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Abstract

Predicting entailment between two given texts is an important
task upon which the performance of numerous NLP tasks de-
pend on such as question answering, text summarization, and
information extraction. The degree to which two texts are
similar has been used extensively as a key feature in much
previous work in predicting entailment. However, using sim-
ilarity scores directly, without proper transformations, results
in suboptimal performance. Given a set of lexical similarity
measures, we propose a method that jointly learns both (a) a
set of non-linear transformation functions for those similar-
ity measures and, (b) the optimal non-linear combination of
those transformation functions to predict textual entailment.
Our method consistently outperforms numerous baselines,
reporting a micro-averaged F -score of 46.48 on the RTE-
7 benchmark dataset. The proposed method is ranked 2-nd
among 33 entailment systems participated in RTE-7, demon-
strating its competitiveness over numerous other entailment
approaches. Although our method is statistically comparable
to the current state-of-the-art, we require less external knowl-
edge resources.

Introduction
Inferring entailment relations between natural language
texts is a difficult but an important problem (Dagan and
Glickman 2004). Given a text T , the objective of textual en-
tailment is to check whether a hypothesis H can be inferred
from T . If H can be inferred from T , then we say T entails
H . For example, consider the two sentences shown below.

(1) T: All animals must eat to live.

(2) H: All wild animals must eat to live.

The second sentence can be inferred from the information
provided in the first because animals is a superset of wild
animals. Consequently, sentence (1) entails sentence (2).

The ability to recognize textual entailment is a fundamen-
tal requirement in many natural language processing tasks
such as question answering, text summarization, and infor-
mation extraction. For example, if we can infer that “alco-
hol affects blood pressure” from the fact that alcohol re-
duces blood pressure”, then we can use this result to answer
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the question, “What affects blood pressure?”. Indeed, recog-
nizing entailment bears similarities to Turing’s famous test
to assess whether machines can think, as access to differ-
ent sources of knowledge and the ability to draw inferences
seem to be among the primary ingredients for an intelligent
system (Bos and Markert 2005).

Detecting entailment relations between two texts often
requires knowledge that is not explicitly encoded in the
two texts (LoBue and Yates 2011). In sentences (1)-(2),
the knowledge that wild animals are a subset of animals
is an important piece of knowledge that an entailment sys-
tem must have to accurately predict the entailment. Existing
approaches to textual entailment use numerous knowledge
resources such as the WordNet (Tatu and Moldovan 2005),
the FrameNet (Aharon, Szpektor, and Dagan 2010), and the
Web (Glickman, Dagan, and Koppel 2005) and measure the
degree to which T is similar to H . A high degree of simi-
larity between T and H sometimes indicates an entailment
relation between T and H . For example, sentences (1)-(2)
share many words in common. Moreover, using an ontology
such as the WordNet, we can compute the taxonomic sim-
ilarity between animals and wild animals. Consequently, a
high degree of similarity can be observed between (1) and
(2), implying that (1) entails (2).

However, a high degree of similarity between two texts
does not always guarantee an entailment. For example, con-
sider sentences (3)-(4) selected from the RTE-7 dataset.

(3) T: Fannie Mae’s accounting has been under investiga-
tion by the Justice Department and the SEC, and it has
become the subject of investor lawsuits.

(4) H: Fannie Mae is a big company.

Here, the information contained in (3) is insufficient to deter-
mine the size of the company. Consequently, in the RTE-7
dataset (3) does not entail (4). However, the words Fannie
Mae are common to both (3) and (4), and the word com-
pany in (4) is similar to the words department, investor, law-
suit, and accounting in (3). Consequently, popular lexical
similarity measures such as edge-counting in the WordNet
(Leacock and Chodorow 1998) (similarity score = 0.39) and
depth of the lowest common subsumer in the WordNet (Wu
and Palmer 1994) (similarity score = 0.33) return high sim-
ilarity scores between (3) and (4). This example shows that
high similarity scores do not necessarily guarantee an en-
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tailment, thus similarity scores alone must not be used for
predicting textual entailment.

