
Resource Management for WWW Change
Monitoring Service Prototype based on

Cooperative Agent Community
Santi Saeyor Mitsuru Ishizuka

Dept. of Information and Communication Engineering,
Faculty of Engineering, University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
{santi,ishizuka}@miv.t.u-tokyo.ac.jp

ABSTRACT
The Web repositories are exposed in form of a huge

amount of heterogeneous information sources. The infor-
mation is overwhelming the users. Besides the target infor-
mation itself, the changes upon the previously released in-
formation are significant and worth being notified to those
who perceived the out of date information as soon as possi-
ble. The changes made in Web repositories occur at un-
predictable rates. Unfortunately, stock type information
source has no means to inform its prospective users about
the changes. While the stock type information source occu-
pies a large percentage of sources on the Web, it is neces-
sary to have a system that monitors changes on the Web,
and provides comprehensive presentation to the prospective
users. In this paper, we proposes a mechanism that pro-
vides change monitoring and presentation service for a large
group of users by coalition among service agents. The ser-
vice agents keep improving the overall utilization factor by
several schemes based on the decision made by game analy-
sis. We apply a cost model to the service mechanism in or-
der to study the cooperative behavior of the service agents.
The reduction of cost is designed to comply with the level
of cooperation among service agents. This paper presents a
paradigm for the service and the formation of cooperative
behavior of the agents in the community.

1. Introduction

Browsing through the sites for new updates is not
only time consuming task but also vain in case that
there is no change made on the sites once visited.
This puts a significant load to the users besides
exploring brand new information. We need some
representatives to do such burdensome and tedious
jobs for us.
This paper presents the evolution of mechanism

that detects and evaluates changes on the Web,
provides it in comprehensive form, and push the
information to prospective users. The mechanism
is evolved on multi-user basis. This paper proposes
the coalition among service agents in order to main-
tain the performance both in the benefit of users
and resource usage of the system. With this sys-
tem, The ubiquitous stock type information sources
on the Web have no need to provide any effort to

convey their updates to the users.
We incorporate shared resource management in

our system in order to enable the framework a
larger scale of service. The service agents attempt
to increase the utilization factor of the overall sys-
tem by several schemes. Each scheme tries to in-
crease identical services in the monitoring service.
These identical or virtually identical requests give a
significant impact on the utilization of our service.
As long as we can implement the service with rea-
sonable resource allocation, more users can have
access to the service. A useful tool for decision
making we use here is the game theory. We use the
basics of game theory in several decision making
situations during matchmaking process in resource
management issue.

2. Distributed change monitoring

The architecture of a unit of change monitoring
service is shown in Fig.1. The service is provided
openly on the Web. Each user gets access to the
service by transaction agents. These agent are mo-
bile agents that resolve the environment problems
and hide overhead decision from the users. The ser-
vice is provided openly on the Web. Each user ac-
cesses the service via the Internet using any browser
with Java Virtual Machine. As an alternative, re-
quests can also be made directly to the Service
Agent which is the front end of the service. The
functions of main modules can be listed as follows:
• Resource Manager: All resources for the ser-
vice are handled by this module. The results from
the HTML Difference Engine will be kept in the
archives by Resource Manager.
• Service Threads: Each Web page monitoring
request will be handled by a service thread. The
thread keep monitoring and comparing revisions of
the Web page.
• Service Agent: This is the heart of the ser-
vice that interacts with users and other modules in

Browser

Applet
Java

Broadcasting service

Personal Agent Center

FacilitiesNavigatorRequest
Broker

Agent
Service Provider

Mobile
Agent

Mobile
Agent

Accommodation

Mobile
Agent

Mobile
Agent

Mobile
Agent

User

Mobile
Agent

User

Mobile
Agent

User

Mobile
Agent

Mobile
Agent

Mediator

The Internet

Fig. 1. Each unit of monitoring service agent.

