
WebBeholder: A Source of Community Interests and Trends based

on Cooperative Change Monitoring Service on the Web

Santi Saeyor Mitsuru Ishizuka
Department of Information and Communication Engineering

School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN

{santi,ishizuka}@miv.t.u-tokyo.ac.jp

Abstract

Besides the target information itself, the changes
upon the previously released information are signifi-
cant and worth being notified to those who perceived
the out of date information as soon as possible. The
changes made in Web repositories occur at unpredictable
rates. Unfortunately, stock type information source
has no means to inform its prospective users about the
changes. While the stock type information source oc-
cupies a large percentage of sources on the Web, it
is necessary to have a system that monitors changes
on the Web, and provides comprehensive presentation
to the prospective users. In this paper, we proposes a
mechanism that provides change monitoring and pre-
sentation service for a large group of users by coalition
among service agents. The service agents keep improv-
ing the overall utilization factor by several schemes
based on the decision made by game analysis. We
apply a cost model to the service mechanism in or-
der to study the cooperative behavior of the service
agents. The reduction of cost is designed to comply
with the level of cooperation among service agents.
The WebBeholder community is a promising source
of current trends and interests.

1 INTRODUCTION

The explosive growth of the World Wide Web (WWW)
brings about overwhelming information, in addition,
it is supposed to be changed dynamically without any
prior notification. A large number of information sources
are stock type. The users access this type of informa-
tion in pull mode, mostly by Web Browsers. These
information sources have no mechanism to bring infor-
mation of the changes to prospective users. The users
have to deal with the matter by themselves. Brows-
ing through the sites for new updates is not only time

consuming task but also vain in case that there is no
change made on the sites once visited. This puts a sig-
nificant load to the users besides exploring brand new
information. We need some representatives to do such
burdensome and tedious jobs for us. Furthermore, we
would like to know when the changes occurred and
how they look. That means not only tracking tools
but notification and presentation issues are also taken
into account.

This paper considers the evolution of mechanism
that detects and evaluates changes on the Web, pro-
vides it in comprehensive form, and pushes the infor-
mation to prospective users. At overall level, these
operations induce the flow of information, change and
difference instances, from the information sources to
the users. With this system, The ubiquitous stock
type information sources on the Web have no need to
provide any effort to convey their updates to the users.
As a result, the information is seemingly transferred
in push mode.

We incorporate shared resource management in our
system in order to enable the framework a larger scale
of service. The shared resource management plays
an important role to make the push mode transfer of
changes and differences practical. The system would
not be practical if the available resources are used to
provide service to a large group of users without an
effective resource management processing.

The service attempts to increase the utilization fac-
tor of the system by several schemes. Each scheme
tries to increase identical services in the monitoring
process. These identical or virtually identical requests
give a significant impact on the utilization of our ser-
vice. As long as we can implement the service with
reasonable resource allocation, more users can have
access to our service. At this point, we let the service
interacts with user. However, the interaction must
be made minimal in order to maintain the level of

0-7803-6456-2/00/$10.00 ©2000 IEEE 1656

automatism of the service. We consider the schemes
that deal with user as games. The games are played
by users and the service agent. The service agent de-
cides its moves based on experience in the past and
game analysis. A useful tool we use here is the game
theory. We apply the tool from the view point of our
service. Overall, the service agent improves the uti-
lization factor of the service and gets the most out of
limited interaction with the users.

2 ARCHITECTURE OF THE SERVICE

World Wide Web

Service Agent

HTML Difference
Engine

Manager

WWW

Resource

ServerInterface
Applet

Interface

Interface
Applet

Browser

Browser

Applet

Browser

Archives

S
er

vi
ce

 T
h

re
ad

s

Figure 1: The architecture of change monitoring ser-
vice.

The architecture of the change monitoring service
is shown in [Fig.1]. The service is provided openly on
the Web. The user access the service via the WWW
by using any browser with Java Virtual Machine. Re-
quests can be made directly to the Service Agent which
is the front end of the service.

The functions of main modules can be listed as fol-
lows:

• Resource Manager: All resources for the ser-
vice are handled by this module. The results
from the HTML Difference Engine will be kept
in the archives by Resource Manager. It keeps
improving the utilization factor of the system
by matching all identical or virtually identical
requests.

• Service Threads: Each Web page monitoring
request will be handled by a service thread. The
thread keep monitoring and comparing revisions
of that Web page.

