
MPML-FLASH: A Multimodal Presentation Markup Language with
Character Agent Control in Flash Medium

Zhenglu Yang Mitsuru Ishizuka
Department of Information and Communication Engineering

Graduate School of Information Science and Technology
University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
{yang, ishizuka}@miv.t.u-tokyo.ac.jp

Abstract

Nowadays, employing realistic-looking virtual
humans as presenters in various situations becomes
more effective and important. To make it easier for the
author to write such multimodal presentation, we have
developed MPML (Multimodal Presentation Markup
Language). By extending MPML, we have developed
MPML-FLASH (Multimodal Presentation Markup
Language for Flash), which facilitates multimodal
presentation in Flash medium. In this paper, we
present the specification, related techniques and a
framework as the testing platform for MPML –
FLASH.

Key Words

Multimedia Tool and Systems, Presentation Markup
Language, Life-like Agent

1. Introduction

In the last few years, an increasing number of
attempts have been made to develop agent authoring
systems that are able to generate agent applications like
presentations on the fly. In these systems, scripting
languages play important roles.

Scripting languages are to a certain extent simplified
languages which ease the task of computation and
reasoning. One of the main advantages of using
scripting languages is that the specification of
communicative acts can be separated from the
programs which specify the agent architecture and
mental state reasoning. Thus, changing the
specification of communicative acts doesn’t require to
reprogram the agent [1].

For the purpose that people can write multimodal
presentation easily, just as people can build homepage
easily using HTML, we have created MPML. MPML
is designed to create multimodal presentation contents
independent of the character agents and currently it can
control a talking character head, a VRML character,
and the popular Microsoft Agent. In this paper, we will
propose MPML-Flash script specification and the
framework which is used as a test bed.

The rest of the paper proceeds as follows. Section 2
describes related works about character agent and
script language. Section 3 describes the specification of
MPML-FLASH. Section 4 describes the core
components of test bed system like character
animation, lip synchronization, Finite State Machine
control mechanism and Flash platform. Section 5
describes the system structure. Section 6 shows the
demo of our system. Section 7 makes an evaluation and
Section 8 presents a conclusion and future work.

2. Related Works

Recently, interactive lifelike agents are employed to
play key roles in virtual environments. We use these
believable characters to act not only as virtual tutors
[2], but also as virtual actors [3], virtual sales agents
and presenters [4].

Similar to our MPML script, APML – Affective
Presentation Markup Language [5] focused on
presenting personality and emotions in agents. The
presentation is mainly performed by speech synthesis
and facial expression. VHML – Virtual Human
Markup Language [6] allows interactive Talking Heads
to be directed by text marked up in XML. The
language is designed to accommodate various aspects
of Human-Computer Interaction. As is the case with
APML, it does not have a feature to integrate a

background. Moreover, they only concern the head of
the character, not the entire body.

In case of our MPML-FLASH language, the script is
not only used to script the full body characters, but also
is employed to control the background objects.
Additionally, because we control virtual character and
other background objects in Flash medium, the work is
especially useful in network environment better than
the other script language described above.

3. MPML-FLASH

3.1. Multimodal Presentation Markup
Language (MPML)

3.1.1. Introduction. The Multimodal Presentation
Markup Language [7] developed at the Ishizuka Lab,
Tokyo University, is an XML styled markup language
designed to allow authors to easily script animated
agent presentations. At present, MPML can control a
talking character head, which is created using
physics-based technique, a VRML character, which has
a H-ANIM compatible body in a 3D environment, and
the popular Microsoft Agent. In this paper, we propose
a new Flash character creating system scripted by
MPML.

3.1.2. MPML System Architecture. Figure 1 shows
the overall system architecture of MPML3, which is
the newest version of the language. Because of the
space limited, the MPML3 specification is not shown
here and is available at MPML homepage [7]. The
MPML script is first checked by the script loader and
then converted into a graph, which is displayed in the
graphical user interface. The author can easily modify
the graph using this interface. Finally, the role of the
converter is to convert the graph into executable script
code, which directly controls the actual presentation.

Figure 1. MPML3 architecture

3.1.3. MPML Specifications. The MPML Language
consists of 24 tags divided across three main domains.
They are described as shown below:

1. Agent Control
These tags are used to determine the actions of
the agent, like speaking, thinking, playing and
moving. These tags are also able to control the
agent’s mood and emotions.

