather lower performances as
showed in Figure 4. We think one of the reason of this asym-
metry is that keywords reflect users’ preferences that comple-
ment preferences reflected in actions without keywords. So
even if the action types are different, adding features such
as keywords based on other action types will be effective for
interest predictions. This will support our graph structure be-
cause ActionGraph can preserve the co-occurrences among
multinomial data.

3.2 Evaluations via Prediction

Dataset
The crawling condition is same as the previous analysis. The
summary of datasets is in Table 2. Original-tweet-user means

Swww.chokkan.org/software/classias/index.
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Table 2: Summary of the relational tuples in Twitter dataset
for prediction tasks.

Action type Facets Tuples
Retweet (user, URL, original-tweet-user) | 14,392
Favorite (user, URL, original-tweet-user) | 25,884

User-Specific Time
(3) ActionGraph :
with only user/URL Proposed Method
(AG-binomial) . ’
Binomial Multinomial
“(1) Tensor Analysis

(4 Lba (PARAFAC)

(5) Bipartite Graph ) ' (2)Clique Decomposition

NO User-Specific Time

Figure 5: Baseline Methods.

the user who first tweeted the post and it gets retweeted or
favorited by other users.

Prediction setting

When a user takes a certain action to a resource, we hypoth-
esized that the user gets interested in the resource. We define
the interest prediction problem here as predicting resources
rank list which a given user will get interested in. The input
is relational tuples, and given tuples, we can create Action-
Graph. The output is similarities between entities. We predict
how likely a user gets interested in resources based on the
similarities between user and resource. In this experiment, we
used users’ retweet and favorite actions. We segment the du-
ration into 10 time slots following the previous setting.

Baseline methods

We compared our proposed method to five methods. Our
proposed method models two properties, multinomial rela-
tions and user-specific time scale. So we designed baseline
methods in terms of those two properties. Figure 5 shows
the overview of baseline methods. (1) Standard tensor analy-
sis (PARAFAC) [Bader and Kolda, 2006] and (2) Clique De-
composition can deal with multinomial relations but cannot
user-specific time scale. (3) ActionGraph with only user/URL
(AG-binomial) can deal with user-specific time but cannot
multinomial relations. (4) latent Dirichlet allocation [Blei et
al., 2003] (LDA) and (5) Bipartite Graph cannot handle ei-
ther multinomial relations or user-specific time. In the fol-
lowing, we explain those methods in details. PARAFAC is
one of the most popular tensor decompositions. A tensor is
a mathematical representation of a multi-way array, and ten-
sor decomposition is a form of higher-order principal compo-
nent analysis. With PARAFAC, each dimension is projected



on latent spaces. In this experiment, users and URLs are
first projected on the latent spaces, and then the prediction
is made based on the cosine similarities of the projected vec-
tors of users and URLs. Cligue Decomposition decomposes
co-occurrences of multiple entities into pair-wise edge on a
graph. Similarities between nodes are computed by the same
algorithm as our proposed method, the regularized Lapla-
cian kernel. About three graph-based methods, (2), (3) and
(5), we apply the regularized Laplacian kernel. The only dif-
ference between our proposed method is how we construct
a graph. So those three methods are useful to see how the
way of constructing a graph affects the performances of pre-
diction tasks. AG-binomial constructs ActionGraph but ex-
ploits only user/URL features. LDA is a generative proba-
bilistic model that introduces latent variables and allows sets
of observations to be explained by unobserved, hidden vari-
ables which often called as fopics. The probability a user w
gets interested in a resource (URL) r; can be formalized as
P(rilu) = 327 P(rilz: = j)P(z = jlu) . where P(r;u)
is the probability of the i-th URL for a given user u and z;
is the latent topic. Bipartite Graph develops a graph whose
edge connects only user nodes and URL nodes.

Evaluation metrics

We use two types of evaluation metrics, R-Precision for the
accuracy evaluation and Coverage for the robustness evalu-
ation against data sparseness. R-Precision is the precision at
rank R, where R is the number of the total true data. The
number of URLs referring actions varies according to users,
so R-Precision will be suitable for our measure. We averaged
R-Precision for each user and each slot. Coverage is the per-
centage of (user, URL) pairs in the test set for which we can
compute a recommendation. This information helps to make
recommendations for cold start users.

