
A TWO-MODEL FRAMEWORK FOR MULTIMLDAL
PRESENTATION WITH LIFE-LIKE CHARACTERS

IN FLASH MEDIUM

Zhenglu Yang Nakasone Arturo Adam Jatowt Mitsuru Ishizuka
Department of Information and Communication Engineering

Graduate School of Information Science and Technology
University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

{yang, arturo, jatowt, ishizuka}@miv.t.u-tokyo.ac.jp

Abstract

Multimodal presentation using interactive life-like agents
is an attractive and effective way to edify, assist and guide
the users. However, it is not easy for many people to write
such multimodal presentations, due to the complexity of
describing various behaviors of character agents and their
interaction of particular character system with individual
(often low-level) description language. As part of our
research, we have developed MPML (Multimodal
Presentation Markup Language), which allows the users
to write multimodal contents with ease. By extending
MPML, we have proposed a new framework for an
interactive system that fulfills multimodal presentation
through script-based and character-based models in Flash
medium.

Key Words

Multimedia Systems, Presentation Markup Language,
Life-like Agent

1 Introduction

A presentation, slide show, video clip or a poster may
contain all the relevant information, but their success in
conveying the information depends mainly on the
presence of a human presenter and the way in which the
presentation material is used. The presence of a skilled
presenter in addition to a well-prepared presentation
material usually makes the presentation more appealing.

In the last few years, an increasing number of attempts
have been made to develop agent authoring systems that
are able to generate agent applications like presentations
on the fly. In order for such presentations to be created
successfully, agent authoring systems that are feature rich
and user-friendly are necessary. Traditional agent
authoring systems have been focused on generating
one-way presentations that merely “push” information to
the user. Such presentations do not take into account
customizing of presentation content in response to user
needs. More recent developments have led to
presentations with increased user interactivity - an
advantage that animated agent based systems have over
human based presentations. This could take the form of
allowing users to interact with the presentation materials,
or having the users interact directly with the agent
presenter. By allowing such interactions, user interest can
be significantly increased by permitting a greater amount
of participation. In this paper, we will present our
MPML-Flash framework in which we employ two models
to create multimodal presentation: the script-centered
model and the character-centered model. We use MPML
as the script language and Finite State Machine as the
technique to control autonomous character, created basing
on the pre-rendered images, in the popular Flash medium.

The rest of the paper proceeds as follows. Section 2
describes related works about character agent. Section 3
describes the core components of the system like MPML,
character animation, Finite State Machine control
mechanism, Flash platform, and chatterbot. Section 4
describes the system structure according to two models,
script based model and character based model. Section 5
will show the demo of our system and Section 6 presents
a conclusion and future work.

2 Related Works

Similar to our framework, the Improv system [1] is
mainly controlled by behavioral scripts designed to be
easily translated from a given storyboard. The Jack
Presenter [2] has a series of powerful animation engines,
also considering authoring issues. The Behavior
Expression Animation Toolkit (BEAT) [3] facilitates
synchronization of non-verbal behavior and synthetic
speech.

The systems described above have the disadvantage of
pre-defining the presentation flow. In case of our system,
not only MPML is used to script the presentation, but
also other techniques are employed like Chatterbot,
Non-Deterministic FSM for constructing a character
based, in some sense, automatic virtual environment
according to the users in real time. Because we fulfill all
of these in Flash medium, the framework is especially
useful in network environment better than the other
systems described.

3 Core Components of the System

3.1 Multimodal Presentation Markup
Language (MPML)

3.1.1 Introduction

The Multimodal Presentation Markup Language [4]
developed at the Ishizuka Lab. Tokyo University, is an
XML styled markup language designed to allow authors
to easily script animated agent presentations. At present,
MPML can control a talking character head, which is
created using physics-based technique, a VRML
character, which has a H-ANIM compatible body in a 3D
environment, and the popular Microsoft Agent. Not only
the character, but also the background objects can be
controlled in the virtual reality. In this paper, we propose
a new Flash character creating system scripted by
MPML.

3.1.2 MPML Architecture

Fig.1 shows the overall architecture of MPML3, which is
the newest version of the language. The MPML script is
first checked by the script loader and then converted into
a graph, which is displayed in the graphical user interface.
The author can easily modify the graph using this
interface. It is also possible to create the graph from
scratch and save it as an MPML file. Finally, the role of

the converter is to convert the graph into executable code
which directly controls the actual presentation.