Given a set of pairwise lexical similarity measures, we
propose a method to learn non-linear transformation func-
tions for those measures to accurately predict textual entail-
ment between two texts. Specifically, we represent a sen-
tence pair, (T,H), using a feature vector in which, each fea-
ture is computed using a different pairwise lexical similarity
measure, transformed by a similarity transformation func-
tion. We do not assume any specific properties of the simi-
larity measures. Therefore, the proposed method can be used
with a wide-range of similarity measures. Our feature repre-
sentation considers not only the information contained in T
and H , but also use the original documents from which T
and H are extracted as an additional background knowledge
source. Moreover, our feature representation has the desir-
able property that the dimensionality of the feature vectors
is independent of the length of T or H , and is determined
only by the number of similarity measures used. We pro-
pose a supervised method to jointly learn both the similarity
transformation functions, as well as optimal combination of
features using a set of labeled sentence pairs.

Experimental results on the RTE-7 dataset show that the
use of similarity transformation functions consistently im-
proves the performance over using raw similarity scores.
Our method achieves a micro-averaged F -score of 46.48,
which is ranked 2-nd among 33 different textual entail-
ment systems, indicating the competitiveness of the pro-
posed method. Moreover, our results are statistically com-
parable to the current state-of-the-art, although we require
less external knowledge sources.

From Similarity to Entailment
Representing Sentence Pairs
Let us assume that we are required to determine whether
T entails H , for two sentences T and H . First, we repre-
sent the sentence pair (T,H) using a feature vector. For
this purpose, we use a set, S = {s1, . . . , sL}, of pairwise
lexical similarity measures, si. We do not assume any spe-
cific properties of individual similarity measures, except that
their similarity scores are in the range [0, 1]. Let us denote
the sets of words contained in H and T respectively by
H = {h1, . . . , hN} and T = {t1, . . . , tM}. Here, we use
a bag-of-words boolean representation that ignores multi-
ple occurrences of a word in a sentence. Next, we create a
word-similarity matrix, A, as shown in Figure 1, in which
we arrange similarity measures in rows and the words in H
followed by the words in T in columns. The (i, j) element
of A is denoted by A(i,j), and is computed as follows:

A(i,j) = (1)
max

k=1,...,M
si(hj , tk) ∀j = 1, . . . , N

max
k=1,...,N

si(hk, tj−N ) ∀j = N + 1, . . . , N +M

where, in each row i we compute the maximum similarity
between a particular word in H and all the words in T us-
ing the similarity measure si to compute the elements cor-
responding to the words that appear in H. Similarly, each

Figure 1: Constructing a word-similarity matrix A using a
set of similarity measures S for sentences T and H .

word in T is compared against all the words in H using si
to compute the elements in the i-th row corresponding to the
words in T . Note that a word in H needs not be similar to
all the words in T . For example, in sentences (1)-(2) in our
first example, the animals in T needs to be similar only to
wild animals in H , to infer entailment between T and H .

The word-similarity matrix A is agnostic to the salience
of the words in H and T . For example, it would consider
both the words animals and eat in (1)-(2) with equal impor-
tance when computing the similarity scores. However, the
word animals is more important when inferring the entail-
ment between (1) and (2) than the word eat. Determining
the salience of words with regard to their contribution to-
wards overall entailment is a challenging task that requires
additional background knowledge (LoBue and Yates 2011).
The subset of words in H that is important when inferring
an entailment between H and T is different from that when
inferring an entailment between H and another sentence T ′.
For example, consider sentence (5).
(5) T’: All wild animals must eat what ever food they can

find to sustain their lives in the jungle.

Here, the word live in H becomes more important than the
phrase wild animals when inferring an entailment between
H and T ′ because, live can be inferred from the phrase
to sustain their lives in T ′. To incorporate this notion of
salience of words in to our feature representation, we con-
struct an (N +M)-dimensional salience vector, v, in which
the i-th element denotes the importance of the word hi (for
i = 1, . . . , N ), or ti (for i = (N + 1), . . . , (N + M)).
For simplicity, we use the inverse document frequency (IDF)
(Salton and Buckley 1983) for words hi and ti as their
salience scores. We use the original documents provided in
the RTE-7 dataset from which a particular sentence has been
selected, for computing IDF. Because documents are orga-
nized by topics in RTE-7, this enables us to compute salience
scores that are relevant to the topic which T and H belong.