Parameter setting

We used 20% of all data as a preliminary dataset, and with this
dataset we optimized each parameter in terms of R-Precision,
for both our method and baseline methods. In our predic-
tion method, we changed the parameter S in the equation
1 as 0.01,0.05,0.1. The results stayed about the same, but
results where 5 = 0.1 and 0.01 were same and had a lit-
tle better performances, so we fixed 3 as 0.1. Other graph-
based methods followed this parameter setting. It is pointed
out that the regularized Laplacian kernel is stable over (3
[Tto er al., 2005], and actually it was true in our experiment.
In PARAFAC, we changed the reduced latent dimension as
200, 400, 600, 800 and got 600. In LDA, we changed the topic
number as 100, 200, 400, 600, and got 400. There are other
two parameters, o and 3 in LDA. When applying LDA to a
generative modeling of documents, « is a parameter of the
uniform Dirichlet prior on the per-document topic distribu-
tions, and [ is a parameter of the uniform Dirichlet prior on
the per-topic word distribution. About 3, we changed it as
0.01,0.05,0.1, and got 0.01. It is pointed out that changing
a by the topic number is effective [Wallach et al., 2010], so
we set « for each topic as 50 following the pLDA®

topicNumber
implementation we used.
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Results and Discussion

The results are given in Table 3. In R-Precision, Action-
Graph outperforms all baselines. The reason can be thought
that both multinomial relations and user-specific time scale
are actually important to predict user interests. In Coverage,
ActionGraph significantly outperforms PARAFAC and two
graph-based methods for binomial relations, Bipartite Graph
and AG-binomial. Actiongraph can compute almost all simi-
larities for possible pairs. Even users and URLs are sparse,
action types are tend to be shared by many action nodes,
so action types may serve as a bridge among other nodes
and relax graph sparseness. So ActionGraph is expected to
be robust to data sparseness. It is also noteworthy that Ac-
tionGraph outperforms all graph-based methods. Although
many papers have been written about capturing similarity of
users/resources using graph models, our research shows that
an important factor for the performance of the algorithm is
the choice of the graph itself.

4 Related Work

4.1 Multinomial Relation Analysis

By multinomial relation analyses, the co-occurrence of more
than three entities can be captured. This is useful in many sit-
uations. For example, even if two users tagged a same key-
word to a same document, the meaning of the tag can be
different for each user. If one preserves the co-occurrence
of not only keywords and documents, but also of users, it is
expected more meaningful mining will be possible. Existing
techniques for multinomial analyses include pair-wise analy-
ses and tensor based analyses. The pair-wise kernel [Ben-Hur
and Noble, 2005] was proposed for predicting protein-protein
interactions. The same kernel was proposed for entity reso-
lution [Oyama and Manning, 2004], and collaborative filter-
ing [Basilico and Hofmann, 2004], independently. [Zhou et
al., 2008] deals with three entities, author, paper and venue,
and decomposes them into three bipartite graphs. But these
pair-wise methods involve the loss of valuable information,
the original co-occurrence among more than three entities.
Tensor-based approaches have been investigated by several
areas, too. [Lin et al., 2009] generalized NMF (Non-negative
matrix factorization) [Lee and Seung, 2001] in the case of
tensors and proposed a method to discover community evolu-
tions in social media. Tensor-based analyses have a challenge
to data sparseness problems. These approaches are promis-
ing, but they are not explicitly modeling user-specific time
dimensions.

4.2 Time-Evolving Network Analysis

There are works [Sun et al., 2007] that handle time as an uni-
versal dimension. But it will be more preferable to deal with
time as more local, user-specific ones in some situations. [Xi-
ang et al., 2010] is a new approach to this problem. They
introduce session nodes that connect item nodes bought by
a same user in a session - e.g. in a day or in one week. But
this approach cannot handle multi-dimensional data. In social
media, data consists of multiple co-evolving dimensions. For
instance, a user’s action such as uploading photos can trig-
ger another user’s different action such as bookmarking and



Table 3: The average prediction performances (averaged on user and time slot) for evaluations via prediction.

| | Proposed Method | PARAFAC | Clique Decomposition [ AG-binomial | LDA | Bipartite Graph |
R-Precision 7.6+3.3 % 34421 % 4.2+1.6 % 4.242.6 % 43+1.4 % 2.0+1.1 %
Coverage 99.840.0 % 43.6+6.7 % 99.840.0 % 419+£79 % | 99.0+£0.2 %@ | 56.4+10.8 %

tagging them. So time-evolving approaches should be able to
handle multi-dimensional data.

5 Conclusion

We proposed ActionGraph, a new graph representation for
modeling users’ multinomial, time-evolving actions. Our
method has both higher precision and higher coverage com-
pared to several baseline methods, and expected to be effec-
tive for sparse data. As a future work, we plan to exploit user-
specific time scale more expressly. For instance, if we bundle
action nodes a specific user performed in a session, e.g. - in
a day, we will be able to capture users’ temporal preferences,
which is similar to the previous work [Xiang et al., 2010].
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