
Improving Semantic Queries by Utilizing UNL
Ontology and a Graph Database

Petri Kivikangas, Mitsuru Ishizuka
Department of Creative Informatics

Graduate School of Information Science and Technology, The University of Tokyo
Tokyo, Japan

pkivik@gmail.com, ishizuka@i.u-tokyo.ac.jp

Abstract— This paper describes an approach for improving
semantic queries by utilizing Universal Words (UWs) and a
graph database. Concept Description Language (CDL) is used for
representing the semantic data, and Neo4j graph database is used
as the storage back-end. Cypher graph query language is used as
the basis for implementing the semantic queries. For improving
the queries, query expansion is performed by utilizing semantic
relationships between UWs provided by UNL Ontology.

Keywords- semantic computing; semantic web; semantic
search; graph database; inexact graph matching; CDL; CWL;
UNL; Neo4j; Cypher

I. INTRODUCTION
Currently the most popular semantic representation format

in the Semantic Web community is RDF. This paper presents a
more general-level semantic representation format called
Concept Description Language (CDL). CDL provides a
flexible way for representing natural language text in an
unambiguous computer understandable form by utilizing
Universal Words (UWs) and Universal Relations. [1][2]

UNL Ontology provides semantic relations between
Universal Words (UWs). UWs are disambiguated natural
language words, each UW representing a single natural
language concept. [3]

Previous research on semantic search includes e.g. iSeS
search framework [4], FREyA natural language interface [5]
and Treo natural language query mechanism [6]. However, the
presented approach differs from previous approaches by
utilizing UWs, which are unambiguated natural language
words. Because of unambiguity, the search engine does not
have to guess the correct senses of the words in the query.

II. CONCEPT DESCRIPTION LANGUAGE
Concept Description Language (CDL) is a declarative

formal language for representing semantic data. CDL is a
machine-understandable language aiming at becoming the next
generation language for the intelligent Web.

A. Syntax
Basic units in CDL are concepts, arcs and statements.

Statements can contain concepts and other statements.
Statements and concepts both have an identifier unique in the
current scope, called Realization Label (RL). A concept

consists of a UW and optional attributes, which are used to
represent various grammatical categories, such as mood,
modality, number and tense.

The terminology used in this paper differs slightly from the
official specification. Concept corresponds to elemental entity,
and statement corresponds to complex (or composite) entity.
Complex entity is an entity with a structure, which means that
it can contain other entities. Hence, a statement can contain
other statements and concepts whereas a concept cannot.

Figure 1 demonstrates how a simple natural language
sentence could be converted into CDL. All concepts and the
inner sentence are identified by an identifier that is unique in
current scope delimited by curly brackets. In a CDL document,
sentences are enclosed by curly brackets, concepts by angle
brackets and arcs by square brackets. E.g. [A1 agt A0] means
that the agent of the entity identified by A1 (in this case concept
buy(agt>person,obj>thing).@past) is an entity identified by A0
(in this case the concept Jim). agt is one of the universal
relations, indicating a thing in focus that initiates an action.

It should be noted that it is possible to refer also outside the
current scope, as arc [A4 agt A0] does. However, this should be
avoided unless it can be made sure that all RLs in a document
are unique, because uniqueness of RLs is not guaranteed by the
specification.

{#

 <A0:Jim>
 <A1:buy(agt>person,obj>thing).@past>
 <A2:car(icl>vehicle)>
 {#A3
 <A4:get(agt>person,obj>thing).@past>
 <A5:salary(icl>money)>
 [A4 agt A0]
 [A4 obj A5]
 }
 [A1 agt A0]
 [A1 obj A2]
 [A1 seq A3]

}

Figure 1. CDL data example: “Jim bought a car after he got salary”

2012 IEEE Sixth International Conference on Semantic Computing

978-0-7695-4859-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ICSC.2012.50

83

2012 IEEE Sixth International Conference on Semantic Computing

978-0-7695-4859-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ICSC.2012.50

