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Abstract

In this paper, we deal with the influence of the spatial
structure, which limits the communication of agents, on
the characteristics of individual agents. We investigate
the population characteristics and the behavior of the
agents playing iterated prisoner’s dilemma (IPD) games
on the spatial structure. We first propose a new agent
model that plays the IPD game, which contains the gene
of the coded parameters of reinforcement learning. The
agents evolve and learn while playing the games. Sec-
ond, we report an empirical study. In our simulation,
we observe that the spatial structure affects learning
and evolution. Learning is generally not conducive to
the mutual cooperation between agents, except in some
special conditions. Then, we try to control the popula-
tion characteristics. We find that they are controllable to
some extent when we fix the strategies of several agents.

Introduction
The question ”How do the environment and the society in-
fluence the individual agent and vice versa?” is a very in-
teresting one, and many researchers have studied it in the
past. Sociological studies explain the interaction between
the environment and society in qualitative terms. Recently,
we have been able to quantitatively investigate this interac-
tion by using computer simulations.

Researchers in other fields have dealt with learning and
evolution, and the interactions between the two. One of the
famous earlier works is the Baldwin effect(Baldwin 1896)-
the hypothesis that the characteristics of the way in which
the individual learns affect the evolution of a species. De-
spite years of research, this problem remains unclear.

In this paper, the spatial structure among agents is treated
as an environment. We investigate the influence of the spa-
tial structure on the population characteristics and the be-
havior of the agents, namely, the way in which they evolve
and learn.

Generally, the following aspects affect the actions of the
autonomous agents: the spatial structure, the payoff struc-
ture, and the decision-making of the agent model.

The payoff structure includes two categories of games in
game theory, the cooperative game and the noncooperative
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game. In the cooperative game, each agent cannot perform a
different action after he or she has agreed to cooperate with
other agents. The purpose of this game is to determine which
agent should an agent cooperate with. The noncooperative
game, on the other hand, is the game that inherently involves
the absence of explicit rules. We adopt the iterated prisoner’s
dilemma (IPD), a noncooperative game, since it is suitable
for primitive functions such as learning and evolution.

Thus far, researchers have studied the prisoner’s dilemma
(PD) because the game itself arouses our curiosity and is
suited for the study of learning and evolution. Evolutionary
game theory is a branch of game theory that is exclusively
devoted to analyzing evolution. In general, there are studies
on the equilibrium point of the game in the field of game
theory. The evolutionary game theory led to the develop-
ment of an alternative equilibrium point known as the evo-
lutionary stable strategy (ESS), for which there exists both
the numerical and the analytical approaches. Lindgren ad-
vanced one such numerical approach (Lindgren 1992). His
model expresses a meta strategy that decides the next move
according to the game history. The development of rein-
forcement learning has led to the study of games on learn-
ing. For example, studies show that the reinforcement learn-
ing agents in a multi-agent system create instability due to
mutual learning (Sandholm & Crites 1996). There exist few
studies that deal with both learning and evolution. Studies
that are classified into this area combine learning and evo-
lution and adapt the two functions to the stochastic game
(Hingston & Kendall 2004), simple learning case in the in-
vestigation of the Baldwin effect (Suzuki & Arita 2004).

With respect to the original concern of IPD, the basic is-
sue pertains to a contradiction between the mathematical so-
lution, where the noncooperative strategy is stable, and the
phenomenon in the real world, i.e., when people often co-
operate each other. Researchers examined this issue for a
long time and ultimately paved the way for the introduc-
tion of the spatial structure in the evolutionary game the-
ory. Players are located on the spatial structure, for ex-
ample, a two-dimensional regular lattice (Nowak & May
1992)(Lindgren & Nordahl 1994) or a small-world network
(SWN) model (Watts 1999)(Masuda & Aihara 2003)(Ono
& Ishizuka 2005). These players evolve in every generation
after they play games across neighborhoods. In this case,
we observe the emergence of a cooperative strategy after a



certain period during which the noncooperative strategy is
dominant. Thus far, there are no adequate investigations in
studies on learning and evolution on the spatial structure.