Fig.1 MPML3 Architecture

3.1.3 MPML Specifications

The MPML Language consists of 24 tags divided across
three main domains: Agent Control, Presentation
Structure Control and Background Control. They are
described as shown below:

● Agent Control: These tags are used to determine the
actions of the agent, like speaking, thinking, playing
and moving. These tags are also able to control the
agent’s mood and emotions.

● Presentation Control: These tags control the overall
flow of the presentation, either by allowing agents
to act in sequence or simultaneously.

● Background Control: The background is an important
aspect of the presentation material used by the
animated agent. The tag names include wait, consult,
test and execute.

3.1.4 Graphical User Interface

To make it easier for the author to write MPML script,
we have developed a graphical user interface (GUI). A
screenshot of the interface is shown in Fig.2. The
rectangles denote the background pages, each
differentiated by a different color. The tiny faces next to
the boxes represent the active agents, which are also
differentiated by color.

Fig.2 GUI of MPML

3.2 Character Animation

Character animation has a long tradition in computer
graphics. The three main techniques used in this area are
keyframing [5], procedural methods [6] and the use of
data captured from the real world [7].

A disadvantage of the described techniques is the need
for accurate 3D models of the characters to animate.
Image-based rendering [8] avoids such models by using
images available from hand-drawn or pre-rendered. It
can utilize a variety of animation styles, e.g., different
frame rates, artistic styles and media. In our system, we
apply image-based rendering technique.

3.3 Lip Synchronization

To synchronize the character’s lips, we use some
techniques based on phonemes and visemes. Phonemes
are the distinct sounds within a language. Visemes are
visually distinct mouth, teeth, and tongue articulations
for a language counterpart to phonemes.

In our system, we employ Festival Speech Synthesis
System [9] to produce the audio stream that will be
subsequently played back in synchronization with the
facial animation and the temporized phonemes, which are
used to create the corresponding visemes to fulfill the lip
synchronization.

3.4 Finite State Machine

To control the character, we use a classic technique
called FSM (Finite State Machine), based on the works
of MediaSemantics [10].

There are two main types of FSM. The original simple
FSM is known as deterministic one, meaning that given
an input and the current state, the state transition can be
predicted. D-FSM is employed in the pre-script centered
model of our system. An extension of the concept at the
opposite end is a non-deterministic finite state machine.
This is where given the current state, the state transition
is not predictable. ND-FSM is used in the character
centered model of our system.

Fig.3: Body FSM structure

Fig.3 illustrates the structure of a Body FSM. The body
of character is divided into several parts. The parent
image is rendered with a “hole” punched out of it, and
then the child image is drawn into that hole. Different
child parts, such as the mouth and eyes, can be drawn
onto the same head parent part. This work is done
manually to define the size of the hole now. We plan to
use computer vision technique in the near future to
automatically identify the different parts of the character.

State/transition Diagrams

Fig.4 is a simple state machine that defines the turning
action of the character. The circles represent states and a
character can remain in a state for any period of time.
The arrows denote transitions which contain several
frames that will bring a character from one state to
another.

Fig.4: Turning FSM

Within a given body state, we can use more state
machines to describe other parts of the character to do
some animation. For example, we can define a “looking”
state machine and a “speaking” state machine for
addition. The Fig.5 has three state machines.

Fig.5: Speaking FSM

Implementing FSM

The character’s animation library is an XML version file
in which are defined all the states and transitions of the
character. For example, our simple turning model is
expressed as follows:
<state id="Right" />

<state id="Front" />

<state id="Left" />

<transition fromstate="Right" tostate="Front" />

<transition fromstate="Front" tostate="Left" />

<transition fromstate="Left" tostate="Front" />

<transition fromstate="Front" tostate="Right" />

When attaching child states to parent states, we must
connect the parent state to the default child state, and
connect all child states back to the parent state. Our
“Looking” hierarchy would be expressed as follows:
<state id="LookUser"

parentstate="Front,Right,Left" part="head"

mouthstate="FrontUserMouthNormal"

eyestate="FrontUserEyesNormal" />

<state id="LookRight"

parentstate="Front,Right,Left" part="head"

mouthstate="RightUserMouthNormal"

eyestate="RightUserEyesNormal" />

<state id="LookLeft"

parentstate="Front,Right,Left" part="head"

mouthstate="LeftUserMouthNormal"

eyestate="LeftUserEyesNormal" />

3.5 Dynamic Flash Creation

To create Flash, we employ the client-server model that
Flash scenario is created at the server side by the author’s
script or dynamically according to the user’s request.