• Service Agent: This is the heart of the service
that interacts with other modules in order to re-
trieve and compare Web pages. It takes requests
from the users and consults the Resource Man-
ager to allocate resource for incoming requests.
It activates the service threads to start services.
When the users query their service profiles, it
works as a service broker that retrieve the pro-
files for the users. The Service Agent handles all
responses made by users when the service need
to know opinions of the users. The responses
from the users are proceeded to the Resource
Manager in order to decide how to improve the
service.

• HTML Difference Engine: The service threads
implement the Difference Engine in order to com-
pare the content of updated pages and see whether
there are significant changes in them. The old
and new versions of HTML documents are com-
pared by running the Difference Engine. The
results from Difference Engine are very impor-
tant for the agent to classify the changes. At
the same time, it will summarize the updated in-
formation into another HTML document by an
innovative algorithm described in the Difference
and Display subsection.

• WWW server: The page archives contain the
old and new version of Web pages together with
summary pages constructed by the HTML Dif-
ference Engine. When the users are notified by
the Service Agent, they can view the summary
pages with their browsers via the WWW server.

3 MONITORING THE CHANGES

The monitoring service keep monitoring the changes
in Web repositories and making comprehensive presen-
tation of the changes available to the users. Once the
Service Agent found significant changes, it notifies the
users. The considerations for each task is described in
detail in following topics.
HTML Document Stream Filtering The result

from the differentiator is fed into the HTML construc-
tor and the user’s interest based filter. The filtering
process is perform right in this filter. The filter imple-
ments the three categories of user interest as described
above. The existence of contents can be checked by
finding whether the old contents are still in the doc-
ument. At the same time, the filter scans the docu-
ment whether any new contents are added to the doc-
ument. In the same manner, the filter checks whether

 1657

anything changed with the tags that control the ap-
pearance of the document. Once the filter found any
changes that fall into these two categories, it evaluates
a score of the changes.

Scorecontent =
Nc∑

i=1

wi(φ) (1)

Scoretopic =
Nk∑

i=1

Ni∑

j=1

2j+5 (2)

Scoretotal = Scorecontent + Scoretopic (3)

where:
Nc = number of content and appearance changes
Nk = number of key words
Ni = number of occurrences of the ith key word.
φ = category of the change
wi(φ) = weight of the φ category

The topics in user interests can be found by check-
ing the key words that user specified. The filter checks
the existence of those key words in the context of dif-
ference in the stream then evaluates another score for
this kind of user interest by the equation above. The
more the occurrences of a key word, the closer to the
topic in user interest we can expect. Finally the total
score is summed up and then determined by the deci-
sion maker. If the score exceeds the specified thresh-
old, the user will be notified of the changes.

4 SHARED RESOURCE MANAGE-
MENT AND COOPERATION BASED
ON COST MODEL

When serving a large number of users, we expect
to have some identical or virtually identical requests.
These requests can share the resource. The more iden-
tical or virtually identical requests, the better utiliza-
tion factor we can get from the service. The Re-
source Manager deals dynamically with the request
matching. The conditions of virtually identical re-
quests change dynamically upon the the changes in
Web repositories and the parameters of the request
made by the users.

Unlike the service for individual usage, we attempt
to provide personal service while maintaining the ef-
ficiency of resource usage. In the case of pushing
changes and difference information, we push the in-
formation to prospective users. This implies that each
user has different degree of interest and attitude against
the detected changes. [Fig. 2] shows that among dif-
ferent service pages, there are some identical requests.

Service pages

Matched requests

G

G

G

G
1

2

3

4

Figure 2: Resource sharing of matched requests.

We can express the utilization of resource as following
equations.

N =
M∑

i=1

Gi (4)

M = PdiffN (5)

ψ =
N −M

M
=

1− Pdiff

Pdiff
(6)

where:
N = number of all requests
M = number of different kinds of requests
Gi = number of matched requests for the ith group
Pdiff = Probability of having different kinds of re-
quests
ψ = Utilization factor

We can see obviously from the equations that if we
share the resource among users, we are likely to get
more profit than serving each user separately. The
utilization factor, finally, depends on the Pdiff which
ranges from 1

N to 1. The range tells us that our uti-
lization factor ranges from 0 to N − 1.