In this paper, we investigate the influence of the spatial
structure, which limits the communication of the agents, on
the emergence of cooperation. In particular, we focus on
the population characteristics and the behavior of the agents
who evolve and learn. Next, we study the controllability of
the population characteristics. We propose a simple method
to fix the strategies of several agents and examine the con-
trollability. using the simulation. In the remainder of this
paper, we first introduce the prisoner’s dilemma. We then
describe a model that we designed for combining the func-
tions of learning and evolution. We then discuss the experi-
mental results. Finally, we present our conclusions and the
directions for future study.

Prisoner’s Dilemma
Since it is an elegant model for expressing various social
phenomena, PD is the most popular game in game theory.
Albert Tucker coined the name and developed the typical
payoff matrix of this game in the 1950s.

Table 1 expresses the payoff matrix of PD in a symmet-
ric two-player game, where R, T, S, and P represent reward,
temptation, sucker, and punishment, respectively. Payoff re-
lations (T > R > P > S, 2R > T + S ) exist among the
players, which leads to the dilemma.

When we assume each player to be rational, both play-
ers in the game would select the defect strategy. Player 1
considers that he should defect and earn a higher payoff ir-
respective of whether player 2 cooperates or defects. Player
2 would also defect after the same consideration. Ultimately,
both the players defect, and (D,D) is the only Nash equilib-
rium in this game. However, this state is Pareto inferior in
that it is not optimal for both the players. This is the reason
why this game involves a dilemma.

Table 1: The payoff matrix of PD
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(T > R > P > S, 2R > T + S)
IPD is a type of super-game-a game comprising sev-

eral subgames. Two players play subgames repeatedly in
a super-game. In this paper, we assumed that the number
of subgames is fixed and the players are not aware of this
number. Therefore, they cannot use backward induction.

Learning Agent Model
We propose a new agent model that learns and evolves for
the IPD game. The agent is a player who plays the games.
The agent selects the moves in the game and learns by the
reinforcement learning mechanism. In addition, he or she

has a gene of the parameters of reinforcement learning and
evolves over generations.

Reinforcement Learning
Reinforcement learning belongs to a class of machine learn-
ing. Assuming that an agent takes an action and receives
a reward from the environment in return, the reinforcement
learning algorithm attempts to determine a policy for maxi-
mizing the agent’s cumulative reward.

Basically, an agent has inner states. The learning process
is as follows. The agent selects an action in a state accord-
ing to each value function, evaluates the action in the state,
and updates the value function. The agent carries out a state
transition and selects the next action in the state. This pro-
cess is repeated, and the agent continues to refine the action-
value function. Although there are several algorithms for
reinforcement learning, we take up the SARSA algorithm
(Sutton & Barto 1998) in this paper.

Selection of the move
The process by which the agent selects his or her next move
is as follows.

We assume that the agent recalls the moves of the previous
game in an iterated game, and he or she selects the next move
based on the first-order meta strategy. The agent has four
inner states-CC, CD, DC, and DD-derived from the possible
combinations of the moves in the previous game (his or her
own previous move and the opponent’s previous move). In
other words, the agent selects the next move in a particular
state based on his or her moves in the previous game.

Basically, when the agent selects a move in the game, he
compares the action-valuesQ of each action in the states and
chooses the bigger one, shown as Eqn. (1).

next move=
{

C, Q(s, C) ≥ Q(s,D)
D, Q(s, C) < Q(s,D) (1)

whereQ(s, a) denotes evaluation of actiona in states, and
s is a possible states. For example, in state CC, the next
move is C in the conditionQ(CC, C)≥Q(CC, D). Since
the agent has information about all the possible combina-
tions of actions and states, we can express all the possible
first-order meta strategies. Table 2 shows examples of this.