Among the server-side Flash creation toolkits available,
we use Ming toolkit [11]. Ming is a sourceForge project,
C library for generating SWF ("Flash") format movies. It
can be used with PHP, Python, Ruby and C++ languages.
Using the Ming libraries, we can create complete SWF
files from scratch with server side scripting on the fly.

3.6 Chatterbot

For making a live presentation like it happens in a real
life, the presenter needs not only to write the whole plot
of the presentation (script-based), but also to prepare the
answers according to the different questions which may
be asked by the audiences (character based). To simulate
a real scene, we should build a speech based chat system,
but unfortunately, because of the inherent difficulties of
speech recognition, which by itself is a highly complex
problem, we are now only using a textual interface
(chatterbot) to fulfill the free question-answer scenario.

Chatterbots are conversational agents engaging in a
natural language-based interaction with user. In our
system, we use AIML [12] as our chatterbot language.

3.6.1 Introduction of AIML

AIML is a XML-like language, designed for ALICE
(Artificial Linguistic Internet Computer Entity)
chatterbot based on the pattern-matching and Case-Based
Reasoning techniques.

A simple example of random responses of AIML in our
system is as follows:

<category>

<pattern> HELLO</pattern>

<template>

<random>

Well hello there!

Hi there!

Hi there. I was just wanting to talk to you.

Hello there!

</random>

</template>

</category>

The category tag contains following tags: a pattern tag
that specifies the pattern to be matched, a template tag,
which defines a response or set of responses to be given,
and a random tag, in which tag is used to define
random answers to the same question.

3.6.2 Domain Model

As is true of nearly any computer program, the narrower
the context, the higher the probabilities that the project
can be completed successfully. Particularly in the field of
AI it has been found that it is extremely difficult to
produce a program to solve general problems [13]. The
notion of domains and domain knowledge has allowed
computer scientists to address more reasonable problems.

In our system, we have implemented a two-domain
model [14], which determines whether the user is
conversing within the domain of the presentation topic or
whether he is speaking out of topic. By this way, we have
rectified the embedded improper characteristic of
Chatterbot, from diverse topic to specific presentation
topic.

4 System Structure

We will present system structure according to the two
models of the system, pre-script based model and
character based model.

4.1 Pre-script Based Model

As shown in Fig.6, the author first creates MPML at the
client side and then transfers it to the server, where the
corresponding Flash is created based on the techniques
presented earlier. When different users request from their
own client side some time later, the server will send the
same pre-script Flash to them.

Fig.6: Script based system structure

The detail work flow of the Flash rendering is shown as
Fig.7. The MPML parser assigns the work to different
parts such as the background rendering, the character
body rendering and the Text-To-Speech according to
MPML script. Based on the phonemes, which are created
from input texts, the system synchronizes the lip of the
character and uses FSM to model the character. At the
end, it combines the three rendering parts to get the final
rendered Flash presentation.

Fig.7: Script based system work flow

4.2 Character Based Model

In this modal, we hope the character acts like a real
person based on his own judge in the virtual
circumstance not on predefined plot. In other words, it
means an autonomous character behaves properly to the
users. We are now or will employ several methods to
achieve this attractive but difficult goal.

First we employ the natural language processing
technique, say chatterbot, as the “brain” of the character.
Second we use non-deterministic finite state machine
method, random actions like blinking or flexing hand, to
the character to achieve the autonomous goal. The third
technique we want to bind into our system is
SCREAM[15], which is developed in our Lab, for
generating emotion, regulating emotion and expressing
emotion of the character. This part is under construct at

present. Another technique we will employ to simulate
life like autonomy is to make a link between gesture and
text.

Fig.8: Character based system structure

As shown in Fig.8, different users should ask different
questions to the server. Based on the domain knowledge
provided by the author using AIML and general
knowledge provided by system, corresponding answers
will be created dynamically and sent back to the users.
The detail work flow of the Flash rendering is shown as
Fig.9.

Fig.9: Character based system work flow

5 Demo

We present a live demo (Fig.10) on the web [4] to show
our system.

