
MPML3D: Agent Authoring Language for Virtual Worlds

Sebastian Ullrich1,2, Helmut Prendinger1, Mitsuru Ishizuka3

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
2 Virtual Reality Group, RWTH Aachen University, Seffenter Weg 23, 52074 Aachen, Germany

3 Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan

s.ullrich@ieee.org, helmut@nii.ac.jp, ishizuka@i.u-tokyo.ac.jp

ABSTRACT
This paper describes an authoring language for specifying
communicative behavior and interaction of agents in vir-
tual worlds. We focus on the popular three-dimensional
(3D) multi-user online world “Second Life”and the emerging
“OpenSimulator” project. While tools for designing avatars
and in-world objects exist, technology to support content
creators in scripting (computer-controlled) agents (“bots”)
is currently missing. Therefore, we have implemented new
client software that controls the verbal and non-verbal be-
havior of bots based on the Multimodal Presentation Markup
Language 3D (MPML3D). This paper compares both plat-
forms and discusses the merits and limitations of each from
the perspective of adding agents.

Categories and Subject Descriptors
H.5.1 [Information Interfaces And Presentation]: Mul-
timedia Information Systems—Artificial, augmented, and vir-

tual realities

General Terms
Human Factors

Keywords
agents, authoring language, metaverse, virtual worlds

1. INTRODUCTION
Metaverses as first envisioned in the scifi-novel“Snow Crash”
[10] are manifesting themselves nowadays as online virtual
worlds and are becoming increasingly popular [9]. Such en-
vironments are mostly used for entertainment, research and
business purposes. Second Life (SL) is a prominent exam-
ple of such a virtual online world1. SL provides a free net-
worked multi-user three-dimensional (3D) environment and
is very popular with an increasing amount of registered users
(over 15 million as of October 2008) and about 50,000 users

1http://www.secondlife.com

online at any time. Users of SL can design their own ob-
jects, such as buildings, vehicles, or even entire eco-systems.
OpenSimulator (OpenSim) is an open source project aim-
ing to create and deploy metaverses2. Since the beginning
of 2007, it is being developed under the Berkeley Software
Distribution (BSD) license. The goal of the originators is
to provide an open and extensible platform, which can be
run on one’s own server(s), rather than on servers of Lin-
den Lab, the company behind SL. Otherwise, the motiva-
tion, goals and challenges of OpenSim are quite similar to
those of Second Life. It is rather surprising that bots are
currently almost completely missing from Second Life and
OpenSim. We can only speculate about the reason: possi-
bly, since bots have to be programmed in the C# language,
common content creators of virtual worlds might lack the
skill to specify the behavior of bots. Therefore, in order
to support non-computer science professionals, we have de-
veloped an XML-based agent authoring language for virtual
worlds, based on the Multimodal Presentation Markup Lan-
guage (MPML) [7]. MPML3D is a scripting language for
interaction-rich scenarios with reactive agents, which was
recently adapted to SL [11]. Here, in this paper, the sys-
tem is further extended to OpenSim, and then compared to
SL. Both implementations are described in detail and the
platforms are evaluated afterwards.

2. RELATED WORK
There are only few scripting languages for behavior planning
of life-like characters that are directed for use in recent online
virtual worlds. One example is an authoring language that
integrates of BML [3] into EVE Online, a massively multi-
player online role-playing game (MMORPG). It will allow
players to interact with autonomous agents and to automate
coordination of nonverbal social behavior. It is an official ad-
dition to the game by the developers themselves. Because
of the space setting of the game and the closed source game
engine, content creators are not able to create their own
custom scenarios in this online world. Nakanishi and Ishida
developed Freewalk [5], a platform for social interaction be-
tween multiple users and agents. Central aspects of this
work are a shared environment, an interaction model, and
an interaction scenario. The description language Q [2] is
used to describe the interaction scenarios and to define the
roles of the agents. Although, the Freewalk system has been
used for several applications and multi-user experiments, no
persistent online presence can be found. Yet, it is essential
to have a solid user base for a virtual world. The work of

2http://www.opensimulator.org

���������� 	� �
�� ���	
� �� �
�� ������ ��
�� �� �
�	 �� 	��� ���� ���
������
� �� ��
������ ��� �� �
�	�� ��	���	 ��� �������� 	�
	 ������
��
��	 �
�� �� ���	����	�� ��� ����	 �� ��������
�
��
�	
�
�� 	�
	 ������
��
� 	��� ��	���
�� 	�� ���� ��	
	��� �� 	�� ���	 �
�� �� ���� �	�������� 	�
���������� 	� ���	 �� ������� �� 	� �����	����	� 	� ���	�� �������� ����� �������
����������
�����
 ����
�������� 	�
������ �������	����� ���������� ��� � !����
�
� "
�
��
#������	 ��� $#% &' ()(*�++ (,&,(�� �)� ���-+����

134

Friedman et al. [1] does focus on the evaluation of social
behavior in SL with a simple agent. The agent was driven
by the Linden Scripting Language and was mainly used for
data logging and traversing through SL. A very basic type
of navigation has been implemented (walking in random di-
rections until either an obstacle or an avatar is found). Fur-
thermore, the agent can greet avatars by their names and
perform gestures. In summary, we have not found an author-
ing language in the literature that supports content creators
to easily script agents (bots) in a widely used multi-user 3D
environment. Until now, there seems to be only one, very
specialized solution for agents in Second Life [1].