Table 2: Examples of the first-order meta strategy

strategy examples
PM OPM All C All D TFT Pavlov
C C C D C C
C D C D D D
D C C D C D
D D C D D C

PM: previous move, OPM: opponent’s previous move

The agent selects a move regardless of the previous moves
in the case of all C’s and D’s. Tit-for-tat (TFT), a famous



strategy created by Anatol Rapoport, involves repeating the
opponent’s previous move. This strategy is known as a win-
ner of the famous tournament (Axelrod 1985). The Pavlov
strategy (Nowak & Sigmund 1993)-also known as the ”win-
stay, lose-shift” strategy-involves selecting the move oppo-
site to the previous move when the agent is unable to earn a
high reward.

In return for his or her own action and the opponent’s ac-
tion, the agent receives a reward (the payoff of the game) and
updates the action-values. The rule for updating the action-
values is expressed in Eqn.(2).Q(st, at) denotes evalua-
tion of actionat in the statest, and the next action-value is
Q(st+1, at+1).

Q(st, at)←Q(st, at)+α [rt+1 + γQ(st+1, at+1) − Q(st, at)]
(2)

whereα is the learning rate,rt+1 is the reward in return for
the actionat, andγ is the discount rate. Here,at+1 is de-
cided by anϵ-greedy method, in which the next move basi-
cally depends on the action-values, but is randomly selected
according to a possibilityϵ. The agent adheres to the action-
value completely, that is, he or she selects a move in a deter-
ministic manner in the case ofϵ = 0. Otherwise, the agent
selects randomly and the selection is based onϵ to some ex-
tent.

This updating process is repeated during each selection.
This implies that the agent learns through the iterated games.
Since the strategy depends on the action-values as explaines
before, updating of the action-values implies a change in the
strategy, e.g., from TFT to Pavlov. In other words, the agent
has learned the game.

This model also takes into account the eligibility trace pa-
rameterλ.

The characteristics of the learning process depend on the
reinforcement learning parameters.α expresses the speed at
which the value function is changed.γ expresses the eval-
uation of the gain that the agent expects to received in the
future. ϵ is a type of curiosity.lambda expresses the extent
to which the agent considers the future while updating the
action-value.

Combination of learning and evolution
The agent has a gene that codes for two components. One is
the part that expresses the initial action-values for each of the
possible combinations of the actions and states. The other
is the part expressing the four parameters of reinforcement
learning,α, γ, λ, andϵ.

Population characteristics
First, we investigate the population characteristics that are
dependent on the spatial structure, particularly the learning
tendency. The purpose of the experiment is to investigate the
influence of the spatial structure on learning and evolution.
We perform our simulation as follows:

1. Generate the population (population size) that comprises
agents using the method defined by the spatial structure.

2. Execute the process given below g times:

i Play the super-games, which consist of (number of
game repetitions) subgames, of all the agent pairs that
are determined by the spatial structure.

ii Randomly kill (generation gap)% players in the popu-
lation according to the gain earned by the agent who
belongs to the generation after all the super-games are
played.

iii Fill the vacancies in the population using the method
defined by the spatial structure.

We assume that the random noise in the agent’s selec-
tion of the move reverses according to the probability of the
noise.

We carry out the experiment in two different spatial struc-
ture cases, i.e., a pool case and a network case. The pro-
cesses1, 2−i, and2−iii are dependent on the spatial struc-
ture.

The pool case

We assume a pool of agents without a spatial structure. In
this case, the agents are not linked with each other and they
have an opportunity to meet any agent. First, we need for
generate (population size) agents. Thus, we present the orig-
inal process of each generation below.

2. i Let each agent play games (number of link) times with
randomly selected agents. Because the spatial property
lacks a structure, there is a possibility of them playing a
game with any one of the agents. However, the number
of super-games is limited in the process2−i in order to
provide an opportunity for learning with an equivalent
frequency for the network case.

iii Fill the vacancies in the population by the tournament
selection (tournament size: 2), two-point crossover,
and mutation

The network case

This is the case with a spatial structure that limits the com-
munication among agents to some extent. We adopt two
characteristic networks, namely, the small-world network
(SWN) and scale-free network (SFN).