WWW
Server

Engine

Manager

Applet

Resource

Browser

Interface
Applet

Interface
Applet

Browser

Interface

Browser

HTML Difference

Archives

S
er

vi
ce

 T
h

re
ad

s

To other units

The Internet

Service Agent

Fig. 2. Each unit of monitoring service agent.

order to retrieve and compare Web pages.
• HTML Difference Engine: The service
threads implement the Difference Engine in order
to compare the content of updated pages and see
whether there are significant changes in them. At
the same time, it will summarize the updated in-
formation into another HTML document by an in-
novative algorithm described in [1].
• WWW server: The page archives contain the
old and new version of Web pages together with
summary pages. When the users are notified by the
Service Agent, they can view the summary pages
with their browsers via the WWW server.
The system is composed of a number of service
agents distributed on the Internet as shown in Fig.
3. Each Service Agent announce the local service
to the Matchmaking Agent in order that if identical
or virtually identical requests can be relayed to the
allocated service. The requests are served at arbi-
trary sites as shared services. Fig. 4. shows the life
cycle of each service. The cycle begins when a user

Making

Service Agent n

Agent

Match

Service Agent 1 . . .

Unit 1 Unit n

Resource 1 Resource n

Web Repositories

Fig. 3. A number of service agents announce services to the
Matchmaking Agent.

connect to a front end Service Agent. The requests
made by the users are dispatched to appropriate
Service Agents distributed in the network. The as-
sign pages will be monitored and compared to old
revisions by the service thread every period T . The

Arbitrary Service Site

Front End

ServerService Agent y
Service
Thread

WWW

Web Repositories

Service Agent x

Period T

Pushing Notification Change Score

User

Browser

Threshold

Fig. 4. Life cycle of each change monitoring service.

changes will be assigned scores. If the scores exceed
some thresholds, the changes are considered signif-
icant and will be notified to the users. The services
terminate when service termination commands are
issued by the users.

3. Resource management

When serving a large number of users, we expect to
have some identical or virtually identical requests.
These requests can share the same resource. The
more identical or virtually identical requests, the
better utilization factor we can get from the service.
The Resource Manager in each unit deals dynam-
ically with the request matching. The conditions
of virtually identical requests change dynamically
upon the changes in Web repositories and the pa-

Service pages

Matched requests

G

G

G

G
1

2

3

4

Fig. 5. Groups of requests with the identical or virtually
identical requests.

rameters of the requests made by the users. In the
case of pushing changes and difference information,
we push the information to prospective users. This
implies that each user has different degree of inter-
est and attitude against the detected changes. Fig.
5. shows that among different service pages, there
are some identical requests. We can express the
utilization of resource as following equations.

N =
M∑

i=1

Gi (1)

M = PdiffN (2)

ψ =
N −M
M

=
1− Pdiff

Pdiff
(3)

where:
N = number of all request
M = number of different kinds of requests
Gi = number of matched requests for ith group
Pdiff = Probability of having different kinds of re-
quests
ψ = Utilization factor

We can see obviously that if we share resource
among users, we are likely to get more profit than
serving each user separately. The utilization factor,
finally, depends on the Pdiff which ranges from 1

N
to 1. The range tells us that our utilization factor
ranges from 0 to N − 1.
The amount of identical or virtually identical re-

quests can vary dynamically. This is the case when
some requests among currently identical requests
are satisfied by the changed conditions but some
are not. For examples, we decide to push changes
information to the user if we found that the change
score is higher than specific threshold points. Sup-
pose we have 2 users who specified the score thresh-
olds for an identical page at 1500 and 1000 points.
Both requests are considered identical if the change
score is 2000 points. However, if the change score
falls between 1000 and 1500 points, the requests

Weight/Period?
Adjust

Service pages

G

G

G

G
1

2

3

4

Matched requests Accepted

User

User

User

User

Fig. 6. Increasing request hit rate by asking users to modify
appropriate parameters.

are no longer identical. The Resource Manager an-
alyzes the characteristic of changes on Web pages.
A parameter to check is the notification threshold.
In some cases, some users specified high thresholds
with high frequency of monitoring. If the Resource
Manager found that the change rates of those pages
are relatively slow, it may ask the users to adjust
threshold weight of notification or monitoring fre-
quency. Adjusting these parameters has probabil-
ity to increase more matched requests as shown in
Fig. 6.
Meanwhile, the Resource Manager detects hot

requests shared by a large number of users. The
hot requests trend to be interesting pages. The
Resource Manager may recommend these requests
to the users recorded in the Matchmaking Agent as
shown in Fig. 7. If some users accept the recom-