83

B. Comparison to RDF
CDL was designed for the following purposes:

1. Intermediate language between natural languages,
formal languages and visual media

2. Enable deep semantic processing, in addition to
shallow conceptual level processing

3. Intermediate language between syntactic document
structure processing and semantic document structure
processing

One main purpose of CDL is to function as an intermediary
language (or pivot language) between natural languages. CDL
was also designed for describing context structure, whereas
RDF was designed for describing resources found in the Web.
Due to their different goals, CDL and RDF are not direct
competitors, but can actually benefit from each other. [1][2]

III. NEO4J
Neo4j is a graph database allowing storing data as nodes

connected by arcs. Because semantic data is easily represented
as graphs, provides graph database more natural abstraction for
such data than relational database. A schema-less graph
database also allows to easily add new types of data and
relations.

A. Cypher graph query language
Neo4j provides a query language called Cypher1, which is a

declarative general purpose graph query language. Cypher has
been influenced by SQL and SPARQL, and it allows
expressive and efficient querying of graph databases without
having to write detailed graph traversals. The main difference
between Cypher and SPARQL is that SPARQL is designed for
the domain of Semantic Web, whereas Cypher is a general
purpose graph query language. The development of Cypher
started out from a need to have easier syntax than existing
general purpose graph query languages, such as Gremlin2.

START x=node:indexName(idxPropName='propValue')
MATCH x-[:relationName]->y
WHERE (x.property_1 = 'value1' OR
 x.property_1 = 'value2') AND
 y.property_2 = 'value3'
RETURN x, y

Figure 2. Example Cypher query

Figure 2 presents an example Cypher query. The query
selects a starting point by doing index lookup from index
indexName, fetching nodes that have property idxPropName
with value propValue. Then the query goes through the fetched
nodes trying to match the relationship and the rest of the
criteria. Finally, the query returns all the nodes x and y that
match the pattern and satisfy the criteria.

1 http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
2 https://github.com/tinkerpop/gremlin/wiki

B. Apache Lucene indexing
Neo4j does not provide own indexing solution, and instead

as a default uses Apache Lucene3 search and indexing library.
In Neo4j, Lucene provides means for indexing nodes and
relationships. Due to Lucene indexes, finding Neo4j nodes by
node properties is extremely fast.

In test setup, the queries were executed in around 10
milliseconds on average. However, if the indexes were not
utilized, the queries ran more than one magnitude slower. Thus,
to gain maximum query performance, Lucene indexes should
be fully utilized.

C. Interfaces and operation modes
Neo4j supports three operating modes: embedded, server

and embedded server. In embedded mode, the database can
only be accessed by the application into which it is embedded.
In server mode the database can be accessed anywhere through
the REST API. In embedded server mode the application has
direct access to the database, and remote parties have access
through REST API. In the experiment setup, embedded server
mode was chosen because it provides fast database access for
the application, and possibility to access the database through a
web interface.

IV. CDL TOOLKIT
CDL Toolkit was developed to present the chosen approach

in practice, and to facilitate future research efforts on CDL. The
toolkit contains a query builder, a parser, Neo4j integration and
a search engine.

A. Neo4j integration
At this stage, the Neo4j integration allows to insert data and

execute queries. However, it is also possible to access and
modify the data using the web interface provided by Neo4j.
The toolkit uses Neo4j in embedded server mode, which means
that the application is able to access the database directly,
whereas remote users have access through the REST4 API.

B. Search engine
The toolkit allows one to write queries with a slightly

modified CDL syntax. E.g. natural language question “What
did Jim buy?” can be represented as shown in Figure 3. Based
on data shown in Figure 1, the search engine would be able to
answer the query by returning car(icl>vehicle).

{#

 <A0:Jim>
 <A1:buy(agt>person,obj>thing).@past>

 <A2:?x>
 [A1 agt A0]

 [A1 obj A2]
}

Figure 3. Example CDL query

3 http://lucene.apache.org/core/
4 http://en.wikipedia.org/wiki/Representational_state_transfer

8484

Because Neo4j cannot comprehend CDL, the query must be
converted into Cypher before it can be executed on the
database. The conversion is performed automatically by the
search engine. Figure 4 shows how the CDL query is converted
into Cypher.