We multiply the salience vector, v, with the word-
similarity matrix, A, to compute the feature vector,φ(T,H),
corresponding to the sentence pair, (T,H), as follows:

φ(T,H) = Av. (2)
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The dimensionality of φ(T,H) is equal to the number of
similarity measures used (i.e. L), and is independent of the
number of words that appear in T or H. This property of
the feature representation is important for the joint learn-
ing procedure for similarity transformation functions dis-
cussed later in the paper. In particular, the i-th element,
[φ(T,H)](i), in the feature vector φ(T,H) involves only
similarity scores produced by the i-th similarity measure, si,
and is given by the sum of two terms,

[φ(T,H)](i) =
N∑
j=1

max
k=1,...,M

si(hj , tk)IDF(hj) + (3)

N+M∑
j=N+1

max
k=1,...,N

si(hk, tj−N )IDF(tj−N ).

Here, IDF(x) denotes the inverse document frequency of a
word x.

Although we limit our discussion in this paper to pairwise
lexical similarity measures, our feature vector representa-
tion can be easily extended to include string-based (Malaka-
siotis and Androutsopoulos 2007; Zanzotto and Moschitti
2006) and syntactic tree-based (Mehdad, Moschitti, and
Zanzotto 2010; Wang and Neumann 2007b) similarity func-
tions, which have been shown to be useful for predicting
textual entailment.

Similarity Transformation Functions
As we already illustrated by an example (sentences (3)-(4)),
a high degree of lexical similarity does not always imply
an entailment between two sentences. The level to which a
particular similarity score contributes towards the final en-
tailment decision depends both on the similarity measure as
well as its score. To convert the similarity scores produced
by a particular similarity measure into confidence scores that
can be used to predict the entailment of H by T , we propose
similarity transformation functions. A similarity transforma-
tion function is defined as a mapping between the similarity
score si(h, t) produced by a particular similarity measure si
for two words h ∈ H, t ∈ T , and a confidence score that
indicates whether T would entail H . Any function that can
map the range [0, 1] of similarity scores to the range [0, 1]
of confidence scores can be used for this purpose. In this
paper, we use logistic sigmoid as our preferred transforma-
tion function. Logistic sigmoid functions are often used as
activation functions in neural networks (Bishop 2006).

Specifically, we define the similarity transformation func-
tion, σi, corresponding to the similarity measure si as fol-
lows:

σi(si(h, t),αi) =
αi1

1 + exp(−λ(si(h, t)− αi2))
. (4)

Here, αi = (αi1, αi2)
> is a positive-valued parameter vec-

tor that determines the step (αi1) and the cut-off (αi2) of the
logistic sigmoid function. The scaling factor λ determines
the sharpness of the step, and is set common to all similarity
transformation functions using development data as we de-
scribe later. The parameter vector αi is learnt using labeled

training data by the joint learning procedure described in the
next Section. Figure 2 illustrates transformation functions
learnt by our method for several similarity measures.

Joint Learning of Transformations and Entailment
Following previous work on recognizing textual entailment,
we model this problem as a binary classification task in
which, given two sentences T and H , we must decide
whether T entails H . Let us consider a labeled dataset D =
{((Tq, Hq), yq)}Qq=1, of Q instances, in which yq ∈ {−1, 1}
indicates whether Tq entails Hq . If Tq entails Hq , then
yq = 1, otherwise yq = −1.

There are two important factors we must consider when
learning to recognize textual entailment. First, the optimal
form of each similarity transformation function remains un-
known. It is natural to expect some level of a correlation be-
tween different similarity measures. For example, similarity
measures that use WordNet share the same WordNet taxon-
omy. Therefore, when determining the optimal values of pa-
rameter vectors αi we must consider all similarity transfor-
mation functions simultaneously. Second, the optimal com-
bination of features given by Equation 5 that maximizes the
prediction accuracy of entailment is unknown. Different fea-
tures are useful to different degrees for predicting entail-
ment. We propose a method to jointly learn both (a) simi-
larity transformation functions, and (b) the optimal combi-
nation of the features, that maximizes the accuracy of the
entailment prediction task. The joint learning approach en-
ables us to consider the overall contribution of both simi-
larity transformation functions and the feature combination
towards our ultimate goal of predicting textual entailment.