Service pages

G

G

G

G
1

2

3

Matched requests

Recommend

User

User

User

User

4

Accepted

Fig. 7. Increasing identical or virtually identical requests
by recommending hot requests to the users.

mendation, the utility factor of the service trends
to be increased according to the increasing matched
requests. However, the Resource Manager has to
make decision based on facts and experience in the
past whether it should ask the users to adjust some
parameters or recommend some hot requests to the
users. The Resource Manager makes a decision by
investigating the probability of improvement from
the payoff matrix of the game. We consider how to
make decision based on our service games from the
following expected payoff matrix.
The Payoff < x1, x2 > indicates that the Ser-

vice Agent has an expected payoff of x1 (where an
improvement is worth 1, and no improvement is

TABLE I

Expected payoff matrix for the games of the

service.

User
No Adj. Adjust

No Adj. < p0, q0 > < p1, q1 >
Service Agent Adjust < p2, q2 > < p3, q3 >

worth 0 for the Service Agent) and the user has an
expected payoff of x2. In the case of our service
x1 + x2 must be 1.
We define the utility as:
utility(ServiceAgent, 1)←− improvement
utility(ServiceAgent, 0)←− ¬improvement

utility(User, 1)←− improvement
utility(User, 0)←− ¬improvement

Improvement occurs when:

improvement ←− ServiceAgent(D)∧
User(D)∧
improve if follow(D)

improvement ←− ServiceAgent(Adj.)∧
User(NoAdj.)∧
improve if sa un

improvement ←− ServiceAgent(NoAdj.)∧
User(Adj.)∧
improve if sn ua

Right here, the improve if sa un is the p2 and
the improve if sn ua is the p1. Suppose that the
Service Agent is to choose a strategy with pa =
PServiceAgent(Adjust) and the user is to choose a
strategy with pu = PUser(Adjust). In this setup,
the probability of having improvement P (improve)
is defined by

P (improve) = papup3 + (1− pa)(1− pu)p0+
(1− pa)pup1 + pa(1− pu)p2

(4)
In a randomized equilibrium from the Ser-
vice Agent view, the payoff for Adjust and
NoAdjustment must be equal. The payoff for
asking for adjustment is the above formula with
pa = 1, the payoff for asking no adjustment is the
formula with pa = 0. These are equal, so we have

(1− pu)p0 + pup1 = pup3 + (1− pu)p2 (5)
Similarly for the user

(1− pa)p0 + pap2 = pap3 + (1− pa)p1 (6)
Solve for pu and pa we derive

pu =
p2 − p0

p1 + p2 − p0 − p3 (7)

and

pa =
p1 − p0

p1 + p2 − p0 − p3 (8)

Substitute in equation (4), we derive

P (improve) =
p1p2 − p0p3

p1 + p2 − p0 − p3 (9)

The service agent checks whether the P (improve)
is above 0.5 which means the system has probabil-
ity to improve the service more than 0.5, if it asks
the user for adjustment. In our service, the prob-
ability p3 can be derived by a function that eval-
uates how significant a request for adjustment is.
The probability p2 comes from the experience in the
past which is, in other words, how much the user
refuses the suggestion. The probability p1 comes
from the improvement made when the user adjusts
the service profile without suggestion from the Ser-
vice Agent. Finally, the probability p0 comes from
the self-improvement rate occurred as the condi-
tions of changes in Web repositories vary in time
domain. We can see obviously that the variables
used in the game analysis above can be evaluated
at ease from the statistic of the service. The Ser-
vice Agent can make decision to deal or not to deal
with the user by calculating the P(improve) based
on transactions in the past. Moreover, each deci-
sion trends to be more exact as the experience of
the Service Agent increases.

4. Matchmaking among service
agents

Besides the self-organization in each service unit,
the distributed service units work in coordination
with the Matchmaking Agent as shown previously
in Fig. 3. The coalition among Service Agents is
made possible by the Matchmaking Agent. The
agent has 3 main functions as follows:
1. Request matching: The agent tries to match
nearly identical requests and dispatches them to
appropriate Service Agent in the community.
2. Issuing suggestions to users and Service