START xA0=node:concepts(uw='Jim')
MATCH xA1-[:agt]->xA0,
 xA1-[:obj]->xA2
WHERE xA1.uw! = 'buy(agt>person,obj>thing)'
RETURN xA2

Figure 4. CDL converted to Cypher

V. SEMANTIC DATA IN A GRAPH DATABASE
This section describes how CDL data can be represented as

a semantic graph in Neo4j.

A. Representing CDL data and UNL Ontology as graphs
Figure 5 illustrates the structure of CDL data inside the

database. In the experiment setup, all documents are directly
connected to the root node. UNL ontologies are connected to
the root node through uw node, which is the root node of the
ontology graph. Each document can contain multiple
statements, and each statement can contain concepts or other
statements. Concepts are connected to the corresponding
ontology concepts. The attributes of a concept are stored as a
string array. The 325 hidden nodes shown in the figure
represent the sentences directly below the document.

Due to CDL's nature as a conceptual graph, adding CDL
documents into a graph database is an easy process. Figure 6
illustrates how the ontology can be stored in Neo4j. Neo4j does
not require the graph to be connected, but in the experiment, all
nodes were connected. Nodes can be accessed either by their id
or through indexes. The 38 hidden nodes under the root node
are the CDL documents stored in the database at the time.
CONTAINS relation is not a semantic relation, but it is used
only to denote the sub-entities.

Figure 5. CDL data stored in Neo4j (Neo4j web interface)

Figure 6. Top level UWs of UNL Ontology stored in Neo4j (Neo4j

web interface)

B. Querying
There are multiple ways for querying Neo4j but CDL

Toolkit relies on Cypher and its advanced features. Figure 7
gives an example on how Cypher can be used for returning all
nodes on a specific path inside the ontology.

START x=node:uws(uw=’uw’)
MATCH p1=x-[HYPO*0..20]->y
RETURN y, length(p1)

Figure 7. Advanced queries in Cypher

The query does a lookup on index uws, fetching all nodes
that are indexed by property uw with value uw. In MATCH part
the path is put into optional variable p1. x-[HYPO*0..20]->y
matches all nodes starting from uw that have 0 to 20 HYPO
relations between them. It is also possible to access data
directly through indexes, assuming that the nodes have been
added to an index, as Neo4j does not index nodes automatically
unless configured to do so.

C. Performance
There are several things affecting the performance of

querying. One should try to minimize the size of node set used
in the pattern matching. This is possible by selecting the
concept that has the lowest document frequency as a starting
point. UNL System contains document frequencies for some
concepts, but not to the extent that they would provide
significant benefit for index lookup optimization.

The query expansion (see VI.B) should also be set to
reasonable limits. For high ontology level concepts, the
hyponym tree used for the query expansion can contain
hundreds or even thousands of UWs. One way is to allow the
user to select the level of expansion. If the user does not find
answer on the first try, he can select more aggressive
expansion, which naturally means also slower quer

VI. QUERY IMPROVEMENT
This section describes the approach chosen for improving

semantic queries. The query improvement consists of fetching
all the concepts that have meaningful relation to the concepts in
the query, and then augmenting the original query with the
fetched concepts.

8585

A. UNL Ontology
The search improvement technique is based on utilizing

semantic relations in UNL Ontology. The ontology contains
only the hierarchical relations, represented as icl (is a kind of)
and iof (is an instance of). icl is equivalent to hypernymy, e.g. a
UW mammal(icl>animal) implies that there is an icl relation
from mammal to animal. UNL Ontology is available in a
simple tree structure5. [3]

In CDL Toolkit, hyponymy is implemented through HYPO
relation. The HYPO relation is equivalent to reverse icl
relation. E.g., if the ontology contains a UW
mammal(icl>animal), it would mean that there exists a HYPO
relation from animal to mammal(icl>animal). Because Neo4j
relations can be traversed in both ways, there is no need for
another relation for modeling hypernymy.