2. Presentation Control
These tags control the overall flow of the
presentation, either by allowing agents to act in
sequence or simultaneously.

3. Background Control
The background is an important aspect of the
presentation material used by the animated
agent. The tag names include wait, consult, test
and execute.

3.1.4. Graphical User Interface. To make it easier for
the author to write MPML script, we have developed a
graphical user interface (GUI). A screenshot of the
interface is shown in Figure 2.

Figure 2. GUI of MPML

3.2. MPML for Flash Medium

Based on the works of MPML before, we have
developed MPML-FLASH, which is used in Flash
medium to create multimodal presentations with
life-like agents.

3.2.1. MPML-FLASH Design. The MPML before
mainly uses Microsoft Agent as the character to present
the scenario. Yet it has a drawback that the character
file and the TTS engine should be first downloaded
into the user’s machine. This will take some time
especially if the user has a slow network connection.
 Based on the streaming technique, Flash can be
viewed while downloading. So the user can see the
Flash presentation even there is nothing but a Flash
Player, which has already been used by 98% web users
according to the Macromedia Company’s report. Table
1 shows the difference of Flash and MS Agent.

Table 1. Comparison of MS Agent and Flash

The MPML system before is not clear that it is
whether or not built based on Client-Server model. In
case of MPML-FLASH, it creates all presentation
Flash files at the server and users can request it from
the client. This clear separation can take good use of
the server as a powerful pool such as employing
database to implement a dynamic presentation.
 The MPML parser before is mainly converting
MPML script to javascript and HTML code, which is
used to control the character stored in user’s machine.
The MPML-FLASH parser is built based on DOM
XML at the server. So no MPML-Javascript converting
is needed.

3.2.2. Specification of MPML-FLASH

 Figure 3. MPML-FLASH tag tree

The XML tag tree of MPML-FLASH is shown
(Figure 3). The new elements in MPML-FLASH are
described in the gray box. And the yellow box shows
the removed elements in MPML-FLASH. Since the
detailed specification is available at MPML-FLASH
homepage [8], we note here the main modification
from MPML3 to MPML-FLASH.

The new object elements define and control the text,
image and button objects in Flash medium. The reason

why we add these new tags is that we can control more
Flash objects in the background so that we make the
presentation more attractive. In the future we can also
extend to other objects such as audio and video. The
example codes of object elements are shown as
follows:

<object type=”text” id="Title1" x="0" y="100" height="50"
src="Multimodal Presentation Markup Language" />

<object type=“img” id="MPML_GUI" x="100" y="200"
width="500" height="400" src="mpml3_gui.jpg" />

<object type=”button” id="Stop" value="Stop" x="780" y="680"
act="Stop"/>
 The reason why we removed the tag <nb> is that it
can be replaced by tag <pause> for the similar function
of them. And we also removed tag <mood> because at
present we don’t focus on developing this part of the
character. We only simplify the character by defining
the tag <emotion> such as the following example code:

<emotion id=”happy” name=”happy” act=”smile” />

 The other tags in MPML-FLASH are the same as in
MPML3, which is available at MPML homepage [7].

4. Character Agents for MPML-FLASH

4.1. Character Animation

Character animation has a long tradition in computer
graphics. The three main techniques used in this area
are keyframing [9], procedural methods [10] and the
use of data captured from the real world [11].

A disadvantage of the described techniques is the
need for accurate 3D models of the characters to
animate. Image-based rendering [12] avoids such
models by using images available from hand-drawn or
pre-rendered. It can utilize a variety of animation
styles, e.g., different frame rates, artistic styles and
media. In our system, we apply image-based rendering
technique.

4.2. Lip Synchronization

To synchronize the character’s lips, we use some
techniques based on phonemes and visemes. Phonemes
are the distinct sounds within a language. Visemes are
visually distinct mouth, teeth, and tongue articulations
for a language counterpart to phonemes.

Bee Are Uhh Oh

Figure 4. Phoneme & Viseme

In our system, we employ Festival Speech Synthesis
System [13] to produce the audio stream that will be
subsequently played back in synchronization with the
facial animation and the temporized phonemes, which
are used to create the corresponding visemes to fulfill
the lip synchronization (Figure 4).

4.3. Finite State Machine

To control the character, we use a classic technique
called FSM (Finite State Machine), based on the works
of MediaSemantics [14].