Let us denote a feature vector that results after performing
similarity transformations byφ′(T,H). Note that this vector
is given by Equation 2, in which we use the word-similarity
matrix, A, after performing the corresponding transforma-
tions σi on each similarity measure si. Specifically, the i-th
element of φ′(T,H) is given by,

[φ′(T,H)](i) =

N∑
j=1

max
k=1,...,M

σi(si(hj , tk),αi)IDF(hj) + (5)

N+M∑
j=N+1

max
k=1,...,N

σi(si(hk, tj−N ),αi)IDF(tj−N ).

Let us consider the linear combination of those trans-
formed features given by an L-dimensional weight vector
w. Using a large margin binary classification approach, sim-
ilar to that used in Support Vector Machines (Vapnik 1998),
we derive the following optimization problem to minimize
the hinge loss.

min
w,αi

w>w +
L∑

i=1

µiαi
>αi + ν

Q∑
q=1

ξq (6)

s.t. yqw
>φ′(Tq, Hq) ≥ 1− ξq ∀q=1,...,Q (7)

ξq ≥ 0 ∀q=1,...,Q (8)
The objective function (Equation 6) that we aim to minimize
w.r.t. the weight vectorw and the parameter vectors αi con-
sists of three terms: the L2 norm of the weight vector w,
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an L2 regularizer for each parameter vector with regulariza-
tion coefficient µi, and the slack penalty ξq for each margin
violation. Note that ξq = 0, if (Tq, Hq) is correctly classi-
fied (i.e. satisfies Inequality 7). The cost parameter, ν, deter-
mines the trade-off between using a soft margin vs. margin
maximization. To simplify the optimization problem, we set
all µis equal to a common regularization coefficient, µ. Both
µ and ν are hyperparameters in our model that are set using
development data as described later in our Experiments.

Although the similarity transformation functions σi de-
fined in Equation 4 (logistic sigmoids) are convex w.r.t. αi,
and each element in φ′(T,H) can be written as a positively
weighted sum of those similarity transformation functions,
inequality constraint 7 can become non-convex if the weight
vectorw contains negative values. Consequently, we use Se-
quential Convex Programming (SCP) (Zillober 1993; Boyd
and Vandenberghe 2004) to solve the above-mentioned op-
timization problem by using a trust region approximation to
the non-convex inequality constraint 7. Moreover, by con-
sidering the dual form of the Lagrangian, we derive a kernal-
ized version of the optimization problem, which enables us
to study non-linear combinations of features as shown later
in our experiments.

Dataset and Evaluation Measures
We used the dataset created for the Seventh Recognizing
Textual Entailment (RTE-7) (Bentivogil et al. 2011) chal-
lenge in our experiments. RTE-7 is the most recently or-
ganized workshop in the RTE series, hence by using this
dataset we can compare our method against the latest state-
of-the-art results. In RTE-7 dataset, for each sentence H , a
maximum of 100 candidate sentences T are listed. More-
over, a set of documents related to a particular topic is pro-
vided for each H that can be used as additional background
knowledge for detecting entailment. However, this back-
ground knowledge alone, without T , does not entail H . We
used the official train and test splits in the RTE-7 dataset
in our experiments. The train portion of the RTE-7 dataset
contains 284 Hs, and for each H a maximum of 100 can-
didate T s are provided. In total, there are 21, 420 sentence
annotations in the train portion of the RTE-7 dataset out of
which 1136 are positive (entailment) judgements. The test
portion contains 269 Hs and a maximum 100 candidate T s
for each H , amounting to 22, 426 total sentence annotations
out of which, 1308 are positive instances. Following the of-
ficial RTE-7 guidelines, we report micro-averaged F -scores
in our experiments.