The network comprises (population size) agents, who
have (number of links) links.

2. i Let each agent play games with other agents who have
a direct connection on the network. The order in which
the agents play games is randomly decided because a
fixed order in each generation could an influence the
learning.

iii Fill the vacancies in the population. Let new agents
replace the dead agents; a new agent is generated as
a copy of the agent with the highest earning in the
first neighborhood of the dead agent. The mutation of
the gene is generated with a probability of (mutation
rate)% in copying.

The network structure is below 2.
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Figure 1: Average Gain
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Figure 2: Reinforcement Learning Parameter

Small-world Network The SWN is defined using two
characteristic parameters, namely,characteristic path
length and clustering coefficient(Watts & Strogatz 1998).
Thecharacteristic path lengthL is the average of the length
of the shortest path between any two vertices on the network.
C indicates the extent to which the vertices adjacent to any
vertex are adjacent to each other on an average.

When we assume the numbers of vertices and edges on a
graph are fixed, the structure changes with variation in net-
work’s randomness parameterp. Every vertex is mutually
connected to its neighborhoods in the case ofp = 0. The
edges changes stochastically asp increases. In the case of
p = 0, it is a regular network, where bothL andC are large.
On the other hand, a random network appears atp = 1,
whereL andC are small. Midway between these two ex-
tremes, the network bears the property of a SWN, whereL
is small andC is large.

Scale-free Network The first SFN model was the BA
model(Barabasi & Albert 1999) The SFN belongs to a class
of graphs with a power law degree distribution.

In this paper, we adopt a model with the characteristics
of both the scale-free distribution of degree and the small-
world effect(Klemm & Egúıluz 2002a) in order to inves-
tigate the effect of the degree distribution of SFN in com-
parison with that of SWN. This model is a combination of
the KE model (highly clustered scale-free networks)(Klemm
& Egúıluz 2002b) and BA models (random scale-free net-
works)(Barabasi & Albert 1999) in the network growth pro-

cess. The crossover parameterµ, which is the possibility of
a crossover between the KE model and BA models, deter-
mines theC of the networks. Sinceµ is very similar to the
randomness parameterp of the small-world network, these
two parameters are similarly treated.

The randomness parameterp of SWN or the crossover
parameterµ of SFN is given as an initial value and is fixed
during the simulation.

Table 3 presents the simulation parameters. As the first
step, we fix two reinforcement learning parameters,ϵ andλ.
The other parametersα andγ evolve freely.

Table 3: Simulation parameters
Parameters Value
population 400

number of links 3
number of game repetition 100

generation gap 20%
mutation rate 0.02%

PD payoff parameters (T,R,P,S) (5,3,1,0)
reinforcement learning parameters (ϵ,λ) (0.1, 0)

We conducted simulations by varying the parameters of
the noise probability and the spatial structure. Further, the
network parameterp or µ is variable in the network case.

Results First, we focus on the average gain, which is
the index of how many cooperators exist in the population.
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Figure 3: Entropy
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Figure 4: Entropy (noise=0.01)

When this index is near the value 3, it implies that there are
many cooperators.

Figure 1 presents the average gain. The vertical axis is the
average gain and the horizontal axis is the noise.

In the pool case, the difference between the learning and
no-learning cases is clear in this figure. In the case with
learning, the value remains almost constant irrespective of
the noise probability. On the other hand, the value of the
point of the case without learning is approximately 3 in the
absence of the noise. This implies that almost all the agents
cooperate with each other. The line decreases monotonically
from the value 3 as the noise increases. We can observe that
the lines cross approximately at the point1.0 × 10−2. This
implies that the case in which agents cooperate well depends
on the conditions, in this case, the noise probability.

With regard to the SWN and the SFN cases, it is obvi-
ous that all the points in the no-learning case are higher than
those in the learning case. Both lines decrease monotoni-
cally as the noise increases. However, this tendency is higher
in the no-learning case than in the learning case. In the fig-
ure, the line of the learning case is almost flat.