Fig.10 Demo snapshot

In this demo, we first define some texts and graphs in the
<head> tag and then describe the representation flow in
the <scene> tag.

6 Conclusion and Future Work

In this paper, we have proposed a new agent authoring
framework in Flash medium. There are two models in
our system. The first one is a script centralized approach
that uses MPML which is created by authors to render
the Flash presentation. Such a scripting approach
facilitates the generation of well-structured and coherent
presentations yet need to be created at first. And there are
also situations that need to take into account customizing
of presentation content according to different users.
Therefore, the presentations dynamically change during
display time. For this, we propose a character-based
approach in which a dynamic presentation is rendered
using underlying mechanism. Through this two-model
system, we can simulate a virtual presentation scenario.

We are now combining another system developed in our
Laboratory, named SCREAM, with our framework to let
the character has his “emotion”. Moreover, to act as a
real human-like autonomous character, ND-FSM needs
to be improved. Additionally, we plan to promote
MPML-FLASH that uses MPML to control Flash which
is created by Macromedia Flash Tool. We hope that by
these methods we can create a virtual world that models
the real one in which we live in.

Acknowledgments

This research is supported by the Research Grant
(1999-2003) for the Future Program (“MiraiKaitaku”)
from the Japanese Society for the Promotion of Science
(JSPS).

Appendix A: Detail of Character Creation

The prototype character is created by Poser software,
then rendered to a raster format. To divide the character
into parts, we use GD Graphics Library. For controlling
it we employ FSM technique. Lip synchronization is
achieved by using Festival Speech Synthesis System.
Lastly, we use Ming/PHP to create the Flash scenario
combining the character and background together on an
Apache server.

References

[1] K. Perlin, and A. Goldberg, Improv: A System for
Scripting Interactive Actors in Virtual Worlds,
Proceedings of SIGGRAPH’96, New Orleans, USA,
1996, 205-216.

[2] N. Badler, R. Bindiganavale, J. Bourne, J. Allbeck, J.
Shi, and M. Palmer, Real Time Virtual Humans, In
International Conference on Digital Media Futures,
Bradford, UK, 1999.

[3] J. Cassell, H. Vilhjalmsson, and T. Bickmore, BEAT:
the Behavior Expression Animation Toolkit, In
Computer Graphics Proceedings, Annual Conference
Series. ACM SIGGRAPH, LA, California, USA, 2001,
477-486.

[4] MPML project, Retrieved March 8, 2003 from
http://www.miv.t.u-tokyo.ac.jp/MPML

[5] D. Paul, Issues and techniques for keyframing
transformations, In Graphics Gems III. Academic Press,
Boston, USA, 1992, 121-123.

[6] J.K. Hodgins, W.L. Wooten, D.C. Brogan, and
J.F.O’Brien, Animating human athletics, In
Proceedings of SIGGRAPH 95, LA, California, USA,
1995, 71-78.

[7] Z. Popovic, and A. Witkin, Physically based motion
transformation, In Proceedings of SIGGRAPH 99,
Anaheim, California, USA, 1999, 11-22.

[8] I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D.H.
Salesin, J. Seims, R. Szeliski, and K. Toyama,
Performance-Driven Hand-Drawn Animation, In
Non-Photorealistic Animation and Rendering Symposium.
Annecy, France, 2000, 101-108.

[9] A. Black and P. Taylor, Festival Speech Synthesis
System: system documentation(1.1.1), Human
Communication Research Centre Technical Report
HCRC/TR-83, UK, 1997.

[10] Media Semantics, Retrieved March 3, 2003 from
http://www.mediasemantics.com

[11] Ming sourceforge project, Retrieved April 6, 2003
from http://ming.sourceforge.net

[12] R. S. Wallace, Don’t read me – A.L.I.C.E. and
AIML documentation, Retrieved March 8, 2003 from
http://alicebot.org/articles/wallace/dont.html

[13] S. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach(Upper Saddle River, NJ: Prentice Hall,
1995).

[14] K. Mori, A. Jatowt, M. Ishizuka, Enhancing
Conversational Flexibility in Multimodal Interactions
with Embodied Lifelike Agents, In IUI’03, Miami,
Florida, USA, 2003, 270-272.

[15] H. Prendinger and M. Ishizuka, SCREAM: Scripting
Emotion-based Agent Minds, In Proceedings First
International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS-02), Bologna, Italy,
2002, 350-351.