Agents: The agent has opportunity to evaluate
the resource sharing efficiency because it holds the
service profiles of the Service Agents in the commu-
nity. It tries to adjust the load balancing and uti-
lization factor of the overall system. The utilization
factor can be improved if the agent can find new
users who request nearly identical requests to the
existing ones. The Matchmaking Agent also imple-
ments the same game analysis policy described in
previous section to issue suggestions to the users.
3. Providing information of services on de-

mand: Service Agents in the community may
query the service profiles from the Matchmaking

Agent. This profiles is necessary when a Service
Agent deals with the users according to the access
behavior of others.
The Matchmaking Agent cooperates with the Ser-
vice Agents in the community by interpretation of
incoming request objects as follows:

Request Object

Function: Request_function

Input: Description, Constraint
Input_obj

Output: Description, Constraint
Output_obj

Owner: Service_Agent
Issued_timeTime:

Request Object:

Fig. 8. The template of a request object.

The request object is a common template for re-
quests posted to the Matchmaking Agent. A re-
quest object consists of requested function, input,
output, owner, and time stamp. The functions cur-
rently implemented are listed as follows:
• Declaration of service profiles: In order to
made the existing requests available to other ser-
vice units, the Service Agent declares its service
profiles to the Matchmaking Agent.
• Load request: When the Resource Manager
considers that the load in the unit is still low com-
pared to the available resources, it may give charity
to the community by issuing a load request to the
Matchmaking Agent. The constraint of the request
object indicates the acceptable number of requests.
The agent assigns requests to the service unit if
available. The Matchmaking Agent returns the re-
quest object that the output was assigned a set of
requests back to the service unit.
• Load distribution request: In some cases
such as a service unit become overloaded or needs
to be temporarily closed, the service unit has to
distribute its services to others. It issues one or
more request objects to the Matchmaking Agent in
order to distribute the requests to available service
units.
• Effectively identical requests matching:
When a user request a service, the in charged Ser-

vice Agent consults with the Resource Manager in
the unit about an effectively identical request. In
the case of no effectively identical request available,
the Service Agent sends this request object to be
served by the Matchmaking agent. In the worst
case, there is no effectively identical request in the
community, the Matchmaking Agent relays the re-
quest to an appropriate service unit. This can be
both the service unit that issued a load request or
the site which the Matchmaking Agent considers
that the load is still low. However, the elected ser-
vice unit has right to refuse the request base upon
constraint on the location. If the request is not ac-
cepted by any service site, the in charged Service
Agent takes the request into its own service unit.

Matching process

The Matchmaking Agent performs the request
matching of incoming request objects. The agent
investigates the function of each request and pro-
cesses the input and output of the request accord-
ing to the function. The request objects come to
the agent in asynchronous fashion. In order to
match the requests efficiently, the request objects
should be interpreted at different priorities from
highest to lowest: declaration of service profiles,
load request, load distribution request, and request
matching respectively.
The Declaration of service profiles should be ren-

dered as fast as possible in order to provide the up-
dated information about available requests. The
load request should be rendered before load distri-
bution request in order to register the demands.
When the load distribution request or the supplies
come to the Matchmaking Agent, they can be dis-
tributed immediately. This comes from the fact
that load distribution request has probability to be
denied by any limited service units if load request
is not available. The lowest priority is the request
matching because this operation requires more pro-
cessing effort and needs information of request with
higher priorities.
When effectively identical requests are found, the

users who request will be redirected to the service
units where the requests are available.

Decision making in matching process

A cost model is applied to the service mechanism to
investigate cooperative behavior of service agents
in the community. The invited users under the in-
vitation of preference adjustment requests and the
new users gather together to get assigned to ap-
propriate service groups. This implies that they
desire to play in an assignment game in order to

improve profits. Right in this process, the requests
will be clustered into groups of prospectively iden-
tical requests. These groups are applied to a cost
model for finding acceptable matches. The cost for
a service is defined on the concept that the more
effective identical requests, the lower the cost of
each service in the identical group. We define Ci,
the cost per service for each user in group ith base
on F , the full cost per user, as follows:

Ci = F (1− k e
gi
N − 1
e− 1

) where 0 ≤ k ≤ 1 (10)

The cost reduction increases exponentially accord-
ing to the number of identical requests in the group.
This create a persuasion for the users to join a large
group even the request for that group is not exactly
match what they want since this can reduce their
costs. Another effect of the cost model is that the
service costs in the community become lower re-
markably as the number of identical requests in-
creases. As a result, the competitiveness of the
community becomes higher in case that we consider
the service in multiple communities. The above is
the evaluation of value of the services on the ser-
vice provider side. The evaluation of services on
the user side can be derived from the evaluation of
distance between existing services and the service
in need. We define the appreciation value of the
user jth against the service of the group ith by uij .
Then, the difference value for the service of group
ith viewed by the user jth is aij = uij − Ci. If we
have a set of service groups G = {g1, g2, ...gn}, and
a set of users H = {h1, h2, ..., hm}, then we can
find the maximum profit combination by finding
the maximum value of

∑
aij among the combina-

tion space of G and H .