The fact that the no-learning case is better than the learn-
ing case except under a few special conditions implies that
learning does not always satisfy the agents. In other words,
the agents tend to become too greedy and select the Nash
equilibrium in a traditional PD game.

We define an index called the action change rate (ACR) to
investigate the effect of learning. Figure 2 depicts ACR and
the reinforcement parameters,α and,γ. ACR is the rate of

the action difference in each possible state between the strat-
egy changed by learning and the initial strategy decided by
the gene.α expresses the speed at which the value function
is changed.γ expresses the evaluation of the gain that the
agent expects receive in the future.

In all the cases, the lines depicting ACR remain almost flat
at a certain value depending on the spatial structure. This
implies that there is no inherent stable strategy. Learning
always plays a role in adapting to the environment.

With regard to the variable reinforcement parameters of
the agents, bothα andγ are in the range of 0.2 and 0.5 in
the pool case. On the other hand, in the SWN case,γ is con-
siderably higher thanα. In the SFN case,α andγ maintain
almost the same value irrespective of the value of the noise.

These data imply that in the SWN case, the agents eval-
uate the gain that they expect to receive in the future as
important and they will therefore not change their strategy
immediately; they tend to maintain their relations with the
other agents, and they can expect that there is high possibil-
ity that the opponent uses the same strategy. On the other
hand, in the pool case, the agents evaluate the gain received
at the moment as important, and they change their strategy
immediately because they face unknown opponents in al-
most all the games. The SFN case is midway between the
pool and the SWN cases. Although the network topology is
fixed in both the SFN and the SWN cases, the agents would
tend to be confused because they have to play games with
agents who use different strategies, for example, a coopera-
tive agent first and a noncooperative agent next.
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Figure 5: Average Gain (noise=0.01)
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Figure 6: Reinforcement Learning Parameter (noise=0.01)

At the point where noise=0.1,α increases andγ decreases
in the pool case and the SWN cases. These reinforcement
parameters depend on the spatial structure and the noise in-
tensity. Generally,α is high andγ is low when it is dif-
ficult to forecast the future reward. An interesting point
is that the learning process is differs considerably depend-
ing on the spatial structure and noise. However, the line in
the SFN case is independent of noise. We suspect that the
noise tolerance is high in the scale-free structure. Alterna-
tively, encounters with different type of agents are dominant
as compared to the noise.

Figure 3 shows the entropy of the population. In our sim-
ulation, there are 32 strategies, and therefore, the maximum
value of the entropy is 5. In the figure, gene entropy refers
to the inherent entropy of the strategies. Learned entropy
refers to the entropy of the strategies that the agents learned
after playing the games. ”L” represents learning. In all the
cases, the learned entropy is considerably higher than the
gene entropy. As the noise increases, the entropy increases
to a certain extent in the pool case, decreases in the SWN
case, and remains almost constant in the SFN case.

Figures 4 and 3 depict the entropy of the population.
However, the horizontal axis represents the randomness of
SWN or the crossover rate of SFN.

In the SWN case, all the entropies increase as the ran-
domness of the network increases. On the other hand, all
the entropies decrease in the SFN case; the gene entropy is
particularly low at the point where noise = 0.1.

Controllability
In this section, we consider the controllability of the popu-
lation.

One approach to do this is to change the rule of the game.
For instance, we can change the design of the mechanism by
monitoring and imposing sanctions. In this case, we assume
a centralized organization that monitors games stochasti-
cally. If the organization recognizes that there is a certain
probability that an agent defects in a game, it changes the
payoff for the defector so as to punish his defection.

Another approach is the method that makes use of a po-
sitional bias in the network. We control several agents in a
specific location in order to make the population character-
istics desirable. The simplest way to select agents is to use
the number of links an agent has. We select the top agents in
the order of the number of links an agent has as controlled
agents. We investigate this method as follows. TFT is fixed
as the strategies that the the controlled agents use. These
agents do not evolve and learn.