The amount of identical or virtually identical re-
quests can vary dynamically. This is the case when
some requests among currently identical requests are
satisfied by the changed conditions but some are not.
For examples, we decide to push changes information
to the user if we found that the change score is higher
than specific threshold points. Suppose we have 2
users who specified the score threshold for an iden-
tical page at 1500 and 1000 points respectively. Both
requests are considered identical if the change score
is 2000 points. However, if the change score falls be-
tween 1000 and 1500 points, the requests are no longer
identical. The Resource Manager analyzes the char-
acteristic of changes on the Web pages. A parameter
to check is the notification threshold. In some cases,

 1658

Weight/Period?
Adjust

Service pages

G

G

G

G
1

2

3

4

Matched requests Accepted

User

User

User

User

Figure 3: Increasing matched requests by asking users
to modify appropriate parameters.

some users specified high thresholds with high fre-
quency of monitoring. If the Resource Manager found
that the change rates of those pages are relatively slow,
it may ask the users to adjust threshold weight of no-
tification or monitoring frequency. Adjusting these
parameters has probability to increase more matched
requests as shown in [Fig. 3]. Meanwhile, the Re-

Service pages

G

G

G

G
1

2

3

Matched requests

Recommend

User

User

User

User

4

Accepted

Figure 4: Increasing matched requests by recommend-
ing hot requests to the users.

source Manager detects hot requests shared by a large
number of users. The hot requests trend to be inter-
esting pages. The Resource Manager may recommend
these requests to other users as shown in [Fig. 4]. If
some users accept the recommendation, the utility fac-
tor of the service trends to be increased according to
the increasing matched requests.

However, the Resource Manager has to make deci-
sion based on facts and experience in the past whether
it should ask the users to adjust some parameters or
recommend some hot requests to the users. The Re-
source Manager makes a decision by choosing the most
profitable choice from the pay-off matrix of a game.
We will consider how to make decision based on our
service games as follows:
We define the utility:

Table 1: Expected pay-off matrix for the games of the ser-
vice. Pay-off < x1, x2 > indicates that the Service Agent
has an expected payoff of x1 (where an improvement is
worth 1, and no improvement is worth 0 for the Service
Agent) and the user has an expected payoff of x2. In the
case of our service x1 + x2 must be 1.

User
No Adj. Adj.

No Adj. < p0, q0 > < p1, q1 >
Service Agent Adj. < p2, q2 > < p3, q3 >

utility(ServiceAgent, 1)←− improvement

utility(ServiceAgent, 0)←− ¬improvement

utility(User, 1)←− improvement

utility(User, 0)←− ¬improvement

Improvement occurs when:

improvement ←− ServiceAgent(D)∧
User(D)∧
improve if follow(D)

improvement ←− ServiceAgent(Adj.)∧
User(NoAdj.)∧
improve if sa un

improvement ←− ServiceAgent(NoAdj.)∧
User(Adj.)∧
improve if sn ua

Right here, the improve if sa un is the p2 and the
improve if sn ua is the p1. Suppose that the Service
Agent is to choose a strategy with pa = PServiceAgent(Adjust)
and the user is to choose a strategy with pu = PUser(Adjust).
In this setup, the probability of having improvement
P (improve) is defined by

P (improve) = papup3 + (1− pa)(1− pu)p0+
(1− pa)pup1 + pa(1− pu)p2

(7)
In a randomized equilibrium from the Service Agent
view, the payoff for Adjust and NoAdjustment must
be equal. The payoff for asking for adjustment is the
above formula with pa = 1, the payoff for asking no
adjustment is the formula with pa = 0. These are
equal, so we have

(1− pu)p0 + pup1 = pup3 + (1− pu)p2 (8)

 1659

Similarly for the user

(1− pa)p0 + pap2 = pap3 + (1− pa)p1 (9)

Solving for pu and pa we derive

pu =
p2 − p0

p1 + p2 − p0 − p3
(10)

and

pa =
p1 − p0

p1 + p2 − p0 − p3
(11)

Substitute in equation (7), we derive

P (improve) =
p1p2 − p0p3

p1 + p2 − p0 − p3
(12)

The service agent checks whether the P (improve)
is above 0.5 which means the system has probability
to improve the service more than 0.5, if it asks the
user for adjustment. In our service, the probability p3

can be derived by a function that evaluates how sig-
nificant a request for adjustment is. The probability
p2 comes from the experience in the past which is, in
other words, how much the user refuse the suggestion.
The probability p1 comes from the improvement made
when the user adjust the service profile without sug-
gestion from the Service Agent. Finally, the probabil-
ity p0 comes from the self-improvement rate occurred
as the conditions of changes in Web repositories vary
in time domain.