3. SECOND LIFE AND OPENSIMULATOR
3.1 System Setup
Second Life is a client/server application for multiple net-
worked users. The client software is available for multiple
platforms. Linden Lab maintains a cluster network to host
regions of 3D virtual environments, the “islands”. These
islands contain user-created 3D content and can be interac-
tively explored by users logged into SL. The 3D content is
hosted on the cluster network servers and streamed in an
encrypted, protected format to the client application. This
encourages users to have their own virtual property, to create
new 3D models and to participate in the economic system
of SL. OpenSim is a server system for virtual worlds imple-
mented in C# and has several modes of operation. It can
be used in stand-alone mode to host environments similar to
an intranet. Additionally, a grid-mode allows several Open-
Sim servers to host a scale-able environment. The system is
partially compatible to the Second Life protocol. For that
reason, the official client of Second Life can be used to con-
nect to an OpenSim server. Although, OpenSim is still in
alpha stage, the system is growing rapidly and even big com-
panies like IBM and 3Di are supporting the development.

3.2 Scripting Languages
The “Linden Scripting Language” (LSL) allows to assign
scripts to in-world objects. With over 300 library func-
tions and different data and message types, scripts can con-
trol the behavior of virtual objects and communicate with
other objects and avatars. Limitations of the scripting lan-
guage include time delays for movement of objects (0.2 sec)
and memory constraints for scripts (16 KB). Furthermore, a
script cannot be assigned to avatars. A solution to circum-
vent this problem is to attach a virtual object (which in-
cludes a script) to an avatar. In [1], for example, the avatar
wears a ring which contains a script that can apply anima-
tions to the avatar. Due to indirect control and slow script
execution the result is not convincing. In OpenSim there
are several languages for in-world scripting: LSL, OpenSim
Scripting Language (OSSL) and C# scripts. While LSL
is being re-implemented, the crucial difference to SL is the
compilation to .Net code which results in a faster execution
time. OSSL is meant as an extension to LSL and C# scripts
allow the developer to create new methods.

3.3 Programming Interfaces
Libsecondlife3 is an inofficial API for SL and can be used for
OpenSim as well. It connects to SL as an alternative client

3http://www.libsecondlife.org

and has access to some of the data that is provided to the
client. Among many functions for controlling the avatar, it
contains methods for communication, navigation, and ob-
ject manipulation. Thus, compared to the Linden Script
Language, its main advantages include (1) full control of the
avatar, (2) responsiveness (i.e., no time delay), and (3) no
memory constraints. Most importantly, because OpenSim
is open source, algorithms can be extended or replaced very
easily. A modular architecture ensures extensibility by im-
plementing new plugins. There are different types of plugins:
OpenSim Database Plugins, OpenSim Application Plugins
and OpenSim Region Modules. As the names suggest these
plugins cover different domains within OpenSim and allow
for additions on specific layers.

3.4 Avatars and Resources
The appearance of avatars in SL is defined by the standard
male or female body shape. This shape can be changed by
parameters to create individual body types. Virtual cloths,
skin textures, hair styles and accessories can be either mod-
eled by the user or purchased within the virtual economy
of SL. Animation files, which can be applied to the avatars,
must be uploaded in the BVH-format. SL supports spatial
3D sound (i.e., sound panning and attenuation) and also
allows for streaming audio. Audio sample files can be up-
loaded by the users and are hosted on the server. Each file
is restricted to a maximum length of 10s and must have
a sample rate of 44.1Hz. The avatar appearance modeling
in OpenSim is similar to SL. But in combination with an
alternative Viewer from realXtend [8], OpenSim allows the
usage of arbitrary 3D meshes that are rendered by the open
source 3D engine OGRE. This leads to a higher flexibility as
opposed to SL. Direct joint manipulation enables new algo-
rithms for skeletal and facial animations. For example, this
allows to parameterize animations, implement inverse kine-
matics and to do accurate lip synchronization and blend it
with different facial expressions reflecting emotions.

3.5 Comparison
In summary, both SL and OpenSim are promising platforms
for virtual worlds. Although they have a lot of comparable
features, both have advantages and shortcomings (see Table
1). On the one side, SL has a big community, much con-
tent and is relatively stable. On the other side, OpenSim is
highly extensible but still in alpha stage and sometimes un-
stable. Very recently, IBM and Linden Labs announced in-
teroperability between SL and OpenSim by allowing avatars
to teleport from one world to the other by proposing a new
open grid protocol [4]. Because of these reasons, we support
both platforms.