B. Query expansion
The query expansion is performed in three steps:

1. Find the ontology concepts for the data concepts

2. Fetch all data concepts that are meaningfully
related to the ontology concepts

3. Add the hyponyms to the original Cypher query

Ontology concept is a UW stored in the ontology graph.
Data concepts are the concepts in the CDL documents. The
first and second steps can be performed in one Cypher query.
In the third step, the query is augmented by all found
hyponyms.

Figure 8 shows a modified version of the query shown in
Figure 3. The query in Figure 3 can be directly answered from
the data shown in Figure 1. However, the query in Figure 8
uses verb get instead of buy. Verb get does not show in the
data, and hence the search engine cannot directly answer the
query. The only solution to get an accurate answer is to find a
suitable semantic relation between get and buy. In this case,
entailment would provide the suitable relation connecting these
two concepts.

{#

 <A0:Jim>
 <A1:get(icl>obtain(agt>person,obj>thing)).@past>

 <A2:?x>
 [A1 agt A0]

 [A1 obj A2]
}

START xA0=node:concepts(uw=’Jim’)
MATCH xA1-[:agt]->xA0, xA1-[:obj]->xA2
WHERE (xA1.uw = ‘get(icl>obtain(agt>person,obj>thing))’)
 OR (xA1.uw = ‘buy(agt>person,obj>thing)’)
RETURN xA2

Figure 8. Example of indirect CDL query and corresponding Cypher
query when expanded

5 http://www.undl.org/unlsys/uw/UNLOntology.html

VII. CONCLUSIONS AND FUTURE WORK
This paper described a technique of utilizing a graph

database for storing semantic data represented in CDL, and
performing query improvement for semantic queries. The
query improvement was performed by utilizing semantic
relationships between the UWs in UNL Ontology.

The main problem was the small size of the current publicly
available version of UNL Ontology. As less than 20% of the
concepts in the sample documents had a representation in the
ontology, it was not possible to perform query improvement in
the extent that was hoped for.

To further improve the queries, more complex semantic
relations, such as entailment, holo-, mero- and antonymy,
should be provided. The existence of these relations in the
ontology would dramatically increase the reasoning capability
of the search engine. Finally, to enable natural language
searches, a parser capable of parsing and converting natural
language questions into CDL queries should be developed.

ACKNOWLEDGMENT
Special thanks to Mamdouh Farouk and Francisco Tacoa,

who helped by providing sample data and useful information
about the core semantic technologies employed in the
experiment.

REFERENCES
[1] T. Yokoi, H. Yasuhara, H. Uchida, M. Zhu, K. Hasida, “CDL (Concept

Description Language): A Common Language for Semantic
Computing,” WWW2005 Workshop on the Semantic Computing
Initiative (SeC2005), Makuhari, Japan, 2005,
http://www.instsec.org/tr/CDL.pdf

[2] H. Uchida, T. Yokoi, M. Zhu, N. Saito, V. Avetisyan, “Common Web
Language”, W3C Incubator Group Report, Mar. 2008,
http://www.w3.org/2005/Incubator/cwl/XGR-cwl/

[3] UNL Center of UNDL Foundation, "Universal Networking Language
(UNL) Specifications Version 2005 Edition 2006", Aug. 2006,
http://www.undl.org/unlsys/unl/unl2005-e2006/

[4] M. Jayaratne, I. Haththotuwa, C.D. Arachchi, S. Perera, D. Fernando, S.
Weerakoon, 2012, iSeS: intelligent semantic search framework, EATIS
‘12 , ACM, pp. 215-222

[5] D. Damljanovic, M. Agatonovic, H. Cunningham, “FREyA: an
Interactive Way of Querying Linked Data using Natural Language",
'Proceedings of 1st Workshop on Question Answering over Linked Data
(QALD-1), Jun. 2011

[6] A. Freitas, J.G. Oliveira, E. Curry, S. O’Riain, J.C.P. da Silva, “Treo:
Combining Entity-Search, Spreading Activation and Semantic
Relatedness for Querying Linked Data”, Proceedings of 1st Workshop
on Question Answering over Linked Data (QALD-1), Jun. 2011

8686