We perform the simulation described earlier, in the same
manner except with respect to the controlled node. The num-
ber of the controlled node is the simulation parameter.

Result
Figure 5 depicts the average gain. The horizontal axis repre-
sents the number of controlled agents.

The pool case is the most efficient case for this method.
In this case, the two lines rise rapidly as the number of con-
trolled agents increase. Thereafter, the lines maintain certain
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Figure 7: Entropy (noise=0.01)

values, and the line of the no-learning case is higher than that
of the learning case.

In the SWN case, we observe a slight improvement. Irre-
spective of the controlled agent, the average gain is almost
constant.

With regard to the SFN case, the tendency of the lines
in the learning case is gentler than that of the lines in the
no-learning case. However, the line of the no-learning case
increases linearly in log scale even though the other line sat-
urates at the point of less-controlled agents.

Figure 6 presents the method of learning of the agents
for the pool case. Only one controlled agent dramatically
changes the characteristics of the other members in the pop-
ulation. The fact that the probability of access to the other
members is not zero achieves a wide propagation in the pop-
ulation. The controlled agent uses the TFT strategy; there-
fore, a noncooperative agent would tend to receive punish-
ment, and he or she would have a high probability of dy-
ing. Basically, cooperative agents expect rewards in the dis-
tant future and hence select cooperative moves. This figure
shows the process described above.

Figure 7 depicts the entropy of the strategies. It is clear
that the gene entropy decreases dramatically in the SFN
structure. The noise is the answer to the obvious question
of why the average gain is low despite the fact that TFT is
the major strategy. It is observed that the average gain im-
proves to nearly 3 in the case of noise = 0.

Discussion
In this section, we consider administrating the population
characteristics.

If the method by which agents make decisions is un-
known, the SWN network is a desirable spatial structure be-
cause it has a higher average gain in the two learning cases.
However, typically, many networks have a scale-free ten-
dency (Barabasi & Albert 1999).

When we assume the network to have a scale-free struc-
ture, how can we improve population characteristics? The
answer to this question depends on the extent of the manip-
ulation, that is, how freely we are able to control the pop-
ulation. If the network is completely controllable, we can
achieve a desirable network. In the case that permits limited
manipulation, at least three methods exist.

One method is to reduce the noise. However, it is not very
effective in SFN since the noise is not critical in this network
structure.

The second method involves making an announcement
to the agents, e.g., a recommendation to access the agents
directly connected to the first-order neighborhoods. This
method induces spontaneous network dynamics by each
agent.

The last method is to locate a controlled agent in the bi-
ased position. This method involves some difficulties; how-
ever, negotiation with the agent who already exists in the bi-
ased position is much easier than controlling all the agents.
Furthermore, the administrative agents who exist in the ini-
tial network are effective in the growing network model.

We should consider the strategy that the controlled agents
use. In the SFN case, the reason why the average gain is low
even though the entropy is also low is because TFT does not
perform well when noise = 0.01. The Pavlov strategy might
be better than TFT in this case.

In the SFN case, the dependence on the crossover rate in-
fluences the entropy of strategies. The decrease in diversity
in response to the increase in randomness could be another
problem apart from the average gain problem; this creates a
need for us to discuss this in concrete cases.

Conclusion

We studied PD game on the spatial structure played by
agents who learn and evolve.

We proposed the agent model with learning and the evolu-
tion of strategy. The results of our experiments show that the
spatial structure of the agents influences the cooperation be-
tween agents and the learning and evolution. As compared
to the learning case, agents in the no-learning case perform
well except in some special conditions that contradict our
intuitions. There are no inherent stable strategies, and learn-
ing always plays a role in adapting to the environment. Fur-
thermore, we proposed a simple method to control the pop-
ulation characteristics. The simulation results explain the
controllability.

Further study should consider the dynamic network case.
In addition, further research should attempt to determine the
most efficient strategy that the controlled agents use.
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