4. MPML3D FOR VIRTUAL WORLDS
4.1 System Architecture
Our system is divided into three different modules: the
MPML3D server, the virtual worlds server and an accord-
ing client. As input, the system requires a MPML3D script,
which enables users within the virtual world (avatars) to
interact with the script-driven agents (bots). In order to
host a MPML3D-based scenario within SL or OpenSim, the
content creator has to use the services that are provided by
the MPML3D server. Potential users or visitors just need

135

Second Life OpenSim
Registered users ∼15 million ∼50,000
Regions/islands ∼25,000 ∼4,000
Economy linden dollar none yet
Hosting location only at Linden Labs anywhere
Hosting costs annual fee free
Server closed source open source
Scripting LSL LSL, OSSL, C#
API libsl libsl, plugins
3D models prims only prims, 3D meshes
Animation BVH only joint manipulation

Table 1: Comparison between Second Life and
OpenSim (as of october 2008).

to use the free, official SL-client software. The actual imple-
mentation of the server module is based upon the MPML3D
framework [6], which has been re-factored into the MPML3D
backend and the reference frontend. Additionally, two fron-
tends have been implemented to provide an interface to the
environment of SL and OpenSim respectively. Subsequently,
the individual components of the MPML3D server module
are described.

4.2 MPML3D Backend
The MPML3D backend implements the scenario (scene setup
and scene plot/content) as defined in an MPML3D script,
and acts as a host for one or more frontends. It integrates
the parser for the XML-based script source with the dynamic
runtime representation of all interdependencies between and
the hierarchy of agents’ conversational activities and percep-
tions, the so-called “activity network”. In order to keep this
part of the MPML3D system flexible, the backend handles
scene entities and activities in an abstract way, leaving the
actual implementation to the frontends.

4.3 SL & OpenSim Frontends
Each frontend realizes a user interface – comprising multi-
modal output as well as user feedback channels – for inter-
active content scripted via MPML3D. The SL frontend is
responsible for the presentation of the MPML3D content in
SL. It is implemented in C# and makes use of the libsec-
ondlife API (as described in Section 3.3) to connect to SL.
For OpenSim we have ported the SL Frontend. To show the
purpose of the frontends, we explain the initialization phase
and presentation phase (shown in Fig. 1). After registering
at the MPML3D backend, the scene data is received. Text-
based sentences that are specified in the MPML3D script
must be synthesized with the help of a TTS-system and are
then uploaded to SL. On a further execution of the script
this step is obsolete. The backend sends the scene setup for
each humanoid entity (bot), and logs the used bots, accord-
ing to user accounts. I.e., bots also require user accounts,
which have to be registered/provided by the content creator
beforehand. After the initialization is finished, the SL fron-
tend monitors the virtual environment in SL for incoming
events. In the example the two agents are waiting in idle
mode in a lecture hall (see Fig. 2). As soon as visitors ap-
pear and step on the sensor badge (“NII Open House 2008”)
once, a perception is triggered which creates a plot activa-
tion event in the SL frontend. This event in turn sends a

presentation phase

initialization phase

MPML3D backend VW frontend VW environment

parse MPML3D script

send scene setup

connect/register

upload speech files

login characters

login succeeded

start plot

action

representation of
action

action completed

loop over plot

plot activation perception

Figure 1: UML sequence diagram to illustrate the
runtime behavior of the modules to control agents
in virtual worlds with a MPML3D script.

‘start plot command’ to the backend, which then begins the
presentation. During the presentation the bots show ver-
bal and non-verbal behavior by use of timed speech output,
gesture playback and a basic lip synchronization which have
been implemented as functions in the frontend.

5. COMPARISON AND DISCUSSION
In the following, we will discuss the functionality and limita-
tions of the methods that we have implemented for the repre-
sentation in SL and how they can be addressed in OpenSim:

Gesture playback. To animate the virtual characters we
have implemented basic support to start and stop previ-
ously uploaded or officially provided gestures in SL. Due to
technical restrictions in SL, it is not possible to change the
playback speed or to blend animations. Moreover, one can-
not perform low-level animation, because it is impossible to
manipulate the joints of SL character directly. In Open-
Sim, however, it is possible to change the playback speed
and to blend animations. Additionally, the OpenSim de-
veloper team is currently working on support for low-level
animation. This will allow for parameterized gestures and
individual pointing gestures.