We can see obviously that the variables used in the
game analysis above can be evaluated at ease from the
statistic of the service. The Service Agent can make
decision to deal or not to deal with the user based on
this analysis. Moreover, each decision trends to be
more exact as the experience of the Service Agent in-
creases. A cost model is applied to the service mech-
anism to investigate cooperative behavior of service
agents in the community. The invited users under the
invitation of preference adjustment requests and the
new users gather together to get assigned to appropri-
ate service groups. This implies that they desire to
play in an assignment game in order to improve prof-
its. Right in this process, the requests will be clustered
into groups of prospectively identical requests. These
groups are applied to a cost model for finding accept-
able matches. The cost for a service is defined on the
concept that the more effective identical requests, the
lower the cost of each service in the identical group.

We define Ci, the cost per service for each user in
group ith base on F , the full cost per user, as follows:

Ci = F (1− k
e

gi
N − 1
e− 1

) where 0 ≤ k ≤ 1 (13)

The cost reduction increases exponentially according
to the number of identical requests in the group. This
create a persuasion for the users to join a large group
even the request for that group is not exactly match
what they want since this can reduce their costs. An-
other effect of the cost model is that the service costs in
the community become lower remarkably as the num-
ber of identical requests increases. As a result, the
competitiveness of the community becomes higher in
case that we consider the service in multiple commu-
nities. The above is the evaluation of value of the
services on the service provider side. The evaluation
of services on the user side can be derived from the
evaluation of distance between existing services and
the service in need. We define the appreciation value
of the user jth against the service of the group ith by
uij . Then, the difference value for the service of group
ith viewed by the user jth is aij = uij − Ci. If we
have a set of service groups G = {g1, g2, ...gn}, and a
set of users H = {h1, h2, ..., hm}, then we can find the
maximum profit combination by finding the maximum
value of

∑
aij among the combination space of G and

H .

5 IMPLEMENTATION

The prototype of the system has been implemented
locally in our laboratory. The users can access from
anywhere on the Web, provided that they can access
our interfacing JAVA applet. Currently, we are serv-
ing up to 20 users and monitoring over 200 pages. The
followings are some of our results. Once the users are

Figure 5: Changes information pushed from a Service
Thread via Email.

notified via Email, they can easily access the summary
pages on the Service Agent side by clicking on the link

 1660

Figure 6: A look of presentation of changes.

attached to the notification mails. The HTML Differ-
ence Engine is able to indicate the changes precisely
down to the cell level of table structure in the docu-
ment. The deleted text is displayed in a stroke font
and the new text is displayed in an underline font. The
deleted links or images will be marked by small foot
icons and the inserted links or images will be marked
by peg icons. The users can jump from one change
to another quickly since the changes are displayed no-
ticeably.

6 Summary

In this paper, we presented the mechanism of Web
repositories change monitoring service that notifies the
users about changes in Web repositories and creates
comprehensive summary pages of the changes. The
improvement of overall utilization factor is derived
from the resource management within each service
unit and the cooperation among service units. The
Matchmaking Agent has potential to balance the ser-
vices among service units. Decision making process of
both Matchmaking Agent and Service Agent in each
service unit relies on the game analysis. The expected
payoff values based on experience in the past have di-
rect impacts to the decision. The users that are en-
gaged to the service assignment game are grouped to
appropriate service group based on cost model. At the
same time, the mechanism serves well as a source of
extracting trends and users’ interest.

References

[1] Santi Saeyor and Mitsuru Ishizuka: WebBeholder:
A Revolution in Tracking and Viewing Changes on
The Web by Agent Community, in proceedings of
WebNet98, 3rd World Conference on WWW and
Internet, Orlando, Florida, USA, Nov. 1998.

[2] Fred Douglis, Thomas Ball, Yih-Farn Chen and
Eleftherios Koutsofios: The AT&T Internet Dif-
ference Engine: Tracking and viewing changes on
the web World Wide Web Volume 1 Issue 1, 1998.
pp. 27-44

[3] Fred Douglis: Experiences with the AT&T In-
ternet Difference Engine 22nd International Con-
ference for the Resource Management & Perfor-
mance Evaluation of Enterprise Computing Sys-
tem (CMG96), December, 1996.

[4] F. Douglis, T. Ball, Y. Chen, E. Koutsofios. We-
bguide: Querying and Navigating Changes in Web
Repositories. In Proceedings of the Fifth Interna-
tional World Wide Web Conference, Paris, France,
May 1996. pp. 1335-1344.

[5] Brian Starr, Mark S. Ackerman, Michael Pazzani:
Do-I-Care: A Collaborative Web Agent Proceeding
of ACM CHI’96, April, 1996.

[6] Imma Curiel: Cooperative Game Theory and Ap-
plications, Kluwer Academic Pubishers, 1997

[7] Theo Driessen: Cooperative Games, Solution and
Applications, Kluwer Academic Publishers, 1988

 1661