5. Implementation

WWW Change Monitoring Service
Prototype

Fig. 9. A look of presentation of changes.

The LOCTAGS algorithm reveals its success in
grouping common sequence of two HTML docu-
ments. The comparison is performed exactly where
it should be done. Even the changes are made in

cell level of the table, the HTML Difference Engine
knows how to group the common tag sequence and
performs comparison correctly. The changes are
shown in the ways that described in Fig. 9. The
deleted parts are displayed in stroked text. In the
case that the deletion involves an URL link, a foot-
print icon is added to the tail of stroked text in
order to indicate the deletion of the URL link. On
the summary page, some implicit URLs that link
to local pages on that site are modified during com-
parison process so that the users are able to click
and explore the deleted link (if available). The dele-
tion of a link does not imply the existence of that
link on the World Wide Web. The addition parts
are displayed in underlined bold text. In the same
manner, a peg icon will be attached to the tail of
any link that is inserted to the Web page.

Fig. 10. MS Agent used in multi-modal presentation.

Finally, the presentation of changes is carried
out by multi-modal presenting agent by embed-
ding presentation script into the summary page.
The presenting agent let the user asks about the
changes in conversation dialog. The information
about changes is compiled into conversation model
for the Microsoft Agent. The user can ask the pre-
sentation agent about the number of image, link,
and Java Applet changes. The users can also ask
the presenting agent to explain how the changes oc-
cur on the new page. The multi-modal presentation
enhances the readability of summary of changes
and makes the change reviewing easier.

Resource Management

The simulations of resource management based
on the strategies described previously, “Resource
Management”, were carried out upon 30,000 users
who select their requests among 1,000 different
pages, and each page has 32 different ways of pa-
rameter setting. The growth of Utilization Factor
is measured through the growth of number of users.
The simulations were carried on the situations that
the number of users is increased in steps. The origi-
nal number of users is at 3,000 users. At the follow-
ing steps, the number of users increases to 10,000
and 30,000 respectively. After that the Utilization
Factor is tested in the situation that the number of
users decreases to 20,000. The simulations are also
carried out with various value of P(improve) which
is a decision threshold used by the Service Agent.
In addition to the plots of Utilization Factor and
effective number of requests, the number of param-
eter adjustment requests issued by Service Agent
is also measured. This value indicates the level of
cooperation needed. The results of simulations are
shown as follows:

Fig. 11. The growth of Utilization Factor against the
reduction of number of effective requests when using
P(improve) of 0.3.

With the P(improve) of 0.3, we can see obviously
that the threshold is very low so the Service Agent
issued a large amount of parameter adjustment re-
quests. At the same time, the number of effective
requests decreases. Thus the Utilization Factor in-
creases substantially. The results seem to be very
successful at a first glance. In fact, if we consider
the number of parameter adjustment requests, it
is quite obvious that the users may get excessive
requests.
With the P(improve) of 0.5, we can see that the

Utilization Factor grows up to lower levels com-
pared to the first condition but the number of pa-
rameter adjustment requests is less.
Finally, with the P(improve) of 0.8, we can see

obviously that the threshold is too high. The Ser-
vice Agent issues only few parameter adjustment

Fig. 12. The growth of Utilization Factor against the
reduction of number of effective requests when using
P(improve) of 0.5.

Fig. 13. The growth of Utilization Factor against the
reduction of number of effective requests when using
P(improve) of 0.8.

requests. Thus, the Utilization Factor does not
grow to a substantially improved level.