Experiments and Results
As a preprocessing step, we remove stop words and per-
form word lemmatization using NLTK1 for all T s, Hs, and
background documents in the RTE dataset. We use the train-
ing data provided in RTE-7 to train the proposed method.
Specifically, we combine T s listed for an H to construct
(T,H) pairs, and label those as positive (T entails H) or
negative (T does not entail H) using the annotations pro-

1http://www.nltk.org/

vided in the RTE-7 dataset. Next, we construct the word-
similarity matrix A for each (T,H) pair using six pairwise
lexical similarity measures described next that have been
used frequently in previous work in textual entailment.
Path: The Path measure computes the shortest path be-

tween two words in the WordNet taxonomy and returns
the reciprocal of the number of edges along this shortest
path as the similarity between the two words.

WP: To measure the similarity between two words Wu
and Palmer (1994) proposed a measure that considers the
depth in a taxonomy of the two words and their maximally
specific superclass.

Res: The more information two concepts share, the more
similar they are. Resnik (1995) computes the similarity
between two words as the maximum information content
of all words that subsume those two words in a taxonomy.
He computes the information content of a word from its
frequency in a large corpus.

Lin: This measures computes the similarity between two
words using the Similarity Theorem proposed in (Lin
1998). Specifically, the similarity between two words is
computed as twice the information content of the largest
common subsumer of those two words, divided by the
sum of the information contents of each word.

JC: Jiang and Conrath (1997) combined both edge-counts
as well as information content values using the WordNet
‘is-a’ hierarchy to compute the similarity between two
words.

LC: This is the semantic similarity measure proposed in
(Leacock and Chodorow 1998). It counts up the number
of edges between the word senses in the ‘is-a’ hierarchy
of the WordNet, and scales this value by the maximum
depth of the WordNet’s ‘is-a’ hierarchy.

We used the implementations of those similarity measures
provided in (Pedersen 2004). We hold-out a randomly se-
lected set of 100 (T,H) pairs from the RTE-7 training data
as development data. We tune λ (set to 10000), µ (set to 0.5),
ν (set to 1) and kernel parameters such that we obtain the
highest micro-averaged F -scores on this development data.
All evaluations are conducted with those parameter values
on the official RTE-7 test set using micro-averaged F -score
as the evaluation measure.

In Table 1, we measure the performance under four set-
tings as described next.
Raw Similarity Measures: We mark a (T,H) pair as pos-

itive if [φ(T,H)]i ≥ θi, for each individual similarity
measure si. The threshold θi is tuned such that the high-
est micro-averaged F -score is obtained on the training
dataset. This baseline method demonstrates the level of
performance that we would obtain if we use raw similarity
scores, without any transformations. The first six rows in
Table 1 shows the performance of this baseline approach
for each similarity measure.

Learning the Transformations only: We use the proposed
method to learn only the transformation functions for
each similarity measure, without combining the features.
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Table 1: Performance of similarity transformations and joint
learning of feature weights. Micro-averaged F -scores are
shown for different methods when H, T and both H and
T are used to create the word-similarity matrix A.

Methods H only T only H+ T
Path 32.36 12.78 16.21
WP 21.67 11.41 12.65
Res 36.76 14.66 20.46
Lin 20.75 14.69 20.70
JC 36.91 13.85 20.82
LC 20.75 11.28 12.18
Path+Trans 44.72 26.92 35.23
WP+Trans 36.85 17.79 24.96
Res+Trans 44.86 27.83 36.10
Lin+Trans 45.28 28.18 36.41
JC+Trans 45.06 28.17 36.41
LC+Trans 44.88 35.83 28.00
Comb (Linear) 44.96 28.79 36.91
Comb (Quadratic) 46.06 28.15 34.34
Comb (Cubic) 45.93 24.81 32.94
Comb (RBF) 46.19 29.16 33.76
Comb (Sigmoid) 45.42 20.84 36.15
Trans + Comb (Linear) 45.68 28.72 36.54
Trans + Comb (Quadratic) 46.19 28.23 35.27
Trans + Comb (Cubic) 45.94 25.76 33.74
Trans + Comb (RBF) 46.35 28.53 34.73
Trans + Comb (Sigmoid) 46.48 27.40 37.28

Specifically, A is created using only si and the optimiza-
tion problem 6 is solved for αi by fixing wi = 1. This
baseline shows the effect of transforming similarity scores
as opposed to using raw similarities. In Table 1, we denote
this approach by +Trans for each similarity measure.