Figure 5. Body FSM structure

Figure 5 illustrates the structure of a Body FSM. The
body of character is divided into several parts. The
parent image is rendered with a “hole” punched out of
it, and then the child image is drawn into that hole.
Different child parts, such as the mouth and eyes, can
be drawn onto the same head parent part. This work is
done manually to define the size of the hole now. We
plan to use computer vision technique in the near
future to automatically identify the different parts of
the character.

State/transition Diagrams

Figure 6 is a simple state machine that defines the
turning action of the character. The circles represent
states and a character can remain in a state for any
period of time. The arrows denote transitions which
contain several frames that will bring a character from
one state to another.
 Within a given body state, we can use more state
machines to describe other parts of the character to do
some animation. For example, we can define a
“Looking” state machine and a “Speaking” state
machine for addition. The Figure 7 has three state
machines (Turning, Looking and Speaking states).

Figure 6. Turning FSM

Figure 7. Speech FSM

Implementing FSM

The character’s animation library is an XML version
file in which are defined all the states and transitions of
the character. For example, our simple turning model is
expressed as follows:
<state id="Right" />

<state id="Front" />

<state id="Left" />

<transition fromstate="Right" tostate="Front" />

<transition fromstate="Front" tostate="Left" />

<transition fromstate="Left" tostate="Front" />

<transition fromstate="Front" tostate="Right" />

When attaching child states to parent states, we must
connect the parent state to the default child state, and
connect all child states back to the parent state. Our
“Look” hierarchy would be expressed as follows:
<state id="LookUser"

parentstate="Front,Right,Left" part="head"

mouthstate="FrontUserMouthNormal"

eyestate="FrontUserEyesNormal" />

<state id="LookRight"

parentstate="Front,Right,Left" part="head"

mouthstate="RightUserMouthNormal"

eyestate="RightUserEyesNormal" />

<state id="LookLeft"

parentstate="Front,Right,Left" part="head"

mouthstate="LeftUserMouthNormal"

eyestate="LeftUserEyesNormal" />

4.4. Dynamic Flash Creation

To create Flash, we employ the client-server model
that Flash scenario is created at server by the author’s
script.

Among the server-side Flash creation toolkits
available, we use Ming toolkit [15]. Ming is a
sourceForge project, C library for generating SWF
("Flash") format movies. It can be used with PHP,

Python, Ruby and C++ languages. Using the Ming
libraries, we can create complete SWF files from
scratch with server side scripting on the fly.

5. System Structure

We have constructed a test bed system which is built
based on the MPML script to simulate a virtual
presentation scenario.

Figure 8. Script based system structure

As shown in Figure 8, the author first creates MPML
at the client side and then transfers it to the server,
where the corresponding Flash is created based on the
techniques presented earlier. When different users
request from their own client side some time later, the
server will send the pre-script Flash to them.

The detail work flow of the Flash rendering is shown
as Figure 9. The MPML parser assigns the work to
different parts such as the background rendering, the
character body rendering and the Text-To-Speech
according to MPML script. Based on the phonemes,
which are created from input texts, the system
synchronizes the lip of the character and uses FSM to
model the character. At the end, it combines the three
rendering parts to get the final rendered Flash
presentation.

Figure 9. Script based system work flow

6. Demo

We present a live demo (Figure 10) on the web [8] to
show our system. In this demo, we present some
scenarios to introduce our MPML project.

Figure 10. Demo snapshot

7. Evaluation

Because the existing character systems are few so
that it is difficult to make a precise comparison
between MPML-FLASH system and others. Here we
make an evaluation based on qualitative analysis, not
on quantitative analysis.
 MPML-FLASH employs Client-Server model that
the Flash file is created at the server side. By this way
we reduce the burden of the user’s side while
increasing the burden of the server’s side, which can be
solved by setting a powerful configuration such as
more memory, higher CPU and even multiple CPUs.
 When using the MPML3, which mainly employs
Microsoft Agent as the character, the user should first
download the character file. It needs some time
especially under the slow network connection
condition. In case of MPML-FLASH, the time
consumed process is creating Flash scenario at the
server side. The user can see it upon the creating
process finishes, even the whole Flash file has not been
downloaded.
 At present, the Flash character has 22 animations. If
users want to get some new actions, the character
designers such as us should do this job at the server
side so that all users can use it and do not need to
download the character file, which is necessary for the
Microsoft Agent. We are also considering developing
some tool so that users can use it to design their own
custom characters.