6. Related work

From the standpoint of tracking and viewing
changes on the Web, the works that are most sim-
ilar to ours are that of Douglis, et al. [2],[3].
They used the AT&T Internet Difference Engine
to compare revisions of Web pages of some enter-
prises from time to time. We attempt to improve
the service for a larger scale of users. We man-
age the shared resources among users in order to
enable induced push mode of changes and differ-
ences. Besides, our difference engine implements
the Longest Common Tag Sequence (LOCTAGS)
algorithm [1], which is capable of comparing con-
text exactly where the revisions should be com-
pared. The results from the HTML Difference En-
gine are comprehensive change presentation pages
which precisely display down to the cell level of
structured text. In addition to a target page, we
assume that the child pages are likely to have rele-
vant information. Therefore, the service agent can
be requested to watch the target down to its child
pages. If needed, the agent can also be requested
to watch deep down to the grandchild pages. How-

ever, the grandchild level is limited to the pages in
the same domain of each child page.
The Do-I-Care agent [6] applies social discovery

and filtering to inform the users when changes are
detected. Moreover, it takes advantage of training
the agent by groups of users where some interest-
ing information may be offered to the user via the
effort of others. We agree with the idea but we
need a simpler way for evaluation of changes. The
scoring method we use is straightforward and can
be carried out quickly while providing a way for
the users to adjust the threshold values upon their
experiences [1]. In our system, the social filtering
effect occurs when the Resource Manager cooper-
ates with the Service Agent and the Matchmaking
Agent in order to find hot requests to recommend
to the users.

7. Summary

In this paper, we presented the mechanism of Web
repositories change monitoring service that noti-
fies the users about changes in Web repositories
and creates comprehensive summary pages of the
changes. The improvement of overall utilization
factor is derived from the resource management
within each service unit and the cooperation among
service units. The Matchmaking Agent is the key
of coalition. The coalition among service units
brings about a broader scope for request matching.
Moreover, the Matchmaking Agent has potential
to balance the services among service units. At the
same time, the mechanism of load transfer based
on coalition among the service units strengthen the
robustness of the service.
Decision making process of both Matchmaking

Agent and Service Agent in each service unit relies
on the game analysis. The expected payoff values
based on experience in the past have direct impacts
to the decision. The users that are engaged to the
service assignment game are grouped to appropri-
ate service group based on cost model. The cost
model promotes the degree of cooperation by com-
promising the user needs based upon the maximum
profits. As a result, this increases the identical re-
quests dramatically compared to matching only by
similarity of incoming requests.

REFERENCES

[1] Santi Saeyor and Mitsuru Ishizuka: WebBeholder: A
Revolution in Tracking and Viewing Changes on The
Web by Agent Community, in proceedings of WebNet98,
3rd World Conference on WWW and Internet, Orlando,
Florida, USA, Nov. 1998.

[2] Fred Douglis, Thomas Ball, Yih-Farn Chen and Elefthe-
rios Koutsofios: The AT&T Internet Difference Engine:

Tracking and viewing changes on the web World Wide
Web Volume 1 Issue 1, 1998. pp. 27-44

[3] Fred Douglis: Experiences with the AT&T Internet Dif-
ference Engine 22nd International Conference for the Re-
source Management & Performance Evaluation of Enter-
prise Computing System (CMG96), December, 1996.

[4] F. Douglis, T. Ball, Y. Chen, E. Koutsofios. Webguide:
Querying and Navigating Changes in Web Repositories.
In Proceedings of the Fifth International World Wide
Web Conference, Paris, France, May 1996. pp. 1335-
1344.

[5] Jeffrey M. Bradshaw: Software Agents AAAI Press/The
MIT Press, 1997.

[6] Brian Starr, Mark S. Ackerman, Michael Pazzani: Do-
I-Care: A Collaborative Web Agent Proceeding of ACM
CHI’96, April, 1996.

[7] Imma Curiel: Cooperative Game Theory and Applica-
tions, Kluwer Academic Pubishers, 1997

[8] Theo Driessen: Cooperative Games, Solution and Ap-
plications, Kluwer Academic Publishers, 1988

[9] Aglet-Workbench - Programming Mobile
Agents in Java, IBM Tokyo Research
Lab.,URL=http://www.trl.ibm.co.jp/aglets/

[10] Kazuhiro Minami and Toshihiro Suzuki: JMT (Java-
Based Moderator Templates) for Multi-Agent Planning
OOPSLA’97 Workshop, 1997.