Learning the Combinations without Transformations:
To study the effect of integrating different raw similarity
scores, we use the feature vectors φ(T,H) with the
proposed method. Optimization problem 6 reduces to the
typical SVM learning under this setting. Results using
different kernel functions (within brackets) are shown in
Table 1 (denoted by Comb).

Joint Learning of Combinations and Transformations:
This is the full method proposed in this paper, in which
we jointly learn both similarity transformations and the
optimal feature combinations. In Table 1, Trans + Comb
corresponds to the results obtained via joint learning for
different kernels (shown within brackets).

To study the effect of using information in H vs. T towards
entailment detection, we construct three versions of the ma-
trix A for each case in Table 1: (a) using only the words inH
(A ∈ RL×N ), (b) using only the words in T (A ∈ RL×M ),
and (c) both (A ∈ RL×(N+M)).

For each method compared in Table 1, we see that the
performance reported by H only is greater than that of T
only. This result shows that the information in H is more
important than the information in T when deciding whether
T entails H . Although H + T improves the performance

Table 2: Performance comparison on RTE-7 dataset using
micro-averaged F -score.

Method F -score Method F -score
IKOMA 48.00 FBK 41.90
Proposed 46.48 TE-IITB 30.78
U-TOKYO 45.15 JU-CSE 30.47
BUPT 44.99 ICL 29.73
CELI 44.10 UAIC 27.85
DFKI 43.41 SJTU 23.31
BIU 42.34 SINAI 14.72

over T only for each method, it is still lower than the corre-
sponding H only result. This is because when we construct
the columns of A using words in both H and T , we lose
the direction of the entailment. Consequently, we focus our
attention toH only results for the remainder of this paper.

Table 1 shows that the transformed (+Trans) version
of a similarity measure always improves over its non-
transformed (raw) counterpart, emphasizing the importance
of similarity transformations proposed in the paper. In par-
ticular, the performance of Lin + Trans (45.28) as a stan-
dalone similarity measure is remarkable. All the combina-
tions of raw similarity measures (Comb) learnt using dif-
ferent kernels functions, outperform the performance of any
one of the constituent raw similarity measures. However,
we obtain the best results for this task by jointly learning
both transformations as well as feature combinations (Trans
+ Comb) using our proposed method. The improvements
shown by the joint learning is consistent across a wide range
of kernel functions. In particular, the highest micro-averaged
F -score (46.48) is reported by the sigmoid kernel. We be-
lieve that the superior performance shown by the sigmoid
kernel in the joint learning setting can be attributable to the
fact that our transformation functions themselves are logis-
tic sigmoids. Figure 2 shows the transformation functions
learnt with the sigmoid kernel for each similarity measure.
From Figure 2, we see that the step (αi1) and the cut-off
(αi2) learnt using the proposed method differ considerably
for each similarity measure. This result supports our pro-
posal to learn different transformations for different similar-
ity measures.

In Table 2, we compare our method against all the systems
that participated in RTE-7 using micro-averaged F -scores.
We do not implement those methods by ourselves, and report
the official results published. 13 teams submitted 33 systems
to RTE-7. Due to the limited availability of space, we show
only the results for the best system submitted by each team
in Table 2. For further details of each individual system re-
fer the (Bentivogil et al. 2011). Our method is ranked 2-nd
among all 33 systems submitted to RTE-7. Moreover, the
difference in performance between our method and IKOMA,
the best system in RTE-7, is not statistically significant ac-
cording to an ANalysis of Variations (ANOVA) performed
with a post Tukey Honest Significant Differences (HSD)
test. However, unlike the proposed method, which only uses
WordNet, IKOMA is a knowledge intensive method that re-
quires numerous external resources including WordNet, Cat-
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Figure 2: Similarity transformation functions learnt by the
proposed method with the sigmoid kernel.

Var (Habash and Dorr 2003), and an acronym list.