8. Conclusion and Future Work

In this paper, we have proposed our new
MPML-FLASH script language for multimodal
presentation with character agent control. Such a
scripting approach facilitates the generation of
well-structured and coherent presentations. Moreover,
we have presented a testing system in which uses
MPML to control the flow of the presentation. Through

this framework, we can simulate a virtual presentation
scenario.

We intend to control Flash templates that are created
by Macromedia Flash Tool. By this way, we can reuse
many already existing Flash files. Moreover, we are
now combining another system developed in our
Laboratory, named SCREAM [16], with our
framework to let the character has his “emotion”. We
hope that by these methods we can create a virtual
world that models the real one in which we live.

Acknowledgments

This research is supported by the Research Grant
(1999-2003) for the Future Program (“MiraiKaitaku”)
from the Japanese Society for the Promotion of Science
(JSPS).

Appendix A: Detail of Character Creation

The prototype character is created by Poser software,
then rendered to a raster format. To divide the
character into parts, we use GD Graphics Library. For
controlling it we employ FSM technique. Lip
synchronization is achieved by using Festival Speech
Synthesis System. Lastly, we use Ming/PHP to create
the Flash scenario combining the character and
background together on an Apache server.

References

[1] Z. Huang, A. Eliëns, and C. Visser, “STEP: a Scripting
Language for Embodied Agents”, in: Helmut Prendinger and
Mitsuru Ishizuka (eds.), Life-like Characters, Tools, Affective
Functions and Applications, Springer-Verlag, 2003.

[2] W.L. Johnson, and J. Rickel, “Integrating pedagogical
capabilities in a virtual environment agent”, In Proceedings
of the First International Conference on Autonomous Agents,
pages 30-38, Marina del Rey, CA, February 1997. ACM
Press.

[3] B. Hayes Roth, R. van Gent, and D.F. Huber, “Acting in
character”, In Creating Personalities for Synthetic Actors,
editors, Robert Trappl and Paolo Petta, eds., Springer-Verlag,
1997.

[4] T. Rist, E.Andre, and S.Baldes, “A Flexible Platform for
Building Applications with Life-Like Characters”, In IUI’03,
Miami, Florida, USA, January 12-15, 2003.

[5] Berardina De Carolis, Fiorella De Rosis, Valeria
Carofiglio, Catherine Pela-chaud, and Isabella Poggi,

“Interactive Information Presentation by an Embodied
Animated Agent”, International Workshop on Information
Presentation and Natural Multimodal Dialogue, 2001.

[6] Andrew Marriott, Simon Beard, John Stallo, and Quoc
Huynh, “VHML – Directing a Talking Head. In Active
Media Technology”, In Proc. The Sixth International
Computer Science Conference, Vol. LNCS2252. Springer.
Hong Kong, 2001.

[7] MPML project, Retrieved March 8, 2003 from
http://www.miv.t.u-tokyo.ac.jp/MPML

[8] MPML-FLASH homepage, Retrieved September 15,
2003 from
http://www.miv.t.u-tokyo.ac.jp/MPML/en/MPML_FLASH/i
ndex.html

[9] D. Paul, “Issues and techniques for keyframing
transformations”, In Graphics Gems III. Academic Press,
Boston, USA, 1992, 121-123.

[10] J.K. Hodgins, W.L. Wooten, D.C. Brogan, and
J.F.O’Brien, “Animating human athletics”, In Proceedings of
SIGGRAPH 95, LA, California, USA, 1995, 71-78.

[11] Z. Popovic, and A. Witkin, “Physically based motion
transformation”, In Proceedings of SIGGRAPH 99, Anaheim,
California, USA, 1999, 11-22.

[12] I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D.H.
Salesin, J. Seims, R. Szeliski, and K. Toyama,
“Performance-Driven Hand-Drawn Animation”, In
Non-Photorealistic Animation and Rendering Symposium.
Annecy, France, 2000, 101-108.

[13] A. Black, and P. Taylor, “Festival Speech Synthesis
System: system documentation(1.1.1)”, Human
Communication Research Centre Technical Report
HCRC/TR-83, UK, 1997.

[14] Media Semantics, Retrieved March 3, 2003 from
http://www.mediasemantics.com

[15] Ming sourceforge project, Retrieved April 6, 2003 from
http://ming.sourceforge.net

[16] H. Prendinger, and M. Ishizuka, “SCREAM: Scripting
Emotion-based Agent Minds”, In Proceedings First
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-02), Bologna, Italy, 2002,
350-351.