Speech output. We have identified three different ap-
proaches for speech output in SL: (1) playback of previously
uploaded audio-clips, (2) streaming audio that is generated
on the server-side in nearly real-time, and (3) text (input)
that is intercepted on the client-side and synthesized by lo-

136

Figure 2: Example of an audience of visitors at-
tending to a presentation given by two MPML3D
scripted agents in SL.

cally installed TTS software. For the most accurate timing,
we favor the first approach. To organize speech-clips in a
meaningful way, we have created a speech-cube in SL. This
cube is a small transparent object that is attached to the
agent and serves as a ‘container’ for the speech-clips. It has
an associated LSL script that manages these speech-clips,
and can start, pause, resume, and stop these files by com-
mands from the SL frontend. In OpenSim, speech output
can either be realized by uploading audio-clips and sending
playback commands (as in SL), or, alternatively, by stream-
ing of audio files. The latter can be achieved more easily
than in SL (currently evaluated).

Pseudo-lipsync. At the time of writing this paper, lip
synchronization is not supported in SL and no third-party
solutions exist. The two programming interfaces of SL pro-
vide no access to the internal data-structures, which would
enable the implementation of a new facial animation system.
As a tentative method, we implemented pseudo lip synchro-
nization, using randomized “mouth open” animations. To
achieve a good lip-synchronization, work on a client-side so-
lution is required. OpenViewer4 is an alternative to the
official client of Second Life and could be used for such an
approach in future work. Alternatively, the rendering (vi-
sual) quality should also improve greatly by the contribu-
tions of realXtend [8] which will be integrated as modules
to OpenSim.

6. CONCLUSIONS
In this paper we have presented the Multimodal Presenta-
tion Markup Language MPML3D as an authoring language
to easily control multiple virtual agents in virtual worlds.
The system is based on the MPML3D framework, which
has been re-designed and extended to accommodate inter-
faces to virtual worlds like Second Life and OpenSim. While
the extension for SL has been attempted before [11], this is

4http://www.openviewer.org

the first time to integrate MPML3D with OpenSim. Hence,
we have described, discussed and compared the technical
features and capabilities of SL and OpenSim. The resulting
system has been successfully implemented and tested with
existing and new scripts, without compromising key features
of MPML3D. In summary, the developed system combines
the easy-to-use multimodal content authoring language for
life-like characters, MPML3D, with the feature and content
rich multi-user online environments of SL and OpenSim.

Acknowledgements
The first author was supported by a “Strategic Project”
Grant from the National Institute of Informatics. Further-
more, the authors would like to thank Jeff Ames and Adam
Johnson, two core developers of OpenSim, for their valuable
information and fruitful discussions.

7. REFERENCES
[1] D. Friedman, A. Steed, and M. Slater. Spatial social

behavior in second life. In P. et al., editor, Proceedings

Intelligent Virtual Agents LNAI 4722, pages 252–264,
2007.

[2] T. Ishida. Q: A scenario description language for
interactive agents. IEEE Computer, 35(11):54–59,
2002.

[3] S. Kopp, B. Krenn, S. Marsella, A. N. Marshall,
C. Pelachaud, H. Pirker, K. R. Thórisson, and
H. Vilhjálmsson. Towards a common framework for
multimodal generation: The behavior markup
language. In Proceedings of 6th International

Conference on Intelligent Virtual Agents, pages
205–217. Springer, 2006.

[4] H. Linden. IBM and Linden Lab Interoperability
Announcement.
http://blog.secondlife.com/2008/07/08/ibm-linden-
lab-interoperability-announcement/, last visited:
2008/07/14.

[5] H. Nakanishi and T. Ishida. FreeWalk/Q: Social
Interaction Platform in Virtual Space. In ACM

Symposium on Virtual Reality Software and

Technology (VRST-04), pages 97–104, 2004.

[6] M. Nischt, H. Prendinger, E. André, and M. Ishizuka.
MPML3D: a reactive framework for the Multimodal
Presentation Markup Language. In Proceedings 6th

International Conference on Intelligent Virtual Agents

(IVA-06), Springer LNAI 4133, pages 218–229, 2006.

[7] H. Prendinger, S. Descamps, and M. Ishizuka. MPML:
A markup language for controlling the behavior of
life-like characters. Journal of Visual Languages and

Computing, 15(2):183–203, 2004.

[8] realXtend Developer Community. realXtend - Open
source platform for interconnected virtual worlds.
http://www.realxtend.org, last visited: 2008/07/14.

[9] J. M. Smart, J. Cascio, and J. Paffendorf. Metaverse
Roadmap: Pathways to the 3D Web.
http://www.metaverseroadmap.org, 2007.

[10] N. Stephenson. Snow Crash. Spectra, 1992.

[11] S. Ullrich, K. Brügmann, H. Prendinger, and
M. Ishizuka. Extending MPML3D to Second Life. In
Proceedings 8th Int’l Conf on Intelligent Virtual

Agents (IVA’08), Tokyo, Japan, September 2008.
Springer Verlag, in press.

137