Related Work
Textual entailment recognition arises in numerous natu-
ral language processing tasks such as question answer-
ing, information retrieval, and text summarization. Conse-
quently, numerous workshops that specifically study this
problem have been organized (Callison-Burch et al. 2009;
Sekine et al. 2009). The Recognizing Textual Entailment
(RTE) challenges (Bentivogil et al. 2011; Dagan and Glick-
man 2004), is a notable venue for the research in textual en-
tailment. Next, we discuss the major approaches proposed
for this problem. For a detailed survey refer (Androutsopou-
los and Malakasiotis 2010).

If T and H contain some word sequences in common,
then it might be a clue that T entails H . Following this
intuition, several entailment recognition methods that com-
pare T and H using surface string similarity measures have
been proposed (Burchardt et al. 2009; Malakasiotis and An-
droutsopoulos 2007). These methods depend on the accu-
racy of finding a correct alignment of words between T and
H . Although accurate word alignment methods have been
proposed for statistical machine translation, they often per-
form poorly on textual entailment tasks, because T and H
are often of very different lengths, they do not necessarily
convey the same information, and textual entailment training
datasets are much smaller than those used in statistical ma-
chine translation (MacCartney, Galley, and Manning 2008).

As an alternative to comparing T and H using their
surface strings, entailment recognition methods that com-
pare the dependency trees of T and H have been pro-
posed (Iftene and Balahur-Dobrescu 2007; Zanzotto, Pen-
nacchiotti, and Moschitti 2009; Wang and Neumann 2007a;
2007b). For example, if H’s parse tree is highly similar
to one or more of the subtrees in T ’s parse tree, then this
might indicate an entailment between T and H . Because
dependency trees are less sensitive to the relative word or-

dering in sentences, they can overcome some of the dis-
fluencies associated with the surface string matching ap-
proaches discussed above. However, in practice dependency
tree-based approaches do not necessarily outperform surface
string-based methods in entailment detection tasks because
of parse errors.

Bos and Markert (2005) model the problem of recogniz-
ing textual entailment as a logical inference problem. They
use model building, a technique popularly used in automatic
reasoning, and integrate it with a shallow word overlap mea-
sure. Although their method reports high precision scores on
the RTE test set, it suffers in terms of recall due to a general
lack of appropriate background knowledge. Learning entail-
ment rules from natural language texts is a promising re-
search direction to extract the necessary background knowl-
edge for the inference process (Haghighi, Ng, and Manning
2005; Berant, Dagan, and Goldberger 2010).

Textual entailment methods that model both T and H as
bags-of-words and use numerous semantic similarity mea-
sures such as WordNet-based similarity measures and distri-
butional similarity measures, have been proposed (Zanzotto
and Moschitti 2006; Geffet and Dagan 2004; Mirkin, Da-
gan, and Geffet 2006; Geffet and Dagan 2005). By using
similarity measures that use a taxonomy such as the Word-
Net, it is possible to perform a soft matching between T and
H using synonyms, hypernyms and meronyms. However,
as we showed experimentally, using raw similarity scores
alone results in suboptimal performance, and often requires
some form of a transformation beforehand. Moreover, bi-
nary classifiers such as Support Vector Machines (Vapnik
1998) with customized kernels (Zanzotto and Dell’Arciprete
2009), have been used to combine different similarity mea-
sures to predict entailment or not-entailment for a given pair
of sentences (T,H).

Our proposed method is different from all the above-
mentioned approaches in that we simultaneously learn both
a set of transformation functions as well as the optimal com-
bination of features for predicting textual entailment. As
shown experimentally on the RTE-7 evaluation dataset, both
similarity transformations and joint learning of the optimal
feature combination improve the performance in textual en-
tailment recognition, achieving results comparable to that of
the current state-of-the-art for this task.

Conclusion
We proposed a supervised method to jointly learn both simi-
larity transformation functions and the optimal feature com-
bination for textual entailment using a labeled set of sen-
tence pairs. Our experimental results show that both sim-
ilarity transformation and feature combination consistently
improves numerous similarity measures, achieving results
comparable to the current state-of-the-art. In future, we plan
to incorporate surface string-based and dependency tree-
based similarity measures into our method to further im-
prove the textual entailment prediction.
